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Abstract 
A coloring ( ) { }: 1, ,f V G k→   of G is d-distance if any two vertices at dis-
tance at most d from each other get different colors. The minimum number of 
colors in d-distance colorings of G is its d-distance chromatic number, de-
noted by χd(G). In this paper, we give the exact value of χd(G) (d = 1, 2), for 
some types of generalized Petersen graphs P(n, k) where k = 1, 2, 3 and arbi-
trary n. 
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1. Introduction 

Let G = (V, E) be simple graph. A vertex k-coloring of G is a mapping from V(G) 
to the set { }1,2, , k  such that any two adjacent vertices are mapped to differ-
ent integers. The smallest integer k for which a k-coloring exists is called the 
chromatic number of G, denoted by χ(G). The d-distance between two distinct 
vertices u and v, d(u, v) is the number of edges of the shortest path joining them. 
The d-distance k-coloring, also called distance (d, k)-coloring, is a k-coloring of 
the graph G, that is, any two vertices within distance d in G receive different 
colors. The d-distance chromatic number of G is exactly the chromatic number 
of G under the d-distance condition, denoted by χd(G). For a simple graph G, 
the dth power of G, (Gd of G) is defined such that ( ) ( )dV G V G=  and two ver-
tices u and v are adjacent in Gd if and only if the distance between u and v in G is 
at most d. Clearly, the following inequality is holds: 

( ) ( ) ( ) ( ) ( ) ( )2
1 2 for 2.d

dG G G G G G dχ χ χ χ χ χ= ≤ = ≤ = ≥  

The theory of plane graph coloring has a long history, extending back to the 
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middle of the 19thcentury. In 1969, Florica Kramer and Horst Kramer [1] [2] de-
fined the chromatic number ( )d Gχ  relative to distance d of a graph G(V, E) to 
be the minimum number of colors which are sufficient for coloring the vertices of 
G in such a way that any two vertices of G of distance not greater than d have dis-
tinct colors. In 1977, Wegner [3], studied the problem of distance coloring of pla-
nar graphs. Alon and Mohar [4] considered the maximum possible chromatic 
number of G2, as G ranges over all graphs with maximum degree d and girth g. 
Bonamy et al. [5], studied the 2-distance coloring of sparse graphs. They proved 
that every graph with maximum degree Δ at least 4 and maximum average degree 
less that 7/3 admits a 2-distance (Δ + 1)-coloring. Okamoto and Zhang [6], consi-
dered the 2-distance chromatic number of graphs when deleted an edge or a vertex. 
In [7], Jacko gave the exact value of χd(G) of hexagonal lattice graph when d is odd 
and some value when d is even. Borodin and Ivanova [8], proved that every planar 
graph with g ≥ 6 and ∆ ≥ 18 is (∆ + 2)-colorable. Dantas et al. [9], studied the total 
coloring of generalized Petersen graphs and shown that “almost all” generalized 
Petersen graphs have a total chromatic number 4. Miao and Fan, [10], gave an 
upper bound of the chromatic number χd(G). Many papers have been devoted to it 
during the last decade, see for example [11] [12] [13] [14] [15]. 

In this paper, all graphs are finite, simple and undirected. For a graph G, we 
denote by V(G), E(G), d(u,v), ∆(G), diam(G), Gd and ( )d Gχ  its vertex set, 
edge set, the distance between u and v which is the length of shortest path con-
necting them, the maximum vertex degree, the diameter of G, the power of G 
and d-distance coloring of G. 

Theorem 1.1. [1]: For a graph ( ),G V E=  we have ( ) 1d G dχ = +  if and 
only if the graph G is satisfying one of the following conditions: 

1) 1V d= + . 
2) G is a path of length greater than d. 
3) G is a cycle of length a multiple of (d + 1).                          □ 
Theorem 1.2. [10]: When 2∆ = , there exist only two connected graphs of 

order n: 
The path nP  and the cycle nC : 
1). ( ) { }min , 1nd P n dχ = + . 

2). ( )
( )( )1: 0 mod 1 ,

min 1 2 : mod .d n

d n d

ni d n i
i

Cχ
+ ≡ +

 + ≥




=
+ ≤ 









 

Theorem 1.3. [10]: Let G be a graph. Then 

( ) ( )1 1
1.

