d-Distance Coloring of Generalized Petersen Graphs $\boldsymbol{P}(n, k)$

Ramy Shaheen, Ziad Kanaya, Samar Jakhlab
Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria
Email: shaheenramy2010@hotmail.com, Ziadkanaya@gmail.com, samar.jakhlab@hotmail.com

How to cite this paper: Shaheen, R., Kanaya, Z. and Jakhlab, S. (2017) d-Distance Coloring of Generalized Petersen Graphs $P(n, k)$. Open Journal of Discrete Mathematics, 7, 185-199.
https://doi.org/10.4236/ojdm.2017.74017

Received: July 18, 2017
Accepted: September 10, 2017
Published: September 13, 2017

Copyright © 2017 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

A coloring $f: V(G) \rightarrow\{1, \cdots, k\}$ of G is d-distance if any two vertices at distance at most d from each other get different colors. The minimum number of colors in d-distance colorings of G is its d-distance chromatic number, denoted by $\chi_{d}(G)$. In this paper, we give the exact value of $\chi_{d}(G)(d=1,2)$, for some types of generalized Petersen graphs $P(n, k)$ where $k=1,2,3$ and arbitrary n.

Keywords

Distance Coloring, Generalized Petersen Graphs

1. Introduction

Let $G=(V, E)$ be simple graph. A vertex k-coloring of G is a mapping from $V(G)$ to the set $\{1,2, \cdots, k\}$ such that any two adjacent vertices are mapped to different integers. The smallest integer k for which a k-coloring exists is called the chromatic number of G, denoted by $\chi(G)$. The d-distance between two distinct vertices u and $v, d(u, v)$ is the number of edges of the shortest path joining them. The d-distance k-coloring, also called distance (d, k)-coloring, is a k-coloring of the graph G, that is, any two vertices within distance d in G receive different colors. The d-distance chromatic number of G is exactly the chromatic number of G under the d-distance condition, denoted by $\chi_{d}(G)$. For a simple graph G, the d th power of G, (G^{d} of G) is defined such that $V\left(G^{d}\right)=V(G)$ and two vertices u and v are adjacent in G^{d} if and only if the distance between u and v in G is at most d. Clearly, the following inequality is holds:

$$
\chi(G)=\chi_{1}(G) \leq \chi\left(G^{2}\right)=\chi_{2}(G) \leq \chi\left(G^{d}\right)=\chi_{d}(G) \text { for } d \geq 2
$$

The theory of plane graph coloring has a long history, extending back to the
middle of the $19^{\text {th }}$ century. In 1969, Florica Kramer and Horst Kramer [1] [2] defined the chromatic number $\chi_{d}(G)$ relative to distance d of a graph $G(V, E)$ to be the minimum number of colors which are sufficient for coloring the vertices of G in such a way that any two vertices of G of distance not greater than d have distinct colors. In 1977, Wegner [3], studied the problem of distance coloring of planar graphs. Alon and Mohar [4] considered the maximum possible chromatic number of G^{2}, as G ranges over all graphs with maximum degree d and girth g. Bonamy et al. [5], studied the 2-distance coloring of sparse graphs. They proved that every graph with maximum degree Δ at least 4 and maximum average degree less that $7 / 3$ admits a 2 -distance $(\Delta+1)$-coloring. Okamoto and Zhang [6], considered the 2-distance chromatic number of graphs when deleted an edge or a vertex. In [7], Jacko gave the exact value of $\chi_{d}(G)$ of hexagonal lattice graph when d is odd and some value when d is even. Borodin and Ivanova [8], proved that every planar graph with $g \geq 6$ and $\Delta \geq 18$ is $(\Delta+2)$-colorable. Dantas et al. [9], studied the total coloring of generalized Petersen graphs and shown that "almost all" generalized Petersen graphs have a total chromatic number 4. Miao and Fan, [10], gave an upper bound of the chromatic number $\chi_{d}(G)$. Many papers have been devoted to it during the last decade, see for example [11] [12] [13] [14] [15].

In this paper, all graphs are finite, simple and undirected. For a graph G, we denote by $V(G), E(G), d(u, V), \Delta(G), \operatorname{diam}(G), G^{d}$ and $\chi_{d}(G)$ its vertex set, edge set, the distance between u and v which is the length of shortest path connecting them, the maximum vertex degree, the diameter of G, the power of G and d-distance coloring of G .

Theorem 1.1. [1]: For a graph $G=(V, E)$ we have $\chi_{d}(G)=d+1$ if and only if the graph G is satisfying one of the following conditions:

1) $|V|=d+1$.
2) G is a path of length greater than d.
3) G is a cycle of length a multiple of $(d+1)$.

Theorem 1.2. [10]: When $\Delta=2$, there exist only two connected graphs of order n :

The path P_{n} and the cycle C_{n} :
1). $\chi_{d}\left(P_{n}\right)=\min \{n, d+1\}$.
2). $\chi_{d}\left(C_{n}\right)=\left\{\begin{array}{l}d+1: n \equiv 0(\bmod (d+1)), \\ \min \left\{i+1 \geq d+2: n \bmod i \leq \frac{n}{i}\right\} .\end{array}\right.$

Theorem 1.3. [10]: Let G be a graph. Then

$$
\chi_{d}(G) \leq \Delta \frac{(\Delta-1)^{d}-1}{\Delta-2}+1
$$

Lemma 1.1. [6]: Let G be a nontrivial graph and d a positive integer.

1) If H a subgraph of G, then $\chi_{d}(H) \leq \chi_{d}(G)$.
2) $\chi_{d}(G)$ equals the order of G if and only if G is connected and
$\operatorname{diam}(G) \leq d$.
Definition 1.1. [9]: For integers n and k with $2 \leq 2 k<n$. The Generalized Petersen Graph $P(n, k)$ has vertices and respectively Edges given by:

$$
\begin{gathered}
V(P(n, k))=\left\{a_{i}, b_{i}: 1 \leq i \leq n, 1 \leq k \leq\left[\frac{n-1}{2}\right]\right\} \\
E(P(n, k))=\left\{a_{i} a_{i+1}, a_{i} b_{i}, b_{i} b_{i+k}: 1 \leq i \leq n\right\}
\end{gathered}
$$

We will call $A(n, k)$ (respectively $B(n, k)$) the outer (respectively inner) subgraph of $P(n, k)$. Note that we take the skip $k \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, because of the obvious isomorphism $P(n, k) \cong P(n, n-k)$.

