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Abstract 
We show that the least number of cells (the gap number) one needs to take 
out from a rectangle with integer sides of length at least 2 in order to be tiled 
by ribbon right trominoes is less than or equal to 4. If the sides of the rectan-
gle are of length at least 5, then the gap number is less than or equal to 3. We 
also show that for the family of rectangles that have nontrivial minimal num-
ber of gaps, with probability 1, the only obstructions to tiling appear from co-
loring invariants. This is in contrast to what happens for simply connected re-
gions. For that class of regions Conway and Lagarias found a tiling invariant 
that does not follow from coloring. 
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1. Introduction 

We study tiling problems for regions in a square lattice by tile sets made of po-
lyominoes. Polyominoes were introduced by Golomb and the standard reference 
is the book Polyominoes [1]. We consider the tile set { }1 2,T T∑ = , where 1 2,T T  
are right trominoes, and the tile set { }1 2 3 4, , ,T T T T∑ = , containing two more 
elements which are straight trominoes. See Figure 1. Only translations of the 
tiles 1 2 3 4, , ,T T T T  are allowed in a tiling. 

A 1 1×  square in the lattice is called a cell. We find the least number of cells 
one needs to take out from a rectangle k l×  with integer height k and base l, in 
order for the resulting shape to be tiled by ∑ . Following [2], we denote it by 

( ),M k l  and call it the gap number. 
It is convenient to state the main results in cases sorted by the congruence 

classes modulo 3 for the height and modulo 2 for the base. As the tile set is  
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Figure 1. The tiles 1 2 3, ,T T T  and 4T . 

 
symmetric about the line x y= , the results for the cases not discussed below 
can be obtained via a symmetry. 

Our main results are the following: 
Proposition 1.1. If one of the sides of the rectangle has length 1 or 2, and 

, 1k l ≥ , the gap number is: 
1) ( )3 ,1 3M k k= ; 
2) ( )3 , 2 0M k = ; 
3) ( )1, 2 2M l l= ; 
4) if ( ) ( )1 mod 3 , 2, 2 1l M l≡ = ; 
5) if ( ) ( )2 mod 3 , 2, 2 2l M l≡ = ; 
6) if ( ) ( )0 mod 3 , 2, 2 0l M l≡ = . 
The proof of Proposition 1.1 is immediate. For the rest of the paper both sides 

of the rectangle are of length at least 3. The following cases appear: 3 2k l× , 
( )3 2 1k l× + , ( )3 1 2k l+ × , ( ) ( )3 1 2 1k l+ × + , ( )3 2 2k l+ × , ( ) ( )3 2 2 1k l+ × + , 

where , 1k l ≥ . 
Theorem 1.2. Let , 1k l ≥ . If both sides of the rectangle are at least 3, the gap 

number is: 
1) ( )3 , 2 0M k l = . 
2) a) If k is even, ( )3 , 2 1 0M k l + = . 
b) If k is odd, ( )3 , 2 1 3M k l + = . 
3) a) If ( ) ( )1 mod 3 , 3 1, 2 2l M k l≡ + = . 
b) If ( ) ( )2 mod 3 , 3 1, 2 4l M k l≡ + =  if 1k =  or 2l = , and  
( )3 1, 2 1M k l+ =  if 2; 5k l≥ ≥ . 

c) If ( ) ( )0 mod 3 , 3 1, 2 0l M k l≡ + = . 
4) a) If ( ) ( )1 mod 3 , 3 1, 2 1 3l M k l≡ + + =  if k even, ( )3 1, 2 1 0M k l+ + =  if k 

odd. 
b) If ( ) ( )2 mod 3 , 3 1, 2 1 2l M k l≡ + + = . 
c) If ( ) ( )0 mod 3 , 4, 2 1 4l M l≡ + = , and ( )3 1, 2 1 1M k l+ + =  if 2k ≥ . 
5) a) If ( ) ( )1 mod 3 , 3 2, 2 1l M k l≡ + = . 
b) If ( ) ( )2 mod 3 , 3 2, 2 2l M k l≡ + = . 
c) If ( ) ( )0 mod 3 , 3 2, 2 0l M k l≡ + = . 
6) a) If ( ) ( )1 mod 3 , 3 2, 2 1 3l M k l≡ + + =  if k odd, ( )3 2, 2 1 0M k l+ + =  if 

k even. 
b) If ( ) ( )2 mod 3 , 3 2, 2 1 1l M k l≡ + + = . 
c) If ( ) ( )0 mod 3 , 3 2, 2 1 2l M k l≡ + + = . 
Corollary 1.3. The gap number of a k l×  rectangle, , 2k l ≥ , for the tile set 

∑  is always ≤4. If both sides of the rectangle are at least 5, then the gap number 
is less or equal to 3. 