2

d

d Gχ
∆ − −

≤ ∆ +
∆ −

 

□ 

Lemma 1.1. [6]: Let G be a nontrivial graph and d a positive integer. 
1) If H a subgraph of G, then ( ) ( )d dH Gχ χ≤ . 
2) ( )d Gχ  equals the order of G if and only if G is connected and  

https://doi.org/10.4236/ojdm.2017.74017


R. Shaheen et al. 
 

 

DOI: 10.4236/ojdm.2017.74017 187 Open Journal of Discrete Mathematics 
 

( )diam G d≤ .                                                     □ 
Definition 1.1. [9]: For integers n and k with 2 2k n≤ < . The Generalized 

Petersen Graph ( ),P n k  has vertices and respectively Edges given by: 

( )( ) 1, , :1 ,1
2i i

nV P n k a b i n k −  = ≤ ≤ ≤ ≤    
, 

( )( ) { }1, , , :1i i i i i i kE P n k a a a b b b i n+ += ≤ ≤  

□ 

We will call ( ),A n k  (respectively ( ),B n k ) the outer (respectively inner) 

subgraph of ( ),P n k . Note that we take the skip 1
2

k n − ≤   
, because of the 

obvious isomorphism ( ) ( ), ,P n k P n n k≅ − . 

2. Main Results 

Our main results here are to establish the exact chromatic number ( )( ),d P n kχ  
(d = 1, 2) for k = 1, 2, 3 and arbitrary n. 

Theorem 2.1. ( )( )1

2 : even,
,1

3: odd.
n

P n
n

χ


= 


 

Proof. Let ( ),1G P n= , observe from Definition 1.1, that Generalized Peter-
sen Graphs composed of one outer cycle and several inner cycles dependent on k. 
So, when k = 1 there is one inner cycle, then G composed of two cycles of size n. 
There are two cases:  

Case 1: n is even, immediately from Theorem 1.1 we have ( )1 2nCχ =  (be-
cause d = 1) then  

( )1 2Gχ ≥                            (1) 

We define a function f with colors in the set {1, 2} for ai and bi as follows:  

( ) 1: odd,
2 : even.i

i
f a

i


= 


, ( ) 2 : odd,
1: even.i

i
f b

i


= 


 

Then 

( )1 2Gχ ≤                           (2) 

By (1) and (2) we get ( )1 2Gχ = . 
Case 2: n is odd, from Theorem 1.2, we have ( )1 3nCχ = . Then  

( )1 3Gχ ≥                           (3) 

We define a function f with colors in the set {1, 2, 3} for ai and bi as follows: 

( ) ( )
1: odd and , 2 : odd and ,
2 : even, , 1: even and such that 1,
3 : . 3 : 1.

i i

i i n i i n
f a i f b i i n i n

i n i n

< < 
 = = = ≠ − 
 = = − 

 

So,  

( )1 3Gχ ≤ .                          (4) 
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From (3) and (4), gets ( )1 3Gχ = . As example see Figure 1. 

Theorem 2.2: ( )( )
( )

2

4 : 0 mod 4 ,
,1 6 : 3,6,

5 : otherwise.

n
P n nχ

≡


= =



 

Proof. Let ( ),1G P n= . We have 4C  is an induced subgraph of G and from 
Theorem 1.2, gets ( )2 4 4Cχ = . So, 

( )2 4Gχ ≥                          (5) 

We define a function f with colors in the set { }1,2,3,4  for ai and bi as follows: 

( )1 1f a = , ( )1 3f b = , ( )2 2f a = , ( )2 4f b = . 

By follow-up the coloring to the right, for 3a  there is only a single color as 
( )3 3f a = . 
So, for each vertex there is only a single color:  

( )3 1f b = , ( )4 4f a = , ( )4 2f b = , ( )5 1f a = ,  

( )5 3f b = , ( )6 2f a = , ( )6 4f b = .  

Observe that we have a repeat of the same order of the colors for each 4-inner 
(4-outer) vertices. Consider G with 4n ≥ . Assume that 4n q r= + : 0 4r≤ <  
for each ( ){ }0,4, , 4 1j q∈ −  we define a subset jS  of V(G) by  

{ }1 2 3 1 2 3, , , , , , ,j i i i i i i i iS a a a a b b b b+ + + + + +=  then there is a function f with colors in 
the set { }1,2,3,4  define as follows: 

( )

( )
( )
( )
( )

1: 1 mod 4 ,

2 : 2 mod 4 ,

3 : 3 mod 4 ,

4 : 0 mod 4 .

i

i

i
f a

i

i

≡


≡= 
≡

 ≡

, ( )

( )
( )
( )
( )

3: 1 mod 4 ,

4 : 2 mod 4 ,

1: 3 mod 4 ,

2 : 0 mod 4 .

i

i

i
f b

i

i

≡


≡= 
≡

 ≡

 

We have four cases according to the value of n modulo 4: 
Case 1: r = 0. Then ( ) ( )4 1

0

q
jj

V G S−

=
=


. By function f is  

( )2 4Gχ ≤                          (6) 

From (5) and (6), we get ( ) ( )2 4 : 0 mod 4G nχ = ≡ . 
 