2. Main Results

Our main results here are to establish the exact chromatic number $\chi_{d}(P(n, k))$ $(d=1,2)$ for $k=1,2,3$ and arbitrary n.

Theorem 2.1. $\chi_{1}(P(n, 1))=\left\{\begin{array}{l}2: n \text { even, } \\ 3: n \text { odd. }\end{array}\right.$
Proof. Let $G=P(n, 1)$, observe from Definition 1.1, that Generalized Petersen Graphs composed of one outer cycle and several inner cycles dependent on k . So, when $k=1$ there is one inner cycle, then G composed of two cycles of size n. There are two cases:

Case 1: n is even, immediately from Theorem 1.1 we have $\chi_{1}\left(C_{n}\right)=2$ (because $d=1$) then

$$
\begin{equation*}
\chi_{1}(G) \geq 2 \tag{1}
\end{equation*}
$$

We define a function f with colors in the set $\{1,2\}$ for a_{i} and b_{i} as follows:

$$
f\left(a_{i}\right)=\left\{\begin{array}{l}
1: i \text { odd, } \\
2: i \text { even. }
\end{array}, \quad f\left(b_{i}\right)=\left\{\begin{array}{l}
2: i \text { odd } \\
1: i \text { even. }
\end{array}\right.\right.
$$

Then

$$
\begin{equation*}
\chi_{1}(G) \leq 2 \tag{2}
\end{equation*}
$$

By (1) and (2) we get $\chi_{1}(G)=2$.
Case 2: n is odd, from Theorem 1.2, we have $\chi_{1}\left(C_{n}\right)=3$. Then

$$
\begin{equation*}
\chi_{1}(G) \geq 3 \tag{3}
\end{equation*}
$$

We define a function f with colors in the set $\{1,2,3\}$ for a_{i} and b_{i} as follows:

$$
f\left(a_{i}\right)=\left\{\begin{array}{l}
1: i \text { odd and } i<n, \\
2: i \text { even, } \\
3: i=n .
\end{array} \quad, \quad f\left(b_{i}\right)=\left\{\begin{array}{l}
2: i \text { odd and } i<n, \\
1: i \text { even and } i=n \text { such that } i \neq n-1, \\
3: i=n-1 .
\end{array}\right.\right.
$$

So,

$$
\begin{equation*}
\chi_{1}(G) \leq 3 \tag{4}
\end{equation*}
$$

From (3) and (4), gets $\quad \chi_{1}(G)=3$. As example see Figure 1.
Theorem 2.2: $\quad \chi_{2}(P(n, 1))=\left\{\begin{array}{l}4: n \equiv 0(\bmod 4), \\ 6: n=3,6, \\ 5: \text { otherwise } .\end{array}\right.$
Proof. Let $G=P(n, 1)$. We have C_{4} is an induced subgraph of G and from Theorem 1.2, gets $\chi_{2}\left(C_{4}\right)=4$. So,

$$
\begin{equation*}
\chi_{2}(G) \geq 4 \tag{5}
\end{equation*}
$$

We define a function f with colors in the set $\{1,2,3,4\}$ for a_{i} and b_{i} as follows:

$$
f\left(a_{1}\right)=1, \quad f\left(b_{1}\right)=3, \quad f\left(a_{2}\right)=2, \quad f\left(b_{2}\right)=4
$$

By follow-up the coloring to the right, for a_{3} there is only a single color as $f\left(a_{3}\right)=3$.
So, for each vertex there is only a single color:

$$
\begin{gathered}
f\left(b_{3}\right)=1, \quad f\left(a_{4}\right)=4, \quad f\left(b_{4}\right)=2, \quad f\left(a_{5}\right)=1, \\
f\left(b_{5}\right)=3, \quad f\left(a_{6}\right)=2, \quad f\left(b_{6}\right)=4
\end{gathered}
$$

Observe that we have a repeat of the same order of the colors for each 4-inner (4-outer) vertices. Consider G with $n \geq 4$. Assume that $n=4 q+r: 0 \leq r<4$ for each $j \in\{0,4, \cdots, 4(q-1)\}$ we define a subset S_{j} of $V(G)$ by $S_{j}=\left\{a_{i}, a_{i+1}, a_{i+2}, a_{i+3}, b_{i}, b_{i+1}, b_{i+2}, b_{i+3}\right\}$ then there is a function f with colors in the set $\{1,2,3,4\}$ define as follows:

$$
f\left(a_{i}\right)=\left\{\begin{array}{l}
1: i \equiv 1(\bmod 4), \\
2: i \equiv 2(\bmod 4), \\
3: i \equiv 3(\bmod 4), \\
4: i \equiv 0(\bmod 4)
\end{array}, \quad f\left(b_{i}\right)=\left\{\begin{array}{l}
3: i \equiv 1(\bmod 4) \\
4: i \equiv 2(\bmod 4) \\
1: i \equiv 3(\bmod 4) \\
2: i \equiv 0(\bmod 4)
\end{array}\right.\right.
$$

We have four cases according to the value of n modulo 4:
Case 1: $r=0$. Then $V(G)=\bigcup_{j=0}^{4(q-1)} S_{j}$. By function f is

$$
\begin{equation*}
\chi_{2}(G) \leq 4 \tag{6}
\end{equation*}
$$

From (5) and (6), we get $\chi_{2}(G)=4: n \equiv 0(\bmod 4)$.

Figure 1. $\chi_{1}(P(7,1))=3$.

Case 2: $r=1$. There are two leftover vertices in $V(G)-\bigcup S_{j}=\left\{a_{n}, b_{n}\right\}$. By function f we have $f\left(a_{n}\right)=1, f\left(b_{n}\right)=3$ which is a contradiction with a_{1} and b_{1}. Moreover $d\left(a_{n}, b_{n}\right)=1$. So, each of a_{n} and b_{n} needs deferent color then $\chi_{2}(G)>4$. We define $f_{1}=f \backslash\left\{a_{n}, a_{n-1}, a_{n-2}, b_{n}\right\} \cup f_{2}$, where f_{2} is a function with colors in the set $\{3,4,5\}$ define as follows:

$$
f_{2}(v)=\left\{\begin{array}{l}
4: v=a_{n} \\
3: v=a_{n-1} \\
5: v=a_{n-2}, b_{n}
\end{array}\right.
$$