To prove Theorem 1.2 we use the following results of Conway-Lagarias [3] 
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and Pak [4]. 
Theorem 1.4. For any simply connected region that can be tiled by ∑  or 

∑ , the difference between the number of 1T  tiles and the number of 2T  tiles 
that appear in the tiling is an invariant. 

We call a rectangle deficient if a cell is missing, and we call a rectangle with 
gaps if one or more cells are missing. Related results to our topic in the litera-
ture are about tiling deficient boards/rectangles by right trominoes, all four 
orientations allowed. Golomb [1] proved that all 2 2n n×  deficient boards can 
be tiled. Chu-Johnsonbaugh [5] [6] studied the general case of boards and de-
ficient boards: any deficient n n×  board is tilable if and only if n is not divis-
ible by 3. Later Ash-Golomb [7] found that an m n×  deficient rectangle 
2 ;3 | 1m n mn≤ ≤ − , has a tiling if and only if neither side has length 2, unless 
both of them do; or 5m ≠ . Furthermore, in all the exceptional cases, they 
found all missing cells for which tiling is possible. The paper [8] investigates til-
ing of a deficient board/rectangle by L-shaped tetrominoes and indicates all 
missing cells for which the tiling is possible and the papers [9] [10] investigate 
tiling of a deficient board/rectangle by P-pentominoes and indicate all missing 
cells for which the tiling is possible. Hochberg [2] studies the least number of 
cells that have to be taken out from a rectangle in order to be tiled by 
T-tetrominoes (the gap number). 

One motivation to study tilings of rectangles with gaps by ∑  is to see if for 
such non simply connected regions there exist tilings invariants different from 
coloring invariants. We refer to [3] for a discussion of coloring invariants. We 
observe that, for rectangles with both sides at least 5, once the minimal number 
of holes is non trivial, the only obstructions to tilings are essentially coloring in-
variants. This fact is also true for the tile set ∑ . 

Theorem 1.5. 1) If a deficient rectangle with sides ≥5 has area multiple of 3 
and if the missing cell is at distance ≥5 from the boundary, then the only ob-
structions to tiling by ∑  are coloring invariants. 

2) Assume that a rectangle with sides ≥5 and with two gaps has area multiple 
of 3. If the missing cells are at distance ≥5 from the boundary and at horizontal 
and vertical distance ≥12 from each other, then the only obstructions to tiling by 
∑  are coloring invariants. 

3) Assume that a rectangle with sides ≥5 with three gaps has area multiple of 
3. If the missing cells are at distance ≥9 from the boundary and at horizontal and 
vertical distance ≥12 from each other, then the only obstructions to tiling by ∑  
are coloring invariants. 

Corollary 1.6. For the family of rectangles that have nontrivial minimal 
number of gaps, with probability 1, the only obstructions to tiling by ∑  appear 
from coloring invariants. 

We summarize the rest of the paper. In Section 2 we prove Theorem 1.2. In 
Section 3 we prove Theorem 1.5, 1). We actually describe all deficient rectangles 
that allow for tilings by ∑ . It turns out that, while obstructions different from 
coloring invariants may appear, they are all located close to the boundary of the 
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rectangle. In Section 4 we prove Theorem 1.5, 2). In Section 5 we prove Theorem 
1.5, 3). Several open questions of interest are mentioned in Section 6. 

2. Proof of Theorem 1.2 

We note that a 3 2×  or a 2 3×  rectangle can be tiled by two tiles from ∑ . 
This implies that any rectangle that has a side divisible by 3 and the other side 
even can be tiled by ∑ . We will also use a coloring argument. If a tiled region is 
colored with three different alternating colors, along the NW-SE diagonals, each 
tile in ∑  is colored by all three colors, so the number of cells in the tiled region 
covered by each color is one third of the area of the region. 