 

Figure 1. ( )( )1 7,1 3Pχ = . 
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Case 2: r = 1. There are two leftover vertices in ( ) { },n njS bV aG − =


. By 
function f we have ( ) 1nf a = , ( ) 3nf b =  which is a contradiction with 1a  
and 1b . Moreover ( ) 1,n nd a b = . So, each of na  and nb  needs deferent color 
then ( )2  4Gχ > . We define { }1 1 2 2\ , , ,n n n nf a a af fb− −=  , where 2f  is a func-
tion with colors in the set {3, 4, 5} define as follows: 

( )2 1

2

4 : ,
3 : ,
5 : , .

n

n

n n

v a
f v v a

v a b
−

−

 =


= =
 =

 

Then we get ( )2 5Gχ =  = when ( )1 mod 4n ≡ . 
Case 3: For r = 2, we have two subcases: 
Case 3.1: r = 2 and n > 6, a similar argument, there is a contradiction for na , 

nb , 1na − , 1nb − . Then, ( )2 4Gχ > . We define  

{ }11 1 1 2 2 3 4 2 2\ , , , , , , , , , .n n n n n n n nf a b a b a b af b b fa− − − − − −=   

2f  is a function with colors in the set { }2,3,4,5  define as follows: 

( )

3 1

2
2

1 1

4 2 2

2 : , ,
3 : , ,
4 : , ,
5 : , , , .

n n

n n

n

n n n

v a b
v a b

f v
v a b
v a a b b

− −

−

−

− −

=
 ==  =
 =

 

Then we get ( )2 5Gχ =  when ( )2 mod 4n ≡ , see Figure 2. 
Case 3.2: r = 2 and n = 6. There are two cycles of order 6 and know that 
( )2 6 3Cχ = . Without loss of generality, assuming that ( )1 1f a = . Then the ver-

tices a2, a3, a5, a6, b1, b2, b6, can’t take the color 1. Moreover, at most one of a4, b3, 
b4, b5 can be coloring by 1. This implies that each color has only two vertices 
from ( )6,1P . So, needs 6 colors for 12 vertices. Furthermore, ( )( )2 6,1 6Pχ = . 

Case 4: For r = 3, there are two subcases: 
Case 4.1: n ≥ 7. For a function coloring f there is a contradiction in na  and 

nb . Then ( )2 4Gχ > . We define 
 

 

Figure 2. ( )( )2 10,1 5Pχ = . 
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{ }1 1 22\ , , ,n n n nf a b a bf f− −=   

where 2f  is a function with colors in the set { }2,3,5  define as follows: 

( )2 1

2

2 : ,
3 : ,

: , .5

n

n

n n

v b
f v v a

v a b
−

−

=
= =
 =

 

Then, ( )2 5Gχ =  when ( )3 mod 4n ≡ . 
Case 4.2: n = 3. Then, ( )( )diam 6,1 2P = . By Lemma 1.1, we get ( )2 6Gχ = . 

□ 
Theorem 2.3: ( )( )1 , 2 3P nχ = . 

Proof: Let ( ), 2G P n= . We have 5C  is an induced subgraph of G. Then by 
Theorem 1.2, is ( )1 5 3Cχ = . So, 

( )1 3Gχ ≥                            (7) 

We define a function f as follows: 

( )
( )
( )
( )

1: 1 mod3 ,

2 : 2 mod3 ,

 3 : 0 mod3 .
i

i

f a i

i

≡


= ≡
 ≡

, ( )
( )
( )
( )

2 : 1 mod3 ,

3 : 2 mod3 ,

1: 0 mod3 .
i

i

f b i

i

≡


= ≡
 ≡

 

We have three cases according to the value of n modulo 3: 
Case 1: r = 0. By definition f we have  

( )1 3Gχ ≤                           (8) 

By (7) together with (8), gets ( )1 3Gχ =  when ( )0 mod3n ≡ . 
Case 2: r = 1. Then there is a contradiction for na . We define  

{ }1 1 2\f af f=   

where ( )12 3f a = . This implies that ( )1 3Gχ =  when ( )1 mod3n ≡ . 
Case 3: r = 2. There is a problem with colors the vertices { }1,n nb b − . 
We define { }1 1 21\ , , ,n n n nf a b a bf f− −=  , where 2f  is a function with colors 

in the set { }1,2,3  define as follows: 

( )
1

2

1

1: ,
3 : ,
2 : , .

n

n

n n

v b
f v v a

v a b

−

−

=
= =
 =

 

By the last result together with (7), we get ( )2 3Gχ =  when ( )2 mod3n ≡ . □ 

Theorem 2.4: ( )( )
( )

2

5 : 0 mod10 ,
, 2 10 : 5,

6 : otherwise.

n
P n nχ

≡


= =



 