Then we get $\chi_{2}(G)=5=$ when $n \equiv 1(\bmod 4)$.
Case 3: For $r=2$, we have two subcases:
Case 3.1: $r=2$ and $n>6$, a similar argument, there is a contradiction for a_{n}, b_{n}, a_{n-1}, b_{n-1}. Then, $\chi_{2}(G)>4$. We define

$$
f_{1}=f \backslash\left\{a_{n}, b_{n}, a_{n-1}, b_{n-1}, a_{n-2}, b_{n-2}, a_{n-3}, a_{n-4}, b_{1}, b_{2}\right\} \cup f_{2} .
$$

f_{2} is a function with colors in the set $\{2,3,4,5\}$ define as follows:

$$
f_{2}(v)=\left\{\begin{array}{l}
2: v=a_{n-3}, b_{n-1}, \\
3: v=a_{n-2}, b_{n} \\
4: v=a_{n-1}, b_{1} \\
5: v=a_{n}, a_{n-4}, b_{n-2}, b_{2}
\end{array}\right.
$$

Then we get $\chi_{2}(G)=5$ when $n \equiv 2(\bmod 4)$, see Figure 2.
Case 3.2: $r=2$ and $n=6$. There are two cycles of order 6 and know that $\chi_{2}\left(C_{6}\right)=3$. Without loss of generality, assuming that $f\left(a_{1}\right)=1$. Then the vertices $a_{2}, a_{3}, a_{5}, a_{6}, b_{1}, b_{2}, b_{6}$, can't take the color 1 . Moreover, at most one of a_{4}, b_{3}, b_{4}, b_{5} can be coloring by 1 . This implies that each color has only two vertices from $P(6,1)$. So, needs 6 colors for 12 vertices. Furthermore, $\chi_{2}(P(6,1))=6$.

Case 4: For $r=3$, there are two subcases:
Case 4.1: $n \geq 7$. For a function coloring f there is a contradiction in a_{n} and b_{n}. Then $\chi_{2}(G)>4$. We define

Figure 2. $\chi_{2}(P(10,1))=5$.

$$
f_{1}=f \backslash\left\{a_{n}, b_{n}, a_{n-1}, b_{n-2}\right\} \cup f_{2}
$$

where f_{2} is a function with colors in the set $\{2,3,5\}$ define as follows:

$$
f_{2}(v)=\left\{\begin{array}{l}
2: v=b_{n} \\
3: v=a_{n-1} \\
5: v=a_{n}, b_{n-2}
\end{array}\right.
$$

Then, $\chi_{2}(G)=5$ when $n \equiv 3(\bmod 4)$.
Case 4.2: $n=3$. Then, $\operatorname{diam}(P(6,1))=2$. By Lemma 1.1, we get $\chi_{2}(G)=6$.

Theorem 2.3: $\quad \chi_{1}(P(n, 2))=3$.
Proof. Let $G=P(n, 2)$. We have C_{5} is an induced subgraph of G. Then by Theorem 1.2, is $\chi_{1}\left(C_{5}\right)=3$. So,

$$
\begin{equation*}
\chi_{1}(G) \geq 3 \tag{7}
\end{equation*}
$$

We define a function f as follows:

$$
f\left(a_{i}\right)=\left\{\begin{array}{l}
1: i \equiv 1(\bmod 3), \\
2: i \equiv 2(\bmod 3),, \\
3: i \equiv 0(\bmod 3)
\end{array} \quad f\left(b_{i}\right)=\left\{\begin{array}{l}
2: i \equiv 1(\bmod 3) \\
3: i \equiv 2(\bmod 3), \\
1: i \equiv 0(\bmod 3)
\end{array}\right.\right.
$$

We have three cases according to the value of n modulo 3:
Case 1: $r=0$. By definition f we have

$$
\begin{equation*}
\chi_{1}(G) \leq 3 \tag{8}
\end{equation*}
$$

By (7) together with (8), gets $\chi_{1}(G)=3$ when $n \equiv 0(\bmod 3)$.
Case 2: $r=1$. Then there is a contradiction for a_{n}. We define

$$
f_{1}=f \backslash\left\{a_{1}\right\} \cup f_{2}
$$

where $f_{2}\left(a_{1}\right)=3$. This implies that $\chi_{1}(G)=3$ when $n \equiv 1(\bmod 3)$.
Case 3: $r=2$. There is a problem with colors the vertices $\left\{b_{n}, b_{n-1}\right\}$.
We define $f_{1}=f \backslash\left\{a_{n}, b_{n}, a_{n-1}, b_{n-1}\right\} \cup f_{2}$, where f_{2} is a function with colors in the set $\{1,2,3\}$ define as follows:

$$
f_{2}(v)=\left\{\begin{array}{l}
1: v=b_{n-1} \\
3: v=a_{n} \\
2: v=a_{n-1}, b_{n}
\end{array}\right.
$$

By the last result together with (7), we get $\chi_{2}(G)=3$ when $n \equiv 2(\bmod 3)$.
Theorem 2.4: $\quad \chi_{2}(P(n, 2))=\left\{\begin{array}{l}5: n \equiv 0(\bmod 10), \\ 10: n=5, \\ 6: \text { otherwise. }\end{array}\right.$
Proof. Let $G=P(n, 2)$. G including C_{5} as an induced subgraph. We have $\operatorname{diam}\left(C_{5}\right)=2$. Then by Lemma 1.1, we get $\chi_{2}\left(C_{5}\right)=5$. Furthermore

$$
\begin{equation*}
\chi_{2}(G) \geq 5 \tag{9}
\end{equation*}
$$

We define a function f with colors in the set $\{1,2,3,4,5\}$ for a_{i} and b_{i} as
follows:

$$
f\left(a_{1}\right)=2, \quad f\left(a_{2}\right)=2, \quad f\left(a_{3}\right)=3, \quad f\left(b_{1}\right)=4, \quad f\left(b_{3}\right)=5
$$

Then for b_{2} there are two cases:
Case a: $f\left(b_{2}\right)=4$. (By coloring to the right). So, a_{4} has only a single color as $f\left(a_{4}\right)=1$ and $f\left(b_{4}\right)=5$. Follow-up coloring inner (outer) vertices each vertex will have only a single color as follows:

$$
\begin{array}{llll}
f\left(b_{5}\right)=2, & f\left(a_{5}\right)=4, & f\left(b_{6}\right)=2, & f\left(a_{6}\right)=3,
\end{array} f\left(b_{7}\right)=1, \quad f\left(a_{7}\right)=5, ~ 子\left(b_{8}\right)=1, \quad f\left(a_{8}\right)=4, \quad f\left(b_{9}\right)=3, \quad f\left(a_{9}\right)=2, \quad f\left(b_{10}\right)=3, \quad f\left(a_{10}\right)=5
$$

By continue we will have a repeat of the same order of the colors for each 10-inner (10-outer) vertices.

