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Abstract 
In a recent paper, we revisited Golomb’s hierarchy for tiling capabilities of fi-
nite sets of polyominoes. We considered the case when only translations are 
allowed for the tiles. In this classification, for several levels in Golomb’s hie-
rarchy, more types appear. We showed that there is no general relationship 
among tiling capabilities for types corresponding to same level. Then we 
found the relationships from Golomb’s hierarchy that remain valid in this se-
tup and found those that fail. As a consequence we discovered two alternative 
tiling hierarchies. The goal of this note is to study the validity of all implica-
tions in these new tiling hierarchies if one replaces the simply connected re-
gions by deficient ones. We show that almost all of them fail. If one refines the 
hierarchy for tile sets that tile rectangles and for deficient regions then most of 
the implications of tiling capabilities can be recovered. 
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1. Introduction 

A well-known class of combinatorial objects is that of polyominoes. A 1 × 1 
square in a square lattice is called cell. A polyomino is a connected plane figure 
built out of a finite number of cells joined along some of their edges. Introduced 
by Golomb more than half a century ago [1] (but see also the monograph [2]), 
polyominoes continue to generate an endless list of mathematical problems.  

Among the theoretical contributions of Golomb to the study of these objects 
are two tiling hierarchies, one for single polyominoes [3] and one for finite sets 
of polyominoes [4]. See Figure 1 for the last one. The levels considered are Rec-
tangle (R), Half Strip (HS), Bent Strip (BS), Quadrant and Strip (Q + S), Qua-
drant (Q), Strip (S), Weak Rep-tile (WR), Strong Rep-tile (SR), Half Plane (HP), 
Plane (P) and Nothing (N). The sets of polyominoes classified by Golomb allow  

How to cite this paper: Nitica, V. (2018) 
Revisiting a Tiling Hierarchy (II). Open 
Journal of Discrete Mathematics, 8, 48-63. 
https://doi.org/10.4236/ojdm.2018.82005  
 
Received: January 30, 2018 
Accepted: April 22, 2018 
Published: April 25, 2018 
 
Copyright © 2018 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/ojdm
https://doi.org/10.4236/ojdm.2018.82005
http://www.scirp.org
https://doi.org/10.4236/ojdm.2018.82005
http://creativecommons.org/licenses/by/4.0/


V. Nitica 
 

 

DOI: 10.4236/ojdm.2018.82005 49 Open Journal of Discrete Mathematics 
 

 
Figure 1. Golomb’s tiling hierarchy for sets of 
polyominoes. 

 
for translations, rotations and reflections in the coordinate axis for all tiles in the 
set. 

Golomb showed all valid implications of tiling capabilities among the levels 
and that most of them (except for exhibiting a strong rep-tile set which does not 
tile rectangle and a weak rep-tile set that is not a strong rep-tile set) cannot be 
reversed. 

In [5] we revisited Golomb’s tiling hierarchy for finite sets of polyominoes if 
only translations are allowed for polyominoes. For our study, due to the lack of 
symmetry, for each one of the levels HS, BS, Q, S, HP, more types of regions 
need to be considered. Their pictures are shown in Figure 2: four types of half 
strips HS(R), HS(L), HS(U), HS(D); four types of bent strips BS(I), BS(II), 
BS(III), BS(IV); four types of quadrants Q(I), Q(II), Q(III), Q(IV); two types of 
strips S(H), S(V); four types of half planes HP(R), HP(L), HP(U), HP(D).  

We can also consider the level of Rep-tile. As we are not able to differentiate it 
from the level of Rectangle, we will neglect it in the future. In [5] we showed that 
there is no general relationship among the types corresponding to a fixed level 
for the existence of tilings. Then we showed the relationships from Golomb’s 
hierarchy that are still valid in this setup and those that are invalid. As a conse-
quence of the results we showed two alternative tiling hierarchies (See Figure 3 
and Figure 4). We also showed some unexpected additions to all of the above 
tiling hierarchies if deficient regions are considered. We recall that a deficient 
region is one missing a single cell. 