Proof: Let ( ), 2G P n= . G including 5C  as an induced subgraph. We have 
( )5diam 2C = . Then by Lemma 1.1, we get ( )2 5 5Cχ = . Furthermore  

( )2 5.Gχ ≥                           (9) 

We define a function f with colors in the set { }1,2,3,4,5  for ia  and ib  as 
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follows: 

( )1 2f a = , ( )2 2f a = , ( )3 3f a = , ( )1 4f b = , ( )3 5f b =  

Then for 2b  there are two cases: 
Case a: ( )2 4f b = . (By coloring to the right). So, 4a  has only a single color 

as ( )4 1f a =  and ( )4 5f b = . Follow-up coloring inner (outer) vertices each 
vertex will have only a single color as follows: 

( )5 2f b = , ( )5 4f a = , ( )6 2f b = , ( )6 3f a = , ( )7 1f b = , ( )7 5f a = ,  

( )8 1f b = , ( )8 4f a = , ( )9 3f b = , ( )9 2f a = , ( )10 3f b = , ( )10 5f a =  

By continue we will have a repeat of the same order of the colors for each 
10-inner (10-outer) vertices. 

Case b: ( )2 5f b = . By coloring to the left. So, we back to consider the Case 1. 
We will consider G with 10n ≥ . Assume that 10n q r= + : 0 10r≤ < . Now, 

for each ( ){ }0,10, ,10 1j q∈ −  we define a subset jS  of V(G) by 

{ }1 9 1 9, , , , , , ,j j j j j j jS a a a b b b+ + + +=    

Then there is a function f define as follows: 

( )

( )
( )
( )
( )
( )

1: 1,4 mod10 ,

2 : 2,9 mod10 ,

3 : 3,6 mod10 ,

4 : 5,8 mod10 ,

5 : 7,0 mod10 .

i

i

i

f a i

i

i

≡


≡
= ≡
 ≡
 ≡

, ( )

( )
( )
( )
( )
( )

4 : 12 mod10 ,

5 : 3,4 mod10 ,

2 : 5,6 mod10 ,

1: 7,8 mod10 ,

3 : 0,9 mod10 .

i

i

i

f b i

i

i

≡


≡
= ≡
 ≡
 ≡

 

We have ten cases according to the value of n modulo 10: 
Case 1: r = 0. Then ( ) ( )10 1

0

q
jj

V G S−

=
=


. Moreover, by define f we have  

( )2  5Gχ ≤                          (10) 

From (9) and (10) we get ( )2  5Gχ =  when ( )0 mod10n ≡ . 
Case 2: r = 1. There are two leftover vertices in ( ) { },j n nV G S a b− =



. By 
function f, ( ) 1nf a = , ( ) 4nf b =  which is a contradiction with 1a  and 1b , 
and ( ), 1n nd a b = . So each of na  and nb  needs deferent color then  

( )2  5Gχ > . We define  

{ }1 1 2 3 2\ , , , ,n n n nnf a b a af a f− − −=   

where 2f  is a function with colors in the set { }2,4,5,6  define as follows: 

( )

1

2
2

3

2 : ,
4 : ,
5 : ,
6 : , .

n

n

n

n n

v a
v a

f v
v a
v b a

−

−

−

=
 ==  =
 =

 

Then we get ( )2  6Gχ =  when ( )1 mod10n ≡ . 
Case 3: r = 2. There are four leftover vertices in ( ) { }1 1, , ,j n n n nV G S a b a b− −− =



, 
which are a contradiction with { }1 2 1 2, , ,a a b b . This implies that ( )2  5Gχ > . 

Let  
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{ }2 3 4 61 1 21\ , , , , , ,n nf a a a ab b a ff −=   

where 2f  is a function with colors in the set { }1,3,6  define as follows: 

( )
2

2 1 4

3 6 1

1: ,
3 : ,
6 : , , .

,
, n n

v a
f v v a a

v a a b b −

=
= =
 =

 

Then ( )2  6Gχ =  when ( )2 mod10n ≡ . See Figure 3. 
Case 4: r = 3. By same argument there is a contradiction for 1 2, ,n n nb b b− − . 