Case b: $f\left(b_{2}\right)=5$. By coloring to the left. So, we back to consider the Case 1.
We will consider G with $n \geq 10$. Assume that $n=10 q+r: 0 \leq r<10$. Now, for each $j \in\{0,10, \cdots, 10(q-1)\}$ we define a subset S_{j} of $V(G)$ by

$$
S_{j}=\left\{a_{j}, a_{j+1}, \cdots, a_{j+9}, b_{j}, b_{j+1}, \cdots, b_{j+9}\right\}
$$

Then there is a function f define as follows:

$$
f\left(a_{i}\right)=\left\{\begin{array}{l}
1: i \equiv 1,4(\bmod 10), \\
2: i \equiv 2,9(\bmod 10), \\
3: i \equiv 3,6(\bmod 10), \\
4: i \equiv 5,8(\bmod 10), \\
5: i \equiv 7,0(\bmod 10)
\end{array} \quad f\left(b_{i}\right)=\left\{\begin{array}{l}
4: i \equiv 12(\bmod 10) \\
5: i \equiv 3,4(\bmod 10) \\
2: i \equiv 5,6(\bmod 10) \\
1: i \equiv 7,8(\bmod 10) \\
3: i \equiv 0,9(\bmod 10)
\end{array}\right.\right.
$$

We have ten cases according to the value of n modulo 10 :
Case 1: $r=0$. Then $V(G)=\bigcup_{j=0}^{10(q-1)} S_{j}$. Moreover, by define f we have

$$
\begin{equation*}
\chi_{2}(G) \leq 5 \tag{10}
\end{equation*}
$$

From (9) and (10) we get $\chi_{2}(G)=5$ when $n \equiv 0(\bmod 10)$.
Case 2: $r=1$. There are two leftover vertices in $V(G)-\bigcup S_{j}=\left\{a_{n}, b_{n}\right\}$. By function $f, f\left(a_{n}\right)=1, f\left(b_{n}\right)=4$ which is a contradiction with a_{1} and b_{1}, and $d\left(a_{n}, b_{n}\right)=1$. So each of a_{n} and b_{n} needs deferent color then $\chi_{2}(G)>5$. We define

$$
f_{1}=f \backslash\left\{a_{n}, b_{n}, a_{n-1}, a_{n-2}, a_{n-3}\right\} \cup f_{2}
$$

where f_{2} is a function with colors in the set $\{2,4,5,6\}$ define as follows:

$$
f_{2}(v)=\left\{\begin{array}{l}
2: v=a_{n-1} \\
4: v=a_{n-2} \\
5: v=a_{n} \\
6: v=b_{n}, a_{n-3} .
\end{array}\right.
$$

Then we get $\chi_{2}(G)=6$ when $n \equiv 1(\bmod 10)$.
Case 3: $r=2$. There are four leftover vertices in $V(G)-\bigcup S_{j}=\left\{a_{n}, b_{n}, a_{n-1}, b_{n-1}\right\}$, which are a contradiction with $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$. This implies that $\chi_{2}(G)>5$.

Let

$$
f_{1}=f \backslash\left\{b_{n}, b_{n-1}, a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right\} \cup f_{2}
$$

where f_{2} is a function with colors in the set $\{1,3,6\}$ define as follows:

$$
f_{2}(v)=\left\{\begin{array}{l}
1: v=a_{2} \\
3: v=a_{1}, a_{4} \\
6: v=a_{3}, a_{6}, b_{n}, b_{n-1}
\end{array}\right.
$$

Then $\chi_{2}(G)=6$ when $n \equiv 2(\bmod 10)$. See Figure 3.
Case 4: $r=3$. By same argument there is a contradiction for b_{n}, b_{n-1}, b_{n-2}. Which implies that $\chi_{2}(G)>5$. So, we define

$$
f_{1}=f \backslash\left\{b_{n}, b_{n-1}, b_{n-2}, a_{n-3}, a_{n-5}\right\} \cup f_{2}
$$

where that f_{2} is a function with colors in the set $\{4,5,6\}$ define as follows:

$$
f_{2}(v)=\left\{\begin{array}{l}
4: v=a_{n-3} \\
5: v=b_{n-2} \\
6: v=b_{n}, b_{n-1}, a_{n-5}
\end{array}\right.
$$

Then we get $\chi_{2}(G)=6$ when $n \equiv 3(\bmod 10)$.
Case 5: $r=4$. There is a contradiction for $b_{n}, b_{n-1}, b_{n-2}, b_{n-3}, a_{n}$. We define

$$
f_{1}=f \backslash\left\{a_{1}, a_{n}, a_{n-3}, b_{n}, b_{n-1}, b_{n-2}, b_{n-3}\right\} \cup f_{2}
$$

where f_{2} is a function with colors in the set $\{1,4,5,6\}$ define as follows:

$$
f_{2}(v)=\left\{\begin{array}{l}
1: v=b_{n}, b_{n-1} \\
4: v=a_{n-3} \\
5: v=a_{n} \\
6: v=a_{1}, b_{n-2}, b_{n-3}
\end{array}\right.
$$

We get $\chi_{2}(G)=6$ when $n \equiv 4(\bmod 10)$.
Case 6: When $r=5$ we have two subcases:
Case 6.1: $r=5$ and $n>5$. The contradiction is for $b_{n}, b_{n-1}, b_{n-3}, a_{n-1}, a_{n}$. We will need at least three new deferent colors for them, then $\chi_{2}(G)>5$. We define

Figure 3. $\chi_{2}(P(12,2))=6$.

$$
f_{1}=f \backslash\left\{a_{n}, b_{n}, a_{n-1}, b_{n-1}, a_{n-2}, b_{n-3}, a_{n-4}, b_{n-4}, a_{n-5}, b_{n-6}, b_{n-7}, a_{2}, a_{3}\right\} \cup f_{2}
$$

where f_{2} is a function with colors in the set $\{1,2,3,4,5,6\}$ define as follows:

$$
f_{2}(v)=\left\{\begin{array}{l}
1: v=a_{n-2}, a_{n-5} \\
2: v=a_{n}, \\
3: v=a_{n-1}, a_{2}, b_{n-4} \\
4: v=a_{n-4} \\
5: v=b_{n-3} \\
6: v=a_{3}, b_{n}, b_{n-1}, b_{n-6}, b_{n-7}
\end{array}\right.
$$