Lemma 2.1. If l or k are even, then ( )3 , 0M k l = . 
Proof. If l is even, then 2 ,l n n=  an integer. The rectangle can be broken in-

to 3 2×  pieces, so it can be tiled by ∑ . If k is even, then 3 6 ,k n n=  an integ-
er. We have two sub cases depending whether l is even or odd. Suppose l is even; 
then 2l m= , so the rectangle is of size 6 2n m× , which is tileable by ∑ . Sup-
pose l is odd; then 2 1l m= + , so we have a rectangle of the size ( )6 2 1n m× + . 
We break it into two smaller rectangles of sizes ( )6 2 1n m× −  and 6 3n× . Both 
have a side divisible by 3 and the other side even. Hence, the whole rectangle is 
tileable by ∑ . 

Lemma 2.2. If l and k are odd, then ( )3 , 3M k l = . 
Proof. As ,k l  odd, one has 2 1, 2 1k m l n= + = + , ,m n  integers. Break the 

rectangle into two smaller pieces of sizes ( )3 2 1k n× −  and 3 3k × . The first one 
can be tiled by ∑ . The second one, which has sizes ( )6 3 3m + × , can be divided 
into two smaller pieces of sizes ( )2 3 1 3m + ×  and 1 3× . The first one is tileable 
by ∑ . We use a 3T  tile to cover the 1 3×  rectangle. Hence, the initial 3k l×  
rectangle can be tiled by ∑ , using a single tile not in ∑ . However, the 3k l×  
rectangle can not be tiled by ∑ . Indeed, by Theorem 1.4, the difference between 
the numbers of 1T  tiles and 2T  tiles is constant for any tiling by ∑  or by ∑ . 
As we already have a tiling by ∑  for which the difference is zero, for any tiling 
by ∑  the difference has to be zero. So we need to use an even number of tiles 
from ∑ . As the area of the 3k l×  rectangle is odd, this leads to a contradic-
tion. Therefore, ( ), 3M k l ≥ . Figure 2 shows a tiling with 3 missing cells, so 

( )3 ; 3M k l = . Regions I-III are of the sizes 3 2a b×  or 2 3a b× . 
Lemmas 2.1, 2.2 cover cases 1. and 2. The following lemma covers case 3. 
Lemma 2.3. i) If ( ) ( )1 mod 3 , 3 1, 2 2l M k l≡ + = . 
ii) If ( ) ( )2 mod 3 , 3 1, 2 4l M k l≡ + =  for 1k =  or 2l = , and  
( )3 1, 2 1M k l+ =  for 2, 5k l≥ ≥ . 

iii) If ( ) ( )0 mod 3 , 3 1, 2 0l M k l≡ + = . 
 

 
Figure 2. Lemma 2.2. 
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Proof. The proof of (iii) is similar to that of Lemma 2.1, splitting it in two 
cases, k odd/even. For (i) and (ii) with 2; 5k l≥ ≥ , possible tilings are shown in 
Figure 3, where the gray cells are the missing cells. In (a), Region I is of the size 
( )3 1 6k b+ × , so can be decomposed in 3 2a b×  or 2 3a b×  regions, and Re-
gion II is of the size 2 3a b× . In (b), Regions I-IX are part of a cover of a 7 10×  
rectangle and are of the size 3 2a b×  or 2 3a b× . Region X is of size 7 6b×  
and can be decomposed in 3 2a b×  or 2 3a b×  regions. Region XI is of size 
3 2a b× . 

For (ii), ( )2 mod 3l ≡ , we discuss the cases 1k =  or 2l = . Consider 1k = . 
The other case is similar. The rectangles are of size ( )4 2 3 2n′× +  with n′  in-
teger. We have to take at least a square out. Assign a pair of coordinates to each 
square starting with the one in the lower left corner that has coordinates ( )1,1 . 
Due to a coloring argument using three colors, if a square is taken out, then the 
sum of its coordinates is congruent to 2 modulo 3. 

If a boundary cell is taken out, the remaining region can be tiled by horizontal 
and vertical trominoes and its invariant is 0. So, if the region can be tiled by ∑ , 
only an even number of tiles can be used. As the area of the region is odd, one 
has to take out at least 4 cells for a tiling to be possible. 

If an interior cell is taken out, group the cell with a tile from ∑  to form a 
2 2×  square that touches the boundary of the rectangle. This gives the only 
possible tiling of the region surrounding the cell. Taking the 2 2×  square out, 
creates a simply connected region that can be easily tiled by ∑  and has inva-
riant 1. This forces us to use an even number of tiles in order to tile the deficient 
rectangle, so due to the area constraint, one has to take out at least 4 cells for a 
tiling to be possible. Finally, note that if the first column of 4 cells is deleted from 
a rectangle, the rest can be tiled. 