When we speak about tiling a DEFICIENT-REGION we mean tiling 
SOME-DEFICIENT-REGION. This is in the spirit of Golomb’s approach. One 
can also consider the level ALL-DEFICIENT-REGION. The notions of  
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Figure 2. More types of regions. 

 

 
Figure 3. A tiling hierarchy for sets of polyominoes. 

 
SOME-DEFICIENT-PLANE and ALL-DEFICIENT-PLANE coincide, as any 
two deficient planes are alike, but for other deficient levels the notions of SOME 
and ALL are distinct. This suggests the addition of the prefixes AD (ALL- 
DEFICIENT) and SD (SOME-DEFICIENT) to all levels and types of regions 
considered before, and to study the relationships between their tilings capabili-
ties.  

In both Golomb’s and our setups, the impact on tiling hierarchies of the addi-
tion of the prefix AD is minimal [5]. All implications in Figure 1, Figure 3 and 
Figure 4 remain valid and some of them even become equivalences. In this pa-
per we concentrate on the tiling hierarchies shown in Figure 3 and Figure 4 af-
ter the addition of the prefix SD. For simplicity of notation we write only the 
prefix D. First we show that the types of deficient regions appearing inside each  
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Figure 4. Another tiling hierarchy for sets of polyominoes. 
 
level have independent tiling properties. Second we show that almost all impli-
cations of tiling capabilities are invalid. Third we discuss some refinements of 
the tiling hierarchies if we look at deficient regions and restrict our attention to 
the class of tile sets that tile rectangles. This restriction allows to recover many of 
the implications of tiling capabilities that we have for non-deficient regions. All 
tile sets used in this paper are finite. Many of them are derived from tile sets al-
ready used by Golomb in [3] [4]. Several proofs of our statements are a bit te-
dious, but elementary, or follow from [3] [4]. For simplicity we will skip them. 
We do not make a consistent effort to reduce the numbers of tiles and the num-
ber of cells used by the sets of tiles. 

2. Main Results 

A first group of results shows that the types of deficient regions appearing inside 
each level have independent tiling properties. 

Theorem 1. 1) For each type of deficient half strip there exists a set of polyo-
minoes that tile that type but not the other three. 

2) For each two types of deficient half strips there exists a set of polyominoes 
that tile these types but not the other two. 

3) For each three types of deficient half strips there exists a set of polyominoes 
that tile these types but not the fourth. 

Proof. 1) The set of tiles in Figure 5 tiles a deficient half strip of width 3 and 
type HS(R), but does not tile any other type of deficient half strip. 

2) There are two cases to consider: the half-strips are adjacent and the 
half-strips are opposite. The set of tiles in Figure 6 tiles deficient half strips of 
width 3 and types HS(R) and HS(L), but does not tile other type of deficient half 
strip. The set of tiles in Figure 7 tiles deficient half strips of width 3 and types 
HS(R) and HS(U), but does not tile other type of deficient half strip. 

https://doi.org/10.4236/ojdm.2018.82005


V. Nitica 
 

 

DOI: 10.4236/ojdm.2018.82005 52 Open Journal of Discrete Mathematics 
 

 
Figure 5. A tile set that tiles DHS(R), but 
no other type of deficient half strip. 

 

 
Figure 6. A tile set that tiles DHS(R) and DHS(L), but no other type of deficient half strip. 
 

 
Figure 7. A tile set that tiles DHS(R) and DHS(U), but no other type of deficient half 
strip. 
 

3) The tile set in Figure 8 tiles deficient half strips of width 3 and types HS(R), 
HS(L) and HS(U), but does not tile DHS(D). 

In all cases, to show impossibility of tiling, look at the coverings of the corners 
of the half-strips. This gives a contradiction right away, or leads to the appear-
ance of a half-strip pointing in the wrong direction. 

Theorem 2. 1) For each type of deficient bent strip there exists a set of po-
lyominoes that tile that type but not the other three. 