Then $\chi_{2}(G)=6$ when $n \equiv 5(\bmod 10)$. See Figure 4.
Case 6. 2: $r=5$ and $n=5$. We have $\operatorname{diam}(G)=2$. So, Lemma 1.1, gets $\chi_{2}(G)=10$.
Case 7: $r=6$. A contradiction for b_{n}, a_{n-1}. We define $f_{1}=f \backslash\left\{b_{1}, b_{n}\right\} \cup f_{2}$ and f_{2} is a function with color 6. So, $f_{2}\left(b_{1}\right)=f_{2}\left(b_{n}\right)=6$, gets $\chi_{2}(G)=6$ when $n \equiv 6(\bmod 10)$.

Notice when $n=6$ we have the same argument but $q=0$, so the vertices will take the sequence of colors for (outer, inner)vertices as follows (1, 2, 3, 1, 2, 3, 4, $4,5,5,6,6$).

Case 8: $r=7$. A contradiction is only for b_{n}. Let $f_{1}=f \backslash\left\{b_{n}\right\} \cup f_{2}$. Where $f_{2}\left(b_{n}\right)=6$. Moreover, $\chi_{2}(G)=6$ when $n \equiv 7(\bmod 10)$. Also when $n=7$ we get $\chi_{2}(G)=6$ by the same condition with sequence of colors (outer, inner) vertices as following ($1,2,3,1,4,3,5,6,4,5,5,2,2,6$).

Case 9: $r=8$. A contradiction is for b_{n-1}, b_{n}, a_{n}, then $\chi_{2}(G)>5$. We define $f_{1}=f \backslash\left\{a_{n}, b_{n}, b_{n-1}, a_{n-2}, a_{n-3}\right\} \cup f_{2}$ with f_{2} is a function with colors in the set $\{3,4,6\}$ define as follows:

$$
f_{2}(v)=\left\{\begin{array}{l}
3: v=b_{n}, b_{n-1} \\
4: v=a_{n-2} \\
6: v=a_{n}, a_{n-3}
\end{array}\right.
$$

Figure 4. $\quad \chi_{2}(P(15,2))=6$.

And so, gets $\chi_{2}(G)=6$ when $n \equiv 8(\bmod 10)$.
Also notice when $n=8$ we have the same argument but $q=0$, so the vertices will take the sequence of colors for (outer, inner) vertices as follows (1, 2, 3, 1, 6, $4,5,6,4,4,5,5,2,2,3,3)$.

Case 10: $r=9$. There is a contradiction for b_{n-1}, a_{n-1}, a_{n} then $\chi_{2}(G)>5$. Let us define $f_{1}=f \backslash\left\{a_{n}, b_{n}, a_{n-1}, b_{n-1}, a_{n-2}, a_{n-4}\right\} \cup f_{2}$, with f_{2} is a function with colors in the set $\{3,4,5,6\}$ define as follows:

$$
f_{2}(v)=\left\{\begin{array}{l}
3: v=a_{n} \\
4: v=a_{n-2} \\
5: v=a_{n-1} \\
6: v=b_{n}, b_{n-1}, a_{n-4} .
\end{array}\right.
$$

Furthermore, $\chi_{2}(G)=6$ when $n \equiv 9(\bmod 10)$.
As before when $n=9$ we get $\chi_{2}(G)=6$, by the same condition with sequence of colors (outer, inner) vertices as follows ($1,2,3,1,6,3,4,5,3,4,4,5,5,2,2,1$, $6,6)$.

Finally, we conclude that:

$$
\chi_{2}(P(n, 2))=\left\{\begin{array}{l}
5: n \equiv 0(\bmod 10) \\
10: n=5 \\
6: \text { otherwise }
\end{array}\right.
$$

Theorem 2.5: $\quad \chi_{1}(P(n, 3))=\left\{\begin{array}{l}2: n \equiv 0(\bmod 2), \\ 3: n \equiv 1(\bmod 2) .\end{array}\right.$
Proof. Let $G=P(n, 3)$. There are two cases:
Case 1: $n \equiv 0(\bmod 2)$. From Theorem 1.2, we have $\chi_{1}\left(C_{n}\right)=2$. Then

$$
\begin{equation*}
\chi_{1}(G) \geq 2 \tag{11}
\end{equation*}
$$

We define a function f with colors in the set $\{1,2\}$ for a_{i} and $b_{i}(1 \leq i \leq n)$,

$$
f\left(a_{i}\right)=\left\{\begin{array}{l}
1: i \text { odd, } \\
2: i \text { even. }
\end{array}, \quad f\left(b_{i}\right)=\left\{\begin{array}{l}
2: i \text { odd } \\
1: i \text { even. }
\end{array}\right.\right.
$$

Then

$$
\begin{equation*}
\chi_{1}(G) \leq 2 \tag{12}
\end{equation*}
$$

From (11) and (12), gets $\quad \chi_{1}(G)=2$.
Case 2: $n \equiv 1(\bmod 2)$. From Theorem 1.2, we have $\chi_{1}\left(C_{n}\right)=3$. Moreover,

$$
\begin{equation*}
\chi_{1}(G) \geq 3 \tag{13}
\end{equation*}
$$

Let $f: V(G) \rightarrow\{1,2,3\}$ for a_{i} and b_{i}, where

$$
\begin{gathered}
f\left(a_{i}\right)=\left\{\begin{array}{l}
1: i \text { odd, } i=n-1 \text { such that } i \neq n, n-2, \\
2: i \text { even, } i=n, n-2 \text { such that } i \neq n-1, n-3, \\
3: i=n-3 .
\end{array}\right. \\
f\left(b_{i}\right)=\left\{\begin{array}{l}
1: i \text { even, } i<n-2, \\
2: i \text { odd, } i<n-2, \\
3: i=n, n-1, n-2 .
\end{array}\right.
\end{gathered}
$$

Then

$$
\begin{equation*}
\chi_{1}(G) \leq 3 \tag{14}
\end{equation*}
$$

From (13) and (14) is $\chi_{1}(G)=3$.
Theorem 2.6: $\quad \chi_{2}(P(n, 3))=\left\{\begin{array}{l}4: n \equiv 0(\bmod 4), \\ 6: n=7 \operatorname{or} 2(\bmod 4), \\ 5: \text { otherwise. }\end{array}\right.$
Proof. Let $G=P(n, 3) . K(1,3)$ is an induced subgraph of G and $\chi_{2}(K(1,3))=4$. This implies that

$$
\begin{equation*}
\chi_{2}(G) \geq 4 \tag{15}
\end{equation*}
$$

Without loss of generality, we define a function f as follows: $f\left(a_{1}\right)=1$, $f\left(a_{2}\right)=2, f\left(a_{3}\right)=3, f\left(b_{2}\right)=4$. By follow-up the coloring to the right, for b_{1} there are two cases $f\left(b_{1}\right)=4$ or $f\left(b_{1}\right)=3$.