Which implies that ( )2  5Gχ > . So, we define  

{ }1 1 3 5 22\ , , , ,n n nn nf b b bf a a f− − − −=   

where that 2f  is a function with colors in the set { }4,5,6  define as follows: 

( )
3

2 2

1 5

4 :
5 : ,
6 :

,

, , .

n

n

n n n

v a
f v v b

v b b a

−

−

− −

=
= =
 =

 

Then we get ( )2  6Gχ =  when ( )3 mod10n ≡ . 
Case 5: r = 4. There is a contradiction for 1 2 3, , , ,n n n nnb ab b b− − − . We define  

{ }1 1 1 23 23\ , , , , , ,n n nn n nf a a b b bf a fb− − −−=   

where 2f  is a function with colors in the set { }1,4,5,6  define as follows: 

( )

1

3
2

1 2 3

1: , ,
4 :
5 : ,
6 :

,

, , .

n n

n

n

n n

v b b
v a

f v
v a
v a b b

−

−

− −

=
 ==  =
 =

 

We get ( )2  6Gχ =  when ( )4 mod10n ≡ . 
Case 6: When r = 5 we have two subcases: 
Case 6.1: r = 5 and 5n > . The contradiction is for 11 3, , , ,n n n n nb ab ab − − − . We 

will need at least three new deferent colors for them, then ( )2  5Gχ > . We de-
fine 
 

 

Figure 3. ( )( )2 12, 2 6Pχ = . 
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{ }1 21 1 3 44 5 7 2 3 26\ , , , , , , , , , , , ,n n n nn n n n nn nf a b b bf b a a a ba b a a f− − − −− − − −−=   

where 2f  is a function with colors in the set { }1,2,3,4,5,6  define as follows: 

( )

2 5

1 2 4
2

4

3

3 1 6 7

1: ,
2 : ,
3 : , ,
4 : ,
5 : ,
6 : , , , , .

,

,

n n

n

n n

n

n

n n n n

v a a
v a
v a a b

f v
v a
v b
v a b b b b

− −

− −

−

−

− − −

=
 =
 ==  =
 =


=

 

Then ( )2  6Gχ =  when ( )5 mod10n ≡ . See Figure 4. 
Case 6. 2: r = 5 and n = 5. We have diam(G) = 2. So, Lemma 1.1, gets  
( )2  10Gχ = . 

Case 7: r = 6. A contradiction for nb , 1na − . We define { }11 2\ , nbf f b f=   
and 2f  is a function with color 6. So, ( ) ( )2 1 2 6nf b f b= = , gets ( )2  6Gχ =  
when ( )6 mod10n ≡ . 

Notice when n = 6 we have the same argument but 0q = , so the vertices will 
take the sequence of colors for (outer, inner)vertices as follows (1, 2, 3, 1, 2, 3, 4, 
4, 5, 5, 6, 6). 

Case 8: r = 7. A contradiction is only for nb . Let { } 21 \ nf bf f=  . Where 
( )2 6nf b = . Moreover, ( )2  6Gχ =  when ( )7 mod10n ≡ . Also when n = 7 we 

get ( )2  6Gχ =  by the same condition with sequence of colors (outer, inner) 
vertices as following (1, 2, 3, 1, 4, 3, 5, 6, 4, 5, 5, 2, 2, 6).  

Case 9: r = 8. A contradiction is for 1nb − , nb , na , then ( )2  5Gχ > . We de-
fine { }1 1 2 23\ , , , ,n nn n nf b aa ff b a−− −=   with 2f  is a function with colors in the 
set { }3,4,6  define as follows: 

( )
1

2 2

3

3 : , ,
4 : ,
6 : , .

n n

n

n n

v b b
f v v a

v a a

−

−

−

=
= =
 =

 

 

 

Figure 4. ( )( )2 15, 2 6Pχ = . 
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And so, gets ( )2  6Gχ =  when ( )8 mod10n ≡ . 
Also notice when n = 8 we have the same argument but 0q = , so the vertices 

will take the sequence of colors for (outer, inner) vertices as follows (1, 2, 3, 1, 6, 
4, 5, 6, 4, 4, 5, 5, 2, 2, 3, 3).  

Case 10: r = 9. There is a contradiction for 1nb − , 1na − , na  then ( )2  5Gχ > . 
Let us define { }21 1 4 21\ , , , , ,n n n n nnf a bf b a a a f− − −−=  , with 2f  is a function with 
colors in the set { }3, 4,5,6  define as follows: 

( ) 2
2

1

1 4

3 : ,
4 : ,
5 : ,
6 : , , .

n

n

n

n n n

v a
v a

f v
v a
v b b a

−

−

− −

=
 ==  =
 =

 

Furthermore, ( )2  6Gχ =  when ( )9 mod10n ≡ . 
As before when n = 9 we get ( )2  6Gχ = , by the same condition with sequence 

of colors (outer, inner) vertices as follows (1, 2, 3, 1, 6, 3, 4, 5, 3, 4, 4, 5, 5, 2, 2, 1, 
6, 6). 