The following lemma covers case 4. 
Lemma 2.4. i) If ( ) ( )1 mod 3 , 3 1, 2 1 3l M k l≡ + + =  if k even,  
( )3 1, 2 1 0M k l+ + =  if k odd. 

ii) If ( ) ( )2 mod 3 , 3 1, 2 1 2l M k l≡ + + = . 
iii) If ( ) ( )0 mod 3 , 3 1, 2 1 4l M k l≡ + + =  for 1k = , and  
( )3 1; 2 1 1M k l+ + =  for 2k ≥ . 

Proof. As 2 1l +  is divisible by 3, first part of (i) follows from Lemma 2.2, 
and the second part from Lemma 2.1. For (ii), tilings are shown in Figure 4(a),  
 

 
Figure 3. Lemma 2.3. 
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Figure 4. Lemma 2.4. 
 
and Figure 4(b), depending on whether k is odd/even. For (iii), tilings for 

2k ≥  depend on whether k is odd/even, as shown in Figure 4(c) and Figure 
4(d). In (a), Region I is of the size 4 3a× , Region II is of the size 3 2×  and Re-
gion III is of the size 6 (2 1)a l× + . In (b), Region I-IV are either of the size 2 3×  
or 3 2× , and they form a rectangle of size 5 5×  with the center cell being tak-
en out. Region V is of the size 2 3× , Region VI is of the size 6 5a×  and Region 
VII is of the size ( )7 2 6a b+ × . In (c), Region I-VIII are either of the size 
3 2a b×  or of the size 2 3a b×  and form a 10 7×  rectangle, Region IX is of 
size 6 7a×  and Region X is of size ( )10 6 6a b+ × . In (d), Region I-III are either 
of the size 3 4×  or 4 3× , Region IV is of size 6 7a×  and Region V is of size 
( )7 6 6a b+ × . 

Consider now case (iii) with 1k = . The rectangles are of size ( )4 6 1n′× +  
with n′  integer. We have to take at least a square out. Assign a pair of coordi-
nates to each square starting with the one in the lower left corner that has coor-
dinates ( )1,1 . Due to a coloring argument using three colors, if a square is taken 
out, then the sum of its coordinates is congruent to 2 modulo 3. If a boundary 
cell is taken out, the remaining region can be tiled by horizontal and vertical 
trominoes, so its invariant is 0. So, if the region is tileble by ∑ , only an even 
number of tiles can be used. As the area of the region is odd, one has to take out 
at least 4 cells for a tiling to be possible. If an interior cell is taken out, group the 
cell with a tile from ∑  to form a 2 2×  square that touches the boundary of 
the rectangle. This gives the only possible tiling of the region surrounding the cell. 
Taking the 2 2×  square out, creates a simply connected region that can be easily 
tiled by ∑  and has invariant 2. This forces us to use an even number of tiles in 
order to tile the deficient rectangle, so due to the area constraint, one has to take 
out at least 4 cells for a tiling to be possible. Now it is easy to see that if we take out 
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the first column consisting of 4 cells from a rectangle, the rest can be tiled. 
The following lemma covers case 5. 
Lemma 2.5. i) If ( ) ( )1 mod3 , 3 2,2 1l M k l≡ + = . 
ii) If ( ) ( )2 mod3 , 3 2,2 2l M k l≡ + = . 
iii) If ( ) ( )0 mod3 , 3 2,2 0l M k l≡ + = . 
Proof. The proof of (iii) is similar to that of Lemma 2.1, splitting it in two 

cases, k odd/even. For (i) and (ii) tilings are shown in Figure 5, with the missing 
cells colored gray. In (a), Regions I-III are either of the size 3 2a b×  or 2 3a b× . 
In (b), Region I-IV are either of the size 3 2a b×  or 2 3a b× . 