Case 1: $f\left(b_{1}\right)=4$. Then, there are two cases for $b_{3}, f\left(b_{3}\right)=4$ or $f\left(b_{3}\right)=1$. So, if $f\left(b_{3}\right)=4$ then absolutely $f\left(a_{4}\right)=1$ and $f\left(b_{1}\right)=3$. For coloring a_{5} we need another color because it has the four colors as neighbors. If $f\left(b_{3}\right)=1$, then $f\left(a_{4}\right)=1$ and $f\left(b_{4}\right)=2$. Furthermore, for coloring a_{5} we need another color. So to avoiding the fifth color we have to take the second case.

Case 2: $f\left(b_{1}\right)=3$. There are two cases for $b_{3}, f\left(b_{3}\right)=4$ or $f\left(b_{3}\right)=1$, we have two subcases:

Case 2.1: $f\left(b_{3}\right)=4$. Absolutely $f\left(a_{4}\right)=1$ and $f\left(b_{4}\right)=4$ or $f\left(b_{4}\right)=2$. If we take $f\left(b_{4}\right)=4$ then $f\left(a_{5}\right)=2, f\left(b_{5}\right)=3$, but we need another color for a_{6}. Also if we take $f\left(b_{4}\right)=2$ then we need new color for a_{5}.

Case 2.2: $f\left(b_{3}\right)=1$. For each vertex there is only a single color: $f\left(a_{4}\right)=4$, $f\left(b_{4}\right)=2, f\left(a_{5}\right)=1, f\left(b_{5}\right)=3, f\left(a_{6}\right)=2, f\left(b_{6}\right)=4$. Observe that, we have a repeat of the same order of the colors for each (4-outer) and (4-inner) vertices as respectively for colors $\{1,2,3,4\}$ and $\{3,4,1,2\}$. Consider G with $n \geq 4$. Assume that $n=4 q+r: 0 \leq r<4$ for each $j \in\{0,4, \cdots, 4(q-1)\}$, we define a subset S_{j} of $V(G)$ by $S_{j}=\left\{a_{i}, a_{i+1}, a_{i+2}, a_{i+3}, b_{i}, b_{i+1}, b_{i+2}, b_{i+3}\right\}$ then there is a function f define as follows:

$$
f\left(a_{i}\right)=\left\{\begin{array}{l}
1: i \equiv 1(\bmod 4), \\
2: i \equiv 2(\bmod 4), \\
3: i \equiv 3(\bmod 4), \\
4: i \equiv 0(\bmod 4)
\end{array}, \quad f\left(b_{i}\right)=\left\{\begin{array}{l}
3: i \equiv 1(\bmod 4) \\
4: i \equiv 2(\bmod 4), \\
1: i \equiv 3(\bmod 4) \\
2: i \equiv 0(\bmod 4)
\end{array}\right.\right.
$$

We have four cases according to the value of n modulo 4:
Case 2.2.1: $r=0$. Then $V(G)=\bigcup_{j=0}^{4(q-1)} S_{j}$. By function f we have

$$
\begin{equation*}
\chi_{2}(G) \leq 4 \tag{16}
\end{equation*}
$$

From (15) and (16) we get $\chi_{2}(G)=4: n \equiv 0(\bmod 4)$.
Case 2.2.2: $r=1$. Then there are two leftover vertices in
$V(G)=\bigcup_{j=0}^{4(q-1)} S_{j}=\left\{a_{n}, b_{n}\right\}$, by function f we get $f\left(a_{n}\right)=1, f\left(b_{n}\right)=3$ which
is a contradiction with a_{1} and a_{3}. So each of a_{n} and b_{n} needs deferent color then $\chi_{2}(G)>4$. We define

$$
f_{1}=f \backslash\left\{a_{n}, a_{n-1}, a_{n-2}, a_{n-3}, b_{1}, b_{n}, b_{n-1}, b_{n-2}, b_{n-3}\right\} \cup f_{2}
$$

where f_{2} is a function with colors in the set $\{2,3,4,5\}$ define as follows:

$$
f_{2}(v)=\left\{\begin{array}{l}
2: v=a_{n-1}, b_{n-3} \\
3: v=a_{n}, b_{n-2} \\
4: v=a_{n-2}, b_{n} \\
5: v=a_{n-3}, b_{n-1}, b_{1}
\end{array}\right.
$$

Then gets $\chi_{2}(G)=5$ when $n \equiv 1(\bmod 4)$.
Case 2.2.3: $r=2$. Here, we will consider $\chi_{2}(P(10,3))$, \{we delete the details of the general case because they are too long\}.

We have $\chi_{2}(P(10,3)) \geq 5$. Suppose $\chi_{2}(P(10,3))=5$. It is easy to prove that each color can be given at most to four vertices. This implies that each color has exactly four vertices. \{If drawing $P_{1}(10,3)$ as following form: (outer cycle, inner cycle) respectively, $b_{1} b_{4} b_{7} b_{10} b_{3} b_{6} b_{9} b_{2} b_{5} b_{8}, a_{1} a_{4} a_{7} a_{10} a_{3} a_{6} a_{9} a_{2} a_{5} a_{8}$ such that $b_{i} a_{i} \in E\left(P_{1}(10,3)\right)$ we gets the same graph $\left(P(10,3)\right.$, i.e., $\left.P_{1}(10,3) \cong P(10,3)\right\}$. Furthermore, no more three vertices from (outer cycle, inner cycle) respectively, can be take the same color.