2) For each two types of deficient bent strips there exists a set of polyominoes 
that tile these types but not the other two. 

3) For each three types of deficient bent strips there exists a set of polyomi-
noes that tile these types but not the fourth. 

Proof. 1) The set of tiles in Figure 9 tiles a deficient bent strip of width 3 and 
type BS(I), but does not tile any other type of deficient bent strip. 

2) There are two cases to consider: the bent strips are adjacent and the bent 
strips are opposite. The tile set in Figure 10 tiles deficient bent strips of width 3 
and types BS(I) and BS(II), but does not tile other type of deficient bent strip. 
The tile set in Figure 11 tiles deficient bent strips of width 2 and types BS(I) and 
BS(III), but does not tile other type of bent strip.  
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Figure 8. A tile set that tiles DHS(R), DHS(L) and DHS(U), but not DHS(D). 
 

 
Figure 9. A tile set that tiles DBS(I) but no other 
type of deficient bent strip. 

 

 
Figure 10. A tile set that tiles DBS(I) and DBS(II), but no other type of deficient bent 
strip. 
 

 
Figure 11. A tile set that tiles DBS(I) and DBS(III), but no other type of deficient bent 
strip. 
 

3) The tile set in Figure 12 tiles deficient bent strips of width 3 and types 
BS(I), BS(II) and BS(III), but does not tile DBS(IV). 

In all cases, to show impossibility of tiling, look at the coverings of the corner 
of the bent-strips. This leads to an immediate contradiction. 

Theorem 3. 1) For each type of deficient quadrant there exists a set of polyo-
minoes that tile that type but not the other three. 

2) For each two types of deficient quadrants there exists a set of polyominoes 
that tile these types but not the other two. 

3) For each three types of deficient quadrants strips there exists a set of po-
lyominoes that tile these types but not the other. 

Proof. 1) The tile set in Figure 13 tiles a deficient quadrant of type DQ(I), but 
does not tile any other type of deficient quadrant. 

2) There are two cases to consider, depending on the quadrants being adjacent  
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Figure 12. A tile set that tiles DBS(I), DBS(II) and DBS(III), but does not tile DBS(IV). 
 

 
Figure 13. A tile set that tiles DQ(I) but does not tile any other type of 
deficient quadrant. 

 
or opposite. The tile set in Figure 14 tiles deficient quadrants of type Q(I) and 
Q(II) but does not tile any other type of deficient quadrant. The tile set in Figure 
15 tiles deficient quadrants of types Q(I), Q(III) but does not tile any other type 
of deficient quadrant. 

3) The tile set in Figure 16 tiles deficient quadrants of types Q(I), Q(II) and 
Q(III) but does not tile DQ(IV). 

In all cases, to show impossibility of tiling, look at the coverings of the corner 
of the quadrants. This leads to an immediate contradiction. The tilings follow 
from [4]. 

Theorem 4. For each type of deficient strip there exists a set of polyominoes 
that tile that type but not the other. 

Proof. The tile set in Figure 17 tiles a deficient strip of type S(H) but does not 
tile DS(V). The gray cell in the first tile is missing from the tile. The tiling fol-
lows from [4]. To show impossibility of tiling, observe that there is no way to tile 
the walls of DS(V). 

Theorem 5. 1) For each type of deficient half-plane there exists a set of po-
lyominoes that tile that type but not the other three. 

2) For each two types of deficient half-plane there exists a set of polyominoes 
that tile these types but not the other two. 

3) For each three types of deficient half-plane there exists a set of polyominoes 
that tile these types but not the other. 

Proof. 1) The tile set in Figure 18 tiles DHP(R) but does not tile other types of 
deficient half-plane. 

2) There are two cases to consider, depending on the half-planes intersecting 
or being opposite. The tile set in Figure 19 tiles DHP(R), DHP(U) but does not 
tile any other type of deficient half-plane. The tile set in Figure 20 tiles DHP(R), 
DHP(L) but does not tile any other type of deficient half-plane. 