The following lemma covers case 6. 
Lemma 2.6. i) If ( ) ( )1 mod 3 , 3 2, 2 1 3l M k l≡ + + =  if k odd,  
( )3 2, 2 1 0M k l+ + =  if k even. 

ii) ( ) ( )2 mod 3 , 3 2, 2 1 1l M k l≡ + + = . 
iii) ( ) ( )0 mod 3 , 3 2, 2 1 2l M k l≡ + + = . 
Proof. As 2 1l +  is divisible by 3, first part of (i) follows from Lemma 2.1, 

and the second part from Lemma 2.2. Tilings for (ii) are shown in Figure 6, split 
in two cases, depending on k odd/even. In (a) Regions I, II, III, IV are 2 3×  or 
3 2×  rectangle, Region V is a 6 5a×  rectangle and Region VI is a ( )5 6 6a b+ ×  
rectangle. In (b) Region I is a 6 2×  rectangle, Region II is a 6 3a×  rectangle, 
Region III is an 8 3×  rectangle, Region IV is a ( )6 8 6a b+ ×  rectangle. 

Tilings for (iii) are shown in Figure 7, split in two cases, depending on k 
odd/even. In (a) Regions I, III are 2 3×  rectangles, Region II is a 3 4×  rec-
tangle, Region IV is a 3 2×  rectangle, Region V is a 6 7a×  rectangle and Re-
gion VI is a ( )5 6 6a b+ ×  rectangle. In (b) Region I is a 6 4×  rectangle, Re  
 

 
Figure 5. Lemma 2.5. 

 

 
Figure 6. Lemma 2.6. 
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gion II is a 2 3×  rectangle, Region III is an 8 3×  rectangle, Region IV is a
6 7a×  rectangle and region V is a ( )8 6 6a b+ ×  rectangle. This ends the proof 
of Theorem 1.2. 

3. The Case of One Missing Cell 

In this section we claim frequently, without showing the proofs, that certain tilings 
of deficient rectangles are possible. An easy way to check our claims is to use the 
free available software Polysolver [11]. Due to the similarity in the technique, we 
show detailed proofs only for Theorems 3.1, 3.2 and 3.3. In what follows it is con-
venient to label the cells in a rectangle by the coordinates of their lower left corner. 
We assume that the lower left corner of a rectangle has coordinates ( )0,0 . 

Theorem 3.1. A deficient rectangle ( ) ( )6 1 6 1 , , 1p q p q+ × + ≥  can be tiled 
by ∑  if and only if the missing cell has the sum of the coordinates congruent to 
0 modulo 3 and is different from ( )6 2, 2p −  or ( )2,6 2q − . 

Proof. Figure 8 shows the good cells in a 7 7×  square. For the general case, 
use first a coloring argument to show that the missing cell has the sum of the 
coordinates congruent to 0 modulo 3. To show that tiling is possible if the cell is 
different from ( )6 2, 2p −  or ( )2,6 2q −  one checks, using a computer or by 
hand, that the statement is true for 7 7,7 13,13 7,13 13× × × ×  rectangles. If a 
rectangle is of bigger size, then place inside it one of the above deficient rectan-
gles in positions translated from the origin by a vector with both coordinates 
multiple of 6. The remaining region can be decomposed in rectangles that can be 
tiled by ∑ . So the tiling of the whole deficient rectangle is possible. We show 
that removing the cell ( )6 2; 2p −  or ( )2;6 2q −  gives a deficient rectangle 
that cannot be tiled. Due to the symmetry of the tile set about the line y x= ,  
 

 
Figure 7. Lemma 2.6. 

 

 
Figure 8. Good cells 
in a 7 7×  square. 
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we consider only the first cell. We use the invariant from Theorem 1.4, which is 
valid only for simply connected regions. In order to apply it, we need to do a cut. 
Figure 9 shows all possible configurations of tiles that cover the upper left cor-
ner cell of the rectangle. In Figure 9(c) the cell * cannot be tiled. We are left with 
the cases in Figure 9(a) and Figure 9(b), and the cuts marked by thick lines in 
the figure. Again due to the symmetry of ∑  about y x= −  we can restrict to 
case a). A tiling of the region by ∑  is shown in Figure 10. The tiling shows that 
the invariant is 1. Larger rectangles also have invariant 1. Indeed, we can place a 
7 7×  rectangle in the upper left corner of the larger rectangle, tile it as in Fig-
ure 10, and tile the rest of the larger rectangle by bars from ∑ . As the deficient 
larger rectangle has even area, it can be tiled only by an even number of tiles 
from ∑ , so its invariant has to be even. This leads to a contradiction that shows 
the impossibility of tiling. 

Theorem 3.2. A deficient rectangle ( ) ( )6 2 6 2 , , 1p q p q+ × + ≥  can be tiled by 
∑  if and only if the missing cell has the sum of the coordinates congruent to 1 
modulo 3 and is different from ( ) ( ) ( )2, 2 , 6 1, 2 , 2,6 1p q− −  or ( )6 1,6 1p q− − . 