Assume that there are five sets of colors, $D_{1}, D_{2}, D_{3}, D_{4}, D_{5}$, i.e., $f(v)=i$ if and only $v \in D_{i} \quad(1 \leq i \leq 5)$. We will study the cases for one of D_{i}. If D_{i} contain r vertices of outer cycle and q vertices of inner cycle, then we called D_{i} is (r-outer, q -inner). Without loss of generality, we consider D_{1}. Thus, we distinguish two cases:

Case a: D_{1} is (3-outer, 1-inner).
(This Case is similar by symmetry to D_{1} is (1-outer, 3-inner).
Let's start with a_{1} then we have (up to isomorphism) $D_{1}=\left\{a_{1}, a_{4}, a_{7}, b_{9}\right\}$, $a_{2} \in D_{2}$, and $a_{3} \in D_{3}$. Thus, $b_{2} \in D_{4}$ or $b_{2} \in D_{5}$ and $b_{3} \in D_{4}$ or $b_{3} \in D_{5}$. We have two cases:

Case a.1: $b_{2} \in D_{4}$ and $b_{3} \in D_{5}$ or $b_{2} \in D_{5}$ and $b_{3} \in D_{4}$. Two cases are similar by symmetry. Let $b_{2} \in D_{4}$ and $b_{3} \in D_{5}$. Then $b_{6} \in D_{2}, a_{5} \in D_{5}$, $b_{5} \in D_{3}, \quad b_{8} \in D_{2}, \quad b_{4} \in D_{4}$. Then $b_{10} \notin D_{i},(1 \leq i \geqq 5)$, a contradiction with our hypothesis, $\quad \chi_{2}(P(10,3))=5$.

Case a.2: b_{2} and b_{3} are belonging to the same set, let $b_{2}, b_{3} \in D_{4}$. There are two subcases $a_{5} \in D_{2}$ or $a_{5} \in D_{5}$:

Case a.2.1: $a_{5} \in D_{2}$. Then $b_{6} \in D_{5}, \quad b_{10} \in D_{2}, a_{6} \in D_{3}, \quad b_{5} \in D_{5}, \quad b_{7} \in D_{5}$, $b_{4} \in D_{4}, \quad b_{1} \in D_{3}$. So, $b_{8} \notin D_{i},(1 \leq i \leq 5)$, a contradiction with $\chi_{2}(P(10,3))=5$.

Case a.2.2: $a_{5} \in D_{5}$. Then $b_{5} \in D_{3}, b_{6} \in D_{2}$. This implies that $a_{6} \notin D_{i},(1 \leq i \leq 5)$, again gets a contradiction with $\chi_{2}(P(10,3))=5$.

Case b: D_{1} is (2-outer, 2-inner).
Assume that $a_{1} \in D_{1}$. We have three cases to choose the second vertex from outer cycle.

Case b.1: $a_{4} \in D_{1}$. (We have the same result if we take $a_{8} \in D_{1}$). Just one of b_{6}, b_{9} can belongs to D_{1}. So, D_{1} has three vertices and that means a contradiction with our proof that each set is from size 4.

Case b.2: $a_{5} \in D_{1}$. (We have the same result if we take $a_{7} \in D_{1}$). Then $D_{1}=\left\{a_{1}, a_{5}, b_{7}, b_{9}\right\}, \quad a_{2} \in D_{2}, \quad a_{3} \in D_{3}, a_{4} \in D_{4}, b_{3} \in D_{5}$. Also, $b_{4} \in D_{2}$ or $b_{4} \in D_{5}$.
Case b.2.1: $b_{4} \in D_{2}$. Then $b_{10} \in D_{4}, \quad b_{6} \in D_{2}, a_{6} \in D_{3}, \quad b_{5} \in D_{5}, a_{7} \in D_{5}$, $b_{1} \in D_{3}, \quad b_{8} \in D_{4}$. Thus, $b_{2} \notin D_{i},(1 \leq i \leq 5)$, a contradiction with $\chi_{2}(P(10,3))=5$.
Case b.2.2: $b_{4} \in D_{5}$. Then $b_{1} \in D_{3}, a_{10} \in D_{4}, b_{10} \in D_{2}, \quad b_{5} \in D_{5}, \quad b_{2} \in D_{4}$. Thus, we get $b_{6} \notin D_{i},(1 \leq i \leq 5)$, a contradiction with $\quad \chi_{2}(P(10,3))=5$.

Case b.3: $a_{6} \in D_{1}$. Then no vertex in inner cycle can take the color 1 . We get a contradiction with our proof that each set is from size 4.

Finally, we conclude that $\chi_{2}(P(10,3))>5$. To prove that $\chi_{2}(P(10,3)) \leq 6$, we take a function $f: V(G) \rightarrow\{1,2,3,4,5,6\}$ as follows:

$$
f(v)=\left\{\begin{array}{l}
1: v=a_{1}, a_{5}, a_{8}, b_{3}, \\
2: v=a_{2}, a_{6}, a_{9}, b_{4}, \\
3: v=a_{3}, a_{7}, b_{1}, \\
4: v=a_{4}, a_{10}, b_{2}, \\
5: v=b_{5}, b_{6}, b_{7}, \\
6: v=b_{8}, b_{9}, b_{10} .
\end{array}\right.
$$

Then we get $\chi_{2}(G)=6$ when $n \equiv 2(\bmod 4)$. See Figure 5 .
Case 2.2.4: $r=3$. we have two subcases:
Case 2.2.4.1: $r=3$ and $n>7$. The contradiction in a_{n}, b_{n-1}, b_{n-2} and b_{n}. We define

$$
f_{1}=f \backslash\left\{a_{n}, b_{n}, b_{n-1}, b_{n-2}\right\} \cup f_{2}
$$

where f_{2} is a function with colors in the set $\{4,5\}$, define as follows:

Figure 5. $\quad \chi_{2}(P(10,3))=6$.

$$
f_{2}(v)=\left\{\begin{array}{l}
4: v=a_{n} \\
5: v=b_{n}, b_{n-1}, b_{n-2}
\end{array}\right.
$$

Then we get $\chi_{2}(G)=5$ when $n \equiv 3(\bmod 4)$ for $n>7$.
Case 2.2.4.2: $r=3$ and $n=7$. In this case we have C_{5} induced subgraph from $P(7,3)$. Furthermore, $\chi_{2}(P(7,3)) \geq 5$. Let take the cycle $a_{1} a_{2} b_{2} b_{5} b_{1}$ and give it the fife color as follows: $f\left(a_{1}\right)=1, f\left(a_{2}\right)=2, f\left(b_{2}\right)=3, f\left(b_{5}\right)=4$, $f\left(b_{1}\right)=5$, so for a_{3} there are two cases $f\left(a_{3}\right)=4$ or 5 .