3) The tile set in Figure 21 tiles half planes of types HP(R), HP(U) and HP(L) 
but does not tile DHP(D). 

The tiling follows from [4]. To show impossibility of tiling, look at the tiling of 
the wall of the half-plane. 
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Figure 14. A tile set that tiles DQ(I), DQ(II) but does not tile any other type of deficient 
quadrant. 
 

 
Figure 15. A tile set that tiles DQ(I), DQ(III) but does not tile any other type of deficient 
quadrant. 
 

 
Figure 16. A tile set that tiles DQ(I), DQ(II), DQ(III) but does not tile DQ(IV). 
 

 
Figure 17. A tile set that tiles DS(H) but does not tile DS(V). 
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Figure 18. A tile set that tiles DHP(R) but does not tile other 
types of deficient half-planes. 

 

 
Figure 19. A tile set that tiles DHP(R), DHP(U) but does not tile other type of deficient 
half-plane. 
 

 
Figure 20. A tile set that tiles DHP(R) and DHP(L) but does not tile other type of defi-
cient half-plane. 
 

 
Figure 21. A tile set that tiles DHP(R), DHP(U) and DHP(L) but does not tile DHP(D). 
 

A second group of results investigates for deficient regions the validity of the 
implications of tiling capabilities in in Figure 3 and Figure 4. The following re-
sult shows that all the implications in Figure 3 are invalid. 

Theorem 6. The following implications are invalid: 
1) DR → DHS(*), where *∈{R, L, U, D}; 
2) DHS(*) → DQ(**), where *∈{R, L, U, D}, **∈{I, II, III, IV}; 
3) DQ(*) → DHP(**), where *∈{R, L, U, D}, **∈{I, II, III, IV}; 
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4) DHP(**) → DP, where **∈{I, II, III, IV};. 
Proof. 1) A counterexample is given by a tile set consisting of a single deficient 

rectangle. 2) The tile set in Figure 22 tiles a width 3 deficient half strip of type 
HS(R) (see Figure 23) but does not tile any deficient quadrant. To prove the last 
part, observe that any quadrant has a vertical wall. Any attempt to tile it creates 
an infinity of cells adjacent to the wall that cannot be covered. This shows that 
the implication DHS(R) → DQ(**) is not valid. The other cases follow using ro-
tations of the tile set in Figure 4 by 90˚, 180˚, 270˚. 

3) The tile set in Figure 24 tiles a deficient quadrant of type Q(I) (see Figure 
25) but does not tile any deficient half plane. To prove the last part, look at the 
covering of the wall of the half plane. Once a deficient cell adjacent to the wall 
appears, one more deficient cell close to the wall is forced to appear. But if the 
whole row (column) adjacent to the wall is covered, then the first three rows 
(columns) are covered, reducing the problem to a new half plane. This shows 
that the implication DQ(I) → DHP(**) is not valid. The other cases follow using 
rotations of the tile set in Figure 6 by 90˚, 180˚, 270˚. 

4) The tile set in Figure 26 tiles a deficient half plane of type HP(U) (see Fig-
ure 27) but does not tile any deficient plane. To prove the last part, observe that 
a neighborhood of size 10 of the missing cell is forced to contain at lest one more 
cell that cannot be tiled. This shows that the implication DHP(U) → DP is not 
valid. The other cases follow using rotations of the tile set in Figure 8 by 90˚, 
180˚, 270˚. 

We observe that all tile sets used for counterexamples tile not just the respective  
 

 
Figure 22. A tile set that tiles a deficient half 
strip, but no deficient quadrant. 

 

 
Figure 23. A tiling of a deficient half strip. 

 

 
Figure 24. A tile set that tiles a deficient quadrant, but no deficient half plane. 
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Figure 25. A tiling of a deficient quadrant. 

 

 
Figure 26. A tile set that tiles a deficient half plane, 
but no deficient plane. 