Proof. Figure 11 shows the good cells in a 8 8×  square. For the general case, 
use first a coloring argument to show that the missing cell has the sum of the  
 

 
Figure 9. Tiling the upper and lower left corners. 

 

 
Figure 10. Tiling a 
7 7×  deficient square 
by ∑ . 

 

 
Figure 11. Good cells in 
a 8 8×  square. 
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coordinates congruent to 1 modulo 3. To show that tiling is possible if the cell is 
different from ( ) ( ) ( )2, 2 , 6 1, 2 , 2,6 1p q− −  or ( )6 1,6 1p q− −  one checks, us-
ing a computer or by hand, that the statement is true for 8 8,8 14,14 8,14 14× × × ×  
rectangles. If a rectangle is of bigger size, then place inside it one of the above defi-
cient rectangles in positions translated from the origin by a vector with both coor-
dinates multiple of 6. The remaining region can be decomposed in rectangles that 
can be tiled by ∑ . So a tiling of the whole deficient rectangle is possible. To show 
that the removal of the cells ( ) ( ) ( )2, 2 , 6 1, 2 , 2,6 1p q− −  or ( )6 1,6 1p q− −  
give deficient rectangles that cannot be tiled is done using the invariant as in 
Theorem 3.1. Figure 9 shows all possible cuts and tilings of 8 8×  deficient 
squares by bars, after the cuts, are shown in Figure 12. 

Theorem 3.3. If a deficient rectangle ( ) ( )6 4 6 4 , , 1p q p q+ × + ≥  can be tiled 
by ∑ , then the missing cell has the sum of the coordinates congruent to 0 mod-
ulo 3 and are placed on NW-SE diagonals. The missing cell has to be the third or 
fifth cell on a diagonal of length 7, or be on a diagonal of length greater than 7 
and not among the first two cells or the last two cells on that diagonal. 

Proof. Figure 13 shows the good cells in a 10 10×  square. If the missing cell 
is at distance zero or one from the boundary, then it is easy to tile the deficient 
rectangle by ∑  and show that tiling by ∑  leads to a contradiction. The other 
two candidates that are bad cells are in positions ( )3,3  and ( )6 ,6p q . Due to 
the symmetry of ∑  it is enough to show that removing cell ( )3,3  gives an un-
tilable rectangle. The possible cuts are shown in Figure 14. Due to the symmetry 
of the tiling set, it is enough to study only one of them. A tiling of a deficient 
10 10×  square with a cut by ∑  are shown in Figure 15. The invariant is 1, so 
the deficient square cannot be tiled by ∑ . 
 

 

Figure 12. Tiling a 8 8×  deficient square by ∑ . 
 

 
Figure 13. Good cells in a 
10 10×  square. 
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Theorem 3.4. If a deficient rectangle ( ) ( )6 5 6 5 , , 1p q p q+ × + ≥  can be tiled 
by ∑ , then the missing cell has the sum of the coordinates congruent to 1 mod-
ulo 3 and are placed on NW-SE diagonals. The missing cell has to be the third 
cell on a diagonal of length 5, or the third, fourth, fifth or sixth on a diagonal of 
length 8, or be not among the first two cells or the last two cells on a diagonal of 
length greater or equal to 11. 

Proof. The proof is similar to that of Theorem 3.3. The good cells in a 11 11×  
square are shown in Figure 16. 

Theorem 3.5. If a deficient rectangle ( ) ( )6 1 6 4 , , 1p q p q+ × + ≥  can be tiled 
by ∑ , then the missing cell has the sum of the coordinates congruent to 0 mod-
ulo 3 and are placed on NW-SE diagonals. The missing cell has to be the third or 
fifth cell on a diagonal of length 7, or be on a diagonal of length greater than 7 
and not among the first two cells or the last two cells on that diagonal. 

Proof. The proof is similar to that of Theorem 3.3. The good cells in a 7 10×  
rectangle are shown in Figure 17. 

Theorem 3.6. A deficient rectangle ( ) ( )6 2 6 5 , , 1p q p q+ × + ≥  can be tiled  
 

 
Figure 14. Tiling the lower left corner. 

 

 
Figure 15. Tiling a 10 10×  
deficient square by ∑ . 