Finally, we conclude that:  

( )( )
( )

2

5 : 0 mod10 ,
, 2 10 : 5,

6 : otherwise.

n
P n nχ

≡


= =



 

Theorem 2.5: ( )( ) ( )
( )1

2 : 0 mod 2 ,
,3

3: 1 mod 2 .

n
P n

n
χ

≡= 
≡

 

Proof. Let ( ),3G P n= . There are two cases: 
Case 1: ( )0 mod 2n ≡ . From Theorem 1.2, we have ( )1 2nCχ = . Then 

( )1  2Gχ ≥                          (11) 

We define a function f with colors in the set {1, 2} for ia  and ib  (1 i n≤ ≤ ), 

( ) 1: odd,
2 : even.i

i
f a

i


= 


, ( ) 2 : odd,
1: even.i

i
f b

i


= 


 

Then 

( )1 2Gχ ≤                          (12) 

From (11) and (12), gets ( )1 2Gχ = . 
Case 2: ( )1 mod 2n ≡ . From Theorem 1.2, we have ( )1 3nCχ = . Moreover,  

( )1 3Gχ ≥                          (13) 

Let ( ) { }: 1, 2,3f V G →  for ia  and ib , where 

( )
1: odd, 1such that , 2,
2 : even, , 2 such that 1, 3,
3 : 3.

i

i i n i n n
f a i i n n i n n

i n

= − ≠ −
= = − ≠ − −
 = −

 

( )
1: even, 2,
2 : odd, 2,
3 : , 1, 2.

i

i i n
f b i i n

i n n n

< −
= < −
 = − −
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Then 

( )1 3Gχ ≤ .                         (14) 

From (13) and (14) is ( )1 3Gχ = .                                   □ 

Theorem 2.6: ( )( )
( )

( )2

4 : 0 mod 4 ,

,3 6 : 7 or 2 mod 4 ,
5 : otherwise.

n

P n nχ

≡


= =



 

Proof. Let ( ),3G P n= . ( )1,3K  is an induced subgraph of G and  
( )( )2 1,3 4Kχ = . This implies that 

( )2 4Gχ ≥ .                         (15) 

Without loss of generality, we define a function f as follows: ( )1 1f a = , 
( )2 2f a = , ( )3 3f a = , ( )2 4f b = . By follow-up the coloring to the right, for 

1b  there are two cases ( )1 4f b =  or ( )1 3f b = . 
Case 1: ( )1 4f b = . Then, there are two cases for 3b , ( )3 4f b =  or  
( )3 1f b = . So, if ( )3 4f b =  then absolutely ( )4 1f a =  and ( )1 3f b = . For 

coloring 5a  we need another color because it has the four colors as neighbors. 
If ( )3 1f b = , then ( )4 1f a =  and ( )4 2f b = . Furthermore, for coloring 5a  
we need another color. So to avoiding the fifth color we have to take the second 
case. 

Case 2: ( )1 3f b = . There are two cases for 3b , ( )3 4f b =  or ( )3 1f b = , we 
have two subcases: 

Case 2.1: ( )3 4f b = . Absolutely ( )4 1f a =  and ( )4 4f b =  or ( )4 2f b = . 
If we take ( )4 4f b =  then ( )5 2f a = , ( )5 3f b = , but we need another color 
for 6a . Also if we take ( )4 2f b =  then we need new color for 5a . 

Case 2.2: ( )3 1f b = . For each vertex there is only a single color: ( )4 4f a = , 
( )4 2f b = , ( )5 1f a = , ( )5 3f b = , ( )6 2f a = , ( )6 4f b = . Observe that, we 

have a repeat of the same order of the colors for each (4-outer) and (4-inner) 
vertices as respectively for colors { }1,2,3,4  and { }3,4,1,2 . Consider G with 

4n ≥ . Assume that 4n q r= + : 0 4r≤ <  for each ( ){ }0,4, , 4 1j q∈ − , we 
define a subset jS  of V(G) by { }1 2 3 1 2 3, , , , , , ,j i i i i i i i iS a a a a b b b b+ + + + + +=  then 
there is a function f define as follows: 

( )

( )
( )
( )
( )

1: 1 mod 4 ,

2 : 2 mod 4 ,
 

3 : 3 mod 4 ,

4 : 0 mod 4 .

i

i

i
f a

i

i

≡


≡= 
≡

 ≡

, ( )

( )
( )
( )
( )

3: 1 mod 4 ,

4 : 2 mod 4 ,
 
1: 3 mod 4 ,

2 : 0 mod 4 .

i

i

i
f b

i

i

≡


≡
=

≡
 ≡

 

We have four cases according to the value of n modulo 4: 
Case 2.2.1: r = 0. Then ( ) ( )4 1

0

q
jj

V G S−

=
=


. By function f we have 

( )2 4Gχ ≤                          (16) 

From (15) and (16) we get ( ) ( )2 4 : 0 mod 4G nχ = ≡ . 
Case 2.2.2: r = 1. Then there are two leftover vertices in  
( ) ( ) { }4 1