Case 2.2.4.2.a: $f\left(a_{3}\right)=4$. Then for b_{3} we have two choices 1 or 5 . For the first choice $f\left(b_{3}\right)=1$ we get $f\left(a_{4}\right)=3, f\left(b_{4}\right)=2, f\left(a_{5}\right)=1$. But for a_{6} there are two colors 2 or 5 . If $f\left(a_{6}\right)=5$, then we will need a new color for b_{6}. Also, if $f\left(a_{6}\right)=2$ then $f\left(b_{6}\right)=5$. Obviously, we need a new color for b_{7}. For second choice $f\left(b_{3}\right)=5$ then $f\left(a_{4}\right)=1$ or $f\left(a_{4}\right)=3$. If $f\left(a_{4}\right)=1$ we have for b_{4} two colors 2 or 3 if we take the color 2 then needs a new color for the vertices a_{5}. Also, if we take the color 3 we will need a new color for a_{6} because a_{5} can only take the color 2 . If $f\left(a_{4}\right)=3$ then $f\left(b_{4}\right)=2$, $f\left(a_{5}\right)=1, f\left(a_{6}\right)=2$. Moreover, we will need a new color for b_{6}.

Case 2.2.4.2.b: $f\left(a_{3}\right)=5$ then for b_{3} we have two choices 1 or 4. For $f\left(b_{3}\right)=1$ we get $f\left(a_{4}\right)=3, f\left(b_{4}\right)=2, f\left(a_{5}\right)=1, f\left(a_{6}\right)=5$. Then we need a new color for b_{6}. For second choice $f\left(b_{3}\right)=4$ then $f\left(a_{4}\right)=1$ or $f\left(a_{4}\right)=3$. If $f\left(a_{4}\right)=1$, then we have for b_{4} two colors 2 or 3 . If we take the color 2 we will need a new color for the vertices a_{5}. Also, if we take the color 3 we will need a new color for a_{7}. If $f\left(a_{4}\right)=3$, then $f\left(b_{4}\right)=2$, so we will need a new color for b_{7}. We conclude that for all the cases, needs six colors. Furthermore, $\quad \chi_{2}(P(7,3))>5$. To prove that $\chi_{2}(P(7,3)) \leq 6$, we take a function $f: V(G) \rightarrow\{1,2,3,4,5,6\}$ as follows:

$$
\begin{gathered}
f\left(a_{1}\right)=f\left(a_{5}\right)=f\left(b_{3}\right)=1, \quad f\left(a_{2}\right)=f\left(a_{6}\right)=f\left(b_{4}\right)=2, \quad f\left(b_{1}\right)=f\left(a_{3}\right)=3, \\
f\left(b_{2}\right)=f\left(a_{4}\right)=f\left(a_{7}\right)=4, \quad f\left(b_{5}\right)=f\left(b_{7}\right)=5, \quad f\left(b_{6}\right)=6
\end{gathered}
$$

Finally, we get $\chi_{2}(P(7,3))=6$.

Acknowledgements

The authors would like to thank the referees for their careful reading of the paper and their helpful comments.

References

[1] Kramer, F. and Kramer, H. (1969) Un probleme de coloration des sommets d'un graphe. C. R. Acad. Sci. Paris A, 268, 46-48.
[2] Kramer, F. and Kramer, H. (1969) Ein Fäbungsproblem der Knotenpunkte eines Graphen bezülich der Distanz p. Rev. Roumaine Math. Pures Appl., 14, 1031-1038.
[3] Wegner, G. (1977) Graphs with Given Diameter and a Coloring Problem. Technical Report, University of Dortmond, Dortmond, Germany.
[4] Alon, N. and Mohar, B. (2002) The Chromatic Number of Graph Powers. Combinatorics, Probability and Computing, 11, 1-10.
https://doi.org/10.1017/S0963548301004965
[5] Bonamy, M., Lévêque, B. and Pinlou, A. (2011) 2-Distance Coloring of Sparse Graphs. Electronic Notes in Discrete Mathematics, 38, 155-160. https://doi.org/10.1016/j.endm.2011.09.027
[6] Okamoto, F. and Zhang, P. (2010) A Note on 2-Distance Chromatic Numbers of Graphs. AKCE J. Graphs. Combin, 7, 5-9.
[7] Jacko, P. and Jendrol, S. (2005) Distance Coloring of the Hexagonal Lattice. Discussiones Mathematicae Graph Theory, 25, 1-xxx. https://doi.org/10.7151/dmgt. 1269
[8] Borodin, O.V. and Ivanova, A.O. (2009) 2-Distance ($\Delta+2$)-Coloring of Planar Graphs with Girth Six and $\Delta \geq 18$. Discrete Mathematics, 309, 6496-6502. https://doi.org/10.1016/j.disc.2009.06.029
[9] Dantas, S., de Figueiredo, C.M.H., Mazzuoccoloc, G., Preissmann, M., dos Santos, V.F. and Sasaki, D. (2016) On the Total Coloring of Generalized Petersen Graphs. Discrete Mathematics, 339, 1471-1475. https://doi.org/10.1016/j.disc.2015.12.010
[10] Miao, L. and Fan, Y. (2014) The Distance Coloring of Graphs. Acta Mathematica Sinica, English Series, 30, 1579-1587. https://doi.org/10.1007/s10114-014-3238-9
[11] Havet, F., van den Heuvel, J., McDiarmid, C. and Reed, B. (2007) List Colouring Squares of Planar Graphs. Electronic Notes in Discrete Mathematics, 29, 515-519.
[12] Ito, T., Kato, A., Zhou, X. and Nishizeki, T. (2007) Algorithms for Finding Dis-tance-Edge-Colorings of Graphs. Journal of Discrete Algorithms, 5, 304-322.
[13] Kramer, F. and Kramer, H. (2008) A Survey on the Distance-Colouring of Graphs. Discrete Mathematics, 308, 422-426.
[14] Borodin, O.V. (2013) Colorings of Plane Graphs: A Survey. Discrete Mathematics, 313, 517-539.
[15] Shao, Z. and Vesel, A. (2013) A Note on the Chromatic Number of the Square of the Cartesian Product of Two Cycles. Discrete Mathematics, 313, 999-1001.