 

 
Figure 16. Good cells in a 
11 11×  square. 
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by ∑  if and only if the missing cell has the sum of the coordinates congruent to 1 
modulo 3 and is different from ( ) ( ) ( )2, 2 , 6 1, 2 , 2,6 2p q− +  or ( )6 1,6 2p q− + . 

Proof. The proof is similar to that of Theorem 3.2. The good cells in a 8 11×  
rectangle are shown in Figure 18. 

4. The Case of Two Missing Cells 

In this section we prove Theorem 1.5, 2) The types of rectangles we need to con-
sider are  

( ) ( ) ( ) ( ) ( ) ( )6 1 6 2 , 6 1 6 5 , 6 4 6 5 .p q p q p q+ × + + × + + × +  

The case ( ) ( )6 1 6 2p q+ × + . Using the coloring invariant it follows that the 
missing cells 0 1,C C  must have the sum of the coordinates 0, 1, respectively. 
Using the symmetry of the tile set about the line y x= , we can assume that the 
x-coordinate of 0C  is less then the x-coordinate of 1C  or that the 
y-coordinate of 1C  is less than the y-coordinate of 0C . In the first case, divide 
the rectangle in two sub-rectangles as in Figure 19(a). According to Theorem 
3.1 each sub-rectangle is a deficient rectangle of type ( ) ( )6 1 6 1p q+ × +  with 
the missing cell having the sum of the coordinates 0, so it can be tiled by ∑ . In 
the second case, divide the rectangle in two sub-rectangles as in Figure 19(b). 
According to Theorem 3.2 the sub-rectangle of type ( ) ( )6 2 6 2p q+ × +  with  
 

 
Figure 17. Good cells in a 
7 10×  rectangle. 

 

 
Figure 18. Good squares in a 
8 11×  rectangle. 

 

 
Figure 19. A rectangle with gaps split in deficient rectangles, case  

( ) ( )6 1 6 2p q+ × + . 
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the missing cell having the sum of the coordinates 1, can be tiled by ∑ . Ac-
cording to Theorem 3.6 the sub-rectangle of type ( ) ( )6 2 6 5p q+ × +  with the 
missing cell having the sum of the coordinates 1, can be tiled by ∑ . 

The case ( ) ( )6 1 6 5p q+ × + . Using the coloring invariant it follows that the 
missing cells 0 1,C C  must have the sum of the coordinates 0, 1, respectively. 
Using the symmetry of the tile set about the line y x= , we can assume that the 
x-coordinate of 0C  is less than the x-coordinate of 1C  or that the y-coordi- 
nate of 1C  is less than the y-coordinate of 0C . In the first case, divide the rec-
tangle in two sub-rectangles as in Figure 20(a). According to Theorem 3.1 the 
sub-rectangle of type ( ) ( )6 1 6 1p q+ × +  with the missing cell having the sum of 
the coordinates 0, can be tiled by ∑ . According to Theorem 3.5 the sub-rec- 
tangle of type ( ) ( )6 1 6 4p q+ × +  with the missing cell having the sum of the 
coordinates 0, can be tiled by ∑ . In the second case, divide the rectangle in two 
sub-rectangles as in Figure 20(b). According to Theorem 3.4 the sub-rectangle 
of type ( ) ( )6 5 6 5p q+ × +  with the missing cell having the sum of the coordi-
nates 1, can be tiled by ∑ . According to Theorem 3.6 the sub-rectangle of type 
( ) ( )6 2 6 5p q+ × +  with the missing cell having the sum of the coordinates 1, 
can be tiled by ∑ . 

The case ( ) ( )6 4 6 5p q+ × + . Using the coloring invariant it follows that the 
missing cells 0 1,C C  must have the sum of the coordinates 0, 1, respectively. 
Using the symmetry of the tile set about the line y x= , we can assume that the 
x-coordinate of 0C  is less then the x-coordinate of 1C  or that the 
y-coordinate of 1C  is less then the y-coordinate of 0C . In the first case, divide 
the rectangle in two sub-rectangles as in Figure 21(a). According to Theorem 
3.5 the sub-rectangle of type ( ) ( )6 1 6 4p q+ × +  with the missing cell having 
the sum of the coordinates 0, can be tiled by ∑ . According to Theorem 3.3 the 
sub rectangle of type ( ) ( )6 4 6 4p q+ × +  with the missing cell having the sum 
of the coordinates 0, can be tiled by ∑ . In the second case, divide the rectangle 
in two sub-rectangles as in Figure 21(b). According to Theorem 3.6 each  
 

 
Figure 20. A rectangle with gaps split in deficient rectangles, case  

( ) ( )6 1 6 5p q+ × + . 