 

 
Figure 27. A tiling of a deficient half plane. 

 
deficient regions, but also instances of the respective regions which have an ar-
bitrary finite number of missing cells.  

We show now that almost all the implications in Figure 4 are invalid, with 
the exception of those containing the level S(V)-and-SV(H), which obviously 
remain true, and the implication DS(**) → DHP(***), where **∈{H,V}, 
***∈{U,D,L,R}. 

Theorem 7. The following implications are invalid 
1) DR → DBS(*), where *∈{I,II,II,IV}; 
2) DBS(*) → DQ(**), where *,**∈{I,II,II,IV}; 
3) DS(V) and DQ(*) → DS(H), where *∈{I,II,II,IV}; 
4) DS(H) and DQ(*) → DS(V), where *∈{I,II,II,IV}; 
5) DQ(*) → DHP(***), where *∈{I,II,II,IV}, ***∈{U,D,L,R}; 
6) DHP(***) → DP, where ***∈{U,D,L,R}. 
The following implication is valid: 
7) DS(H) → DHP(***), where ***∈{U,D}; 
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8) DS(V) → DHP(***), where ***∈{L,R}. 
Proof. 1) A counterexample is given by a tile set consisting of a single deficient 

rectangle. 
2) One can use the tile set in Figure 24, after eliminating the first tile. A tiling 

of a width 3 deficient bent strip of type BS(I) is shown in Figure 25. To prove 
the last part, observe that a neighborhood of the missing cell of size 10 is forced 
to contain at least one more deficient cell. This shows that the implication 
DBS(I) → DQ(**) is not valid. The other cases follow using rotations of the pre-
vious tile set by 90˚, 180˚, 270˚. 

3), 4) Figure 28 shows a tile set that tiles a deficient quadrant of type (I) and a 
deficient vertical strip, but no deficient horizontal strip and Figure 29 shows a 
tile set that tiles a deficient quadrant of type (I) and a deficient horizontal strip, 
but no deficient vertical strip. The tilings of the deficient quadrant are shown in 
Figure 25 and the tilings of the deficient strips are shown in Figure 30. The 
other cases follow using rotations of the previous tile set by 90˚, 180˚, 270˚. 

5) This is Theorem 2.1, 3). 
6) This is Theorem 2.1, 4). 

 

 
Figure 28. A tile set that tiles a deficient quadrant of type (I) and a deficient vertical strip, 
but no deficient horizontal strip. 
 

 
Figure 29. A tile set that tiles a deficient quadrant of type (I) and a deficient horizontal 
strip, but no deficient vertical strip. 
 

 
Figure 30. A tiling of a deficient horizontal strip 
and a tiling of a deficient vertical strip. 
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7), 8) One can show, using the same argument as in the proof of [Theorem 3, 
3], that a tile set that tiles a deficient strip of type DS(H) also tiles a horizontal 
(non-deficient) strip of same width. Then the strips can be repeated on the top 
or at the bottom of the deficient strip to fill a deficient half plane of type HP(U) 
or HP(D). A similar argument is valid for 8). 

We show in [6] that the tile set T4 consisting of four ribbon L-tetrominoes, 
with only translations allowed, tile the opposite deficient quadrants DQ(II) and 
DQ(IV), allowing for any missing cell, but does not tile any of the other two de-
ficient quadrants DQ(I) and DQ(III), no matter what cell is missing. We also 
show that T4 does not tile any deficient half-strip, deficient bent-strip or defi-
cient strip, while it tiles all deficient half-planes and deficient planes. This raises 
the question if refinements of the tiling hierarchies are possible.  

As the tile set T4 already tiles rectangles, we study implications of tiling capa-
bilities for deficient regions of tile sets that tile rectangles and consist of simply 
connected tiles. It is shown in [6] that a tile set that tiles rectangles also tiles defi-
cient planes. We asked in [6] if it is possible for such a tile set to not tile any 
other deficient region. The following result answers this question. 