0
,q

j n nj
V G S a b−

=
= =


, by function f we get ( ) 1nf a = , ( ) 3nf b =  which 
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is a contradiction with 1a  and 3a . So each of na  and nb  needs deferent 
color then ( )2 4Gχ > . We define  

{ }1 31 2 1 1 2 3 2\ , , , , , , , ,n nn n n nn nf a a b b bf a b b fa− − −− −−=   

where 2f  is a function with colors in the set {2, 3, 4, 5} define as follows: 

( )

1 3

2
2

2

3 1 1

2 : , ,
3 : , ,
4 : , ,
5 : , , .

n n

n n

n n

n n

v a b
v a b

f v
v a b
v a b b

− −

−

−

− −

=
 ==  =
 =

 

Then gets ( )2 5Gχ =  when ( )1 mod 4n ≡ . 
Case 2.2.3: r = 2. Here, we will consider ( )( )2 10,3Pχ , {we delete the details 

of the general case because they are too long}. 
We have ( )( )2 10,3 5Pχ ≥ . Suppose ( )( )2 10,3 5Pχ = . It is easy to prove that 

each color can be given at most to four vertices. This implies that each color has 
exactly four vertices. {If drawing ( )1 10,3P  as following form: (outer cycle, in-
ner cycle) respectively, 1 4 7 10 3 6 9 2 5 8b b b b b b b b b b , 1 4 7 10 3 6 9 2 5 8a a a a a a a a a a  such that  

( )( )1 10,3i ib a E P∈  we gets the same graph ( ( )10,3P , i.e., ( ) ( )1 10,3 10,3P P≅ }. 
Furthermore, no more three vertices from (outer cycle, inner cycle) respectively, 
can be take the same color.  

Assume that there are five sets of colors, D1, D2, D3, D4, D5, i.e., f(v) = i if and 
only iv D∈  (1 5i≤ ≤ ). We will study the cases for one of Di. If Di contain r 
vertices of outer cycle and q vertices of inner cycle, then we called Di is (r-outer, 
q-inner). Without loss of generality, we consider D1. Thus, we distinguish two 
cases:  

Case a: D1 is (3-outer, 1-inner).  
(This Case is similar by symmetry to D1 is (1-outer, 3-inner). 
Let’s start with 1a  then we have (up to isomorphism) { }1 1 4 7 9, , ,D a a a b= , 

2 2a D∈ , and 3 3a D∈ . Thus, 2 4b D∈  or 2 5b D∈  and 3 4b D∈  or 3 5b D∈ . 
We have two cases: 

Case a.1: 2 4b D∈  and 3 5b D∈  or 2 5b D∈  and 3 4b D∈ . Two cases are 
similar by symmetry. Let 2 4b D∈  and 3 5b D∈ . Then 6 2b D∈ , 5 5a D∈ , 

5 3b D∈ , 8 2b D∈ , 4 4b D∈ . Then ( )10 , 1 ? 5ib D i≤ ≤∉ , a contradiction with our 
hypothesis, ( )( )2 10,3 5Pχ = . 

Case a.2: 2b  and 3b  are belonging to the same set, let 2 3 4,b b D∈ . There 
are two subcases 5 2a D∈  or 5 5a D∈ : 

Case a.2.1: 5 2a D∈ . Then 6 5b D∈ , 10 2b D∈ , 6 3a D∈ , 5 5b D∈ , 7 5b D∈ , 

4 4b D∈ , 1 3b D∈ . So, ( )8 , 1 5ib D i∉ ≤ ≤ , a contradiction with  
( )( )2 10,3 5Pχ = . 

Case a.2.2: 5 5a D∈ . Then 5 3b D∈ , 6 2b D∈ . This implies that  
( )6 , 1 5ia D i∉ ≤ ≤ , again gets a contradiction with ( )( )2 10,3 5Pχ = . 

Case b: D1 is (2-outer, 2-inner). 
Assume that 1 1a D∈ . We have three cases to choose the second vertex from 

outer cycle. 
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Case b.1: 14a D∈ . (We have the same result if we take 18a D∈ ). Just one of 

6b , 9b  can belongs to 1D . So, 1D  has three vertices and that means a contra-
diction with our proof that each set is from size 4. 

Case b.2: 15a D∈ . (We have the same result if we take 17a D∈ ). Then 
{ }1 1 5 7 9, , ,D a a b b= , 2 2a D∈ , 3 3a D∈ , 4 4a D∈ , 3 5b D∈ . Also, 4 2b D∈  or 

54b D∈ . 
Case b.2.1: 4 2b D∈ . Then 10 4b D∈ , 6 2b D∈ , 6 3a D∈ , 5 5b D∈ , 7 5a D∈ , 

1 3b D∈ , 8 4b D∈ . Thus, ( )2 , 1 5ib D i∉ ≤ ≤ , a contradiction with  
( )( )2 10,3 5Pχ = . 