 

 
Figure 21. A rectangle with gaps split in deficient rectangles, case  

( ) ( )6 4 6 5p q+ × + . 
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subrectangle is a deficient rectangle of type ( ) ( )6 2 6 5p q+ × +  with the missing 
cell having the sum of the coordinates 1, so they can be tiled by ∑ . 

5. The Case of Three Missing Cell 

In this section we prove Theorem 1.5, 3) The proof is similar to that in Section 
4. Each rectangle with gaps is divided in two sub-rectangles, one with one hole 
and one with two holes that can be tiled using the results from sections 3 and 
4. We need to consider the cases of  
( ) ( ) ( ) ( ) ( ) ( )6 1 6 3 , 6 3 6 3 , 6 3 6 5p q p q p q+ × + + × + + × +  rectangles. Due to the 
coloring argument, the sum of the coordinates of the missing cells 0 1 2, ,C C C  
are 0, 1 and 2 respectively. 

The case ( ) ( )6 1 6 3p q+ × + . We distinguish 6 sub cases, depending on the 
order of the x-coordinates of the cells iC : 

1) 0 1 2x x x< <  
2) 0 2 1x x x< <  
3) 1 0 2x x x< <  
4) 1 2 0x x x< <  
5) 2 1 0x x x< <  
6) 2 0 1x x x< <  
Splittings of the rectangle in cases 1, 2, and 3 are shown in Figure 22. Cases 4 

and 5 follows via a symmetry about the line y x=  and case 6 follows after a 
180˚ counterclockwise rotation of the rectangle. We observe that a symmetry 
about the line y x=  reverses the order of the x-coordinates and interchanges 
the congruence classes 1 and 2 modulo 3 for the sum of the coordinates of a cell. 
So case 4 is reduced to case 1 and case 5 is reduced to case 2. We also observe 
that a 180˚ counterclockwise rotation reverses the order of the x-coordinates and 
interchanges the congruence classes 0 and 2 modulo 3 for the sum of the coor-
dinates of a cell. So case 6 is reduced to case 4. 

The case ( ) ( )6 3 6 3p q+ × + . Cutting a strip of width 2 and length 6 3q +  
from the rectangle, strip which can be tiled by ∑ , reduces this case to the pre-
vious one. 
 

 
Figure 22. Splitting a rectangle with gaps, the case  
( ) ( )6 1 6 3p q+ × + . 
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The case ( ) ( )6 3 6 5p q+ × + . Cutting a strip of width 4 and length 6 3p +  
from the rectangle, strip which can be tiled by ∑ , reduces this case to the first 
one. 

6. Conclusion 

In this paper we study tilings of rectangles with gaps by the Conway-Lagarias tile 
set consisting of two ribbon right trominoes. For the class of simply connected 
regions there exists an invariant found by Conway and Lagarias that cannot be 
found by coloring [3]. We show that the gap number for rectangles with integers 
ides of length at least 2 is less than or equal to 4, and for rectangles with both 
sides greater or equal to 5 is less than or equal to 3. We also show that if we tile a 
rectangle, having the minimal number (≠0) of gaps, then, with probability 1, the 
only invariants for tiling are from coloring. As Conway-Lagarias tile set can be 
viewed as a degenerate case of more general tile sets, such as the tile set nT  of 
ribbon L n-ominoes introduced in [12] and [13], our result suggests that for rec-
tangles with both sides large and for odd n, the gap number of nT  is at most n. 
In addition, if a rectangle has the minimal number of gaps needed for a tiling to 
exist, then, with probability 1, all invariants for tiling are from coloring. This 
paper, in conjunction with [14], which studies tilings of deficient rectangles by 
the tile set 4T ; points out an interesting dichotomy between the behavior of nT , 
n even and that of nT , n odd. We show in [14] that the obstructions to tiling of 
deficient rectangles by 4T  are much more severe and we claim with high confi-
dence that this is the case for all nT , n even. Other infinite family related to 
Conway-Lagarias tile set is the family of ribbon tiles of length n introduced by 
Pak [4]. For these tile sets we believe that for rectangles with both sides large the 
gap number is bounded by n. We also believe that the behavior for these tile sets 
is independent of the parity of n and similar to what happens for nT , n odd. 
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