Proposition 8. There exists a tile set with all symmetries allowed that tiles 
some rectangles, some deficient rectangles, and consists of simply connected 
tiles, but does not tile any other deficient region in Golomb’s hierarchy, except a 
deficient plane. If only translations are allowed, the tile set does not tile any of 
the deficient regions in Figure 3 and Figure 4, except a deficient plane. 

Proof. The tile set is shown in Figure 31. We observe that the tile set in 
[Figure 6 and Figure 25] tiles a deficient plane but no other region, deficient or 
not, in Figure 1, Figure 3 and Figure 4.  

Next theorem shows the validity of the rest of the implications in Figure 1. 
Theorem 9. The following implications are valid and neither one of them can 

be reversed: 
1) R-and-DHS → R-and-DQ; 
2) R-and-DBS → R-and-DQ; 
3) R-and-DS → R-and-DHP; 
4) R-and-DQ → R-and-DHP; 
5) R-and-DHP → R-and-DP. 
The following implications are invalid: 
6) R-and-DHS → R-and-DBS; 

 

 
Figure 31. A tile set that tiles a rectangle, a deficient rectangle and a deficient plane, but 
no other deficient region. 
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7) R-and-DBS → R-and-DS. 
Proof. 1)-5). The proofs for the valid implications are immediate. To show 

that 1) cannot be reversed use the tile set in Figure 13, to which we add a new 
tile made of a 3 × 3 square. To show that 2) cannot be reversed use the tile set in 
Figure 9 to which we add a 4 × 4 square. The show that 3) and 4) cannot be re-
versed use the tile set in Figure 18 to which we add a new tile made of a 3 × 3 
square. To show that 5) cannot be reversed use the tile set in [Figure 6 and Fig-
ure 25] to which we add a new tile made of a 3 × 3.   

6) The tile set in Figure 32 tiles a rectangle and a deficient half strip, but does 
not tile any deficient bent strip. 

7) The tile set in Figure 33 tiles a rectangle and a deficient bent strip, but does 
not tile any deficient strip. 

Theorem 9 allows to recover some of the hierarchy in Figure 1. See Figure 34. 
Next theorem shows the validity of the rest of the implications in Figure 3. 
Theorem 10. If R1 → R2 is an implication in Figure 3 different from R → 

HS(*), *∈{R,L,U,D}, then R-and-DR1 → SR-and-DR2 is a valid implication. 
Neither one of these implications can be reversed. 

Proof. The proofs for the valid implications are immediate. To show that the 
implications cannot be reversed use the tile sets used in Theorem 2.9. Theorem 
\ref{thm:ref2} allows to recover the hierarchy in Figure 3. See Figure 35. 

Next theorem shows the validity of the implications in Figure 4 that are not 
obvious or discussed above. 

Theorem 11. The following implications are valid: 
1) R-and-DBS(*) → R-and-DQ(*), *∈{I,II,III,IV}; 
The following implications are invalid: 
2) R-and-DBS(*) → R-and-DS(**), *∈{ I,II,III,IV}, **∈{H,V}. 
Proof. 1) The proof is immediate.  
2) See Figure 36. 

 

 
Figure 32. A tile set that tiles SR-SDHS(R), but 
does not tile any deficient bent strip. 

 

 
Figure 33. A tile set that tiles R-DBS(R), but 
does not tile any deficient strip. 
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Figure 34. A tiling hierarchy for tile sets that tiles a rectangle derived from Figure 1. 
 

 
Figure 35. A tiling hierarchy for tile sets that tiles a rectangle derived from Figure 3. 
 

 
Figure 36. A tile set that tiles R-DBS(I), but does not tile any defi-
cient strip. 

3. Conclusion 

The results about tiling deficient regions by T4 are based on a coloring invariant 
introduced in [7]. An interesting problem is to extend these results to other tile 
sets introduced in [8] [9] [10]. These are natural simple tile sets with potentially 
interesting tiling capabilities. For some of these tile sets coloring invariants are 
not available [11] [12]. Some conjectures about tiling deficient regions by Tn can 
be found in [13]. 
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