Case b.2.2: 4 5b D∈ . Then 1 3b D∈ , 10 4a D∈ , 10 2b D∈ , 5 5b D∈ , 2 4b D∈ . 
Thus, we get ( )6 , 1 5ib D i∉ ≤ ≤ , a contradiction with ( )( )2 10,3 5Pχ = .  

Case b.3: 6 1a D∈ . Then no vertex in inner cycle can take the color 1. We get 
a contradiction with our proof that each set is from size 4. 

Finally, we conclude that ( )( )2 10,3 5Pχ > . To prove that ( )( )2 10,3 6Pχ ≤ , 
we take a function ( ) { }: 1, 2,3, 4,5,6f V G →  as follows:  

( )

1 5 8 3

2 6 9 4

3 7 1

4 10 2

5 6 7

8 9 10

1: , , , ,
2 : , , , ,
3 : , , ,
4 : , , ,
5 : , , ,
6 : , , .

v a a a b
v a a a b
v a a b

f v
v a a b
v b b b
v b b b

=
 =
 ==  =
 =


=

 

Then we get ( )2 6Gχ =  when ( )2 mod 4n ≡ . See Figure 5. 
Case 2.2.4: r = 3. we have two subcases: 
Case 2.2.4.1: r = 3 and n > 7. The contradiction in na , 1nb − , 2nb −  and nb . 

We define  
{ }1 21 2\ , , ,n n n nf b bf a b f− −=   

where 2f  is a function with colors in the set {4, 5}, define as follows: 
 

 

Figure 5. ( )( )2 10,3 6Pχ = . 
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( )2
1 2

4 : ,
5 : , , .

n

n n n

v a
f v

v b b b− −

=
=  =

 

Then we get ( )2 5Gχ =  when ( )3 mod 4n ≡  for n > 7. 
Case 2.2.4.2: r = 3 and n = 7. In this case we have 5C  induced subgraph 

from ( )7,3P . Furthermore, ( )( )2 7,3 5Pχ ≥ . Let take the cycle 1 2 2 5 1a a b b b  and 
give it the fife color as follows: ( )1 1f a = , ( )2 2f a = , ( )2 3f b = , ( )5 4f b = , 
( )1 5f b = , so for 3a  there are two cases ( )3 4f a =  or 5. 
Case 2.2.4.2.a: ( )3 4f a = . Then for 3b  we have two choices 1 or 5. For the 

first choice ( )3 1f b =  we get ( )4 3f a = , ( )4 2f b = , ( )5 1f a = . But for 6a  
there are two colors 2 or 5. If ( )6 5f a = , then we will need a new color for 6b . 
Also, if ( )6 2f a =  then ( )6 5f b = . Obviously, we need a new color for 7b . 
For second choice ( )3 5f b =  then ( )4 1f a =  or ( )4 3f a = . If ( )4 1f a =  we 
have for 4b  two colors 2 or 3 if we take the color 2 then needs a new color for 
the vertices 5a . Also, if we take the color 3 we will need a new color for 6a  
because 5a  can only take the color 2. If ( )4 3f a =  then ( )4 2f b = ,  
( )5 1f a = , ( )6 2f a = . Moreover, we will need a new color for 6b . 
Case 2.2.4.2.b: ( )3 5f a =  then for 3b  we have two choices 1 or 4. For 
( )3 1f b =  we get ( )4 3f a = , ( )4 2f b = , ( )5 1f a = , ( )6 5f a = .  Then we 

need a new color for 6b . For second choice ( )3 4f b =  then ( )4 1f a =  or 
( )4 3f a = . If ( )4 1f a = , then we have for 4b  two colors 2 or 3. If we take the 

color 2 we will need a new color for the vertices 5a . Also, if we take the color 3 
we will need a new color for 7a . If ( )4 3f a = , then ( )4 2f b = ,so we will need 
a new color for 7b . We conclude that for all the cases, needs six colors. Fur-
thermore, ( )( )2 7,3 5Pχ > . To prove that ( )( )2 7,3 6Pχ ≤ , we take a function 

( ) { }: 1, 2,3, 4,5,6f V G →  as follows:  

( ) ( ) ( )1 5 3 1f a f a f b= = = , ( ) ( ) ( )2 6 4 2f a f a f b= = = , ( ) ( )1 3 3f b f a= = ,  

( ) ( ) ( )2 4 7 4f b f a f a= = = , ( ) ( )5 7 5f b f b= = , ( )6 6f b = . 

Finally, we get ( )( )2 7,3 6Pχ = . 
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