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Abstract 
For any graph G , G  together with sufficiently many isolated vertices is the 
competition graph of some acyclic digraph. The competition number ( )k G  of a 
graph G  is defined to be the smallest number of such isolated vertices. In general, it 
is hard to compute the competition number ( )k G  for a graph G  and chara- 
cterizing a graph by its competition number has been one of important research 
problems in the study of competition graphs. A 2-connected planar graph G  with 
minimum degree at least 3 is a pseudo-Halin graph if deleting the edges on the 
boundary of a single face 0f  yields a tree. It is a Halin graph if the vertices of 0f  
all have degree 3 in G . In this paper, we compute the competition numbers of a 
kind of pseudo-Halin graphs. 
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1. Introduction and Preliminary 

Let ( ),G V E=  be a graph in which V  is the vertex set and E  the edge set. We 
always use V  and E  to denote the vertex number and the edge number of G , 
respectively. The notion of competition graph was introduced by Cohen [1] in connection 
with a problem in ecology. Let ( ),D V A=  be a digraph in which V  is the vertex set 
and A  the set of directed arcs. The competition graph ( )C D  of D  is the undirected 
graph G  with the same vertex set as D  and with an edge ( )uv E G∈  if and only if 
there exists some vertex ( )x V D∈  such that ( ) ( ) ( ), , ,u x v x A D∈ . We say that a 
graph G  is a competition graph if there exists a digraph D  such that ( )C D G= . 

Roberts [2] observed that every graph together with sufficiently many isolated 
vertices is the competition graph of an acyclic digraph. The competition number 
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( )k G  of a graph G  is defined to be the smallest number k  such that G  together 
with k  isolated vertices added is the competition graph of an acyclic digraph. It is 
difficult to compute the competition number of a graph in general as Opsut [3] has 
shown that the computation of the competition number of a graph is an NP-hard 
problem. But it has been one of important research problems in the study of competition 
graphs to characterize a graph by its competition number. Recently, many papers 
related to graphs’ competition numbers appear. Kim et al. [4] studied the competition 
numbers of connected graphs with exactly one or two triangles. Sano [5] studied the 
competition numbers of regular polyhedra. Kim et al. [6] studied the competition 
numbers of Johnson graphs. Park and Sano [7] [8] studied the competition numbers of 
some kind of hamming graphs. Kim et al. [9] studied the competition numbers of the 
complement of a cycle. Furthermore, there are some papers (see [10] [11] [12] [13] [14]) 
focused on the competition numbers of the complete multipartite graphs, and some 
papers (see [15]-[21]) concentrated on the relationship between the competition 
number and the number of holes of a graph. A cycle of length at least 4 of a graph as an 
induced subgraph is called a hole of the graph. We use rI  to denote the graph 
consisting only of r  isolated vertices, and rG I∪  the disjoint union of G  and rI . 
The induced subgraph [ ]G S  of G  is a subgraph of G  whose vertex set is S  and 
whose edge set is the set of those edges of G  that have both ends in S . 

All graphs considered in this paper are simple and connected. For a vertex v  in a 
graph G, let the open neighborhood of v  be denoted by ( ) { }is adjacent toGN v u u v= . 
For any set S  of vertices in G , we define the neighborhood of S  in G  to be the 
set of all vertices adjacent to vertices in S , this set is denoted by ( )GN S . An 
in-neighbor of a vertex v  in digraph D  is a vertex u  such that ( ) ( ),u v A D∈ ; an 
out-neighbor of a vertex v  is a vertex w  such that ( ) ( ),v w A D∈ . We denote the 
sets of in-neighbors and out-neighbors of v  in D  by ( )DN v−  and ( )DN v+ , re- 
spectively. 

A subset S  of the vertex set of a graph G  is called a clique of G  if [ ]G S  is a 
complete graph. For a clique S  of a graph G  and an edge e  of G , we say e  is 
covered by S  if both of the endpoints of e  are contained in S . An edge clique 
cover of a graph G  is a family of cliques such that each edge of G  is covered by some 
clique in the family. The edge clique cover number ( )e Gθ  of a graph G  is the 
minimum size of an edge clique cover of G . A vertex clique cover of a graph G  is a 
family of cliques such that each vertex of G  is contained in some clique in the family. 
The vertex clique cover number ( )v Gθ  of a graph G  is the minimum size of a vertex 
clique cover of G . 

A generalized Halin graph G T C= ∪  is a plane graph consisting of a plane 
embedding of a tree T  and a cycle C  connecting the leaves (vertices of degree 1) of 
T  such that C  is the boundary of the exterior face. The tree T  and the cycle C  
are called the characteristic tree and the adjoint cycle of G , respectively. For each 

( )v V C∈ , if ( ) ( )T TN v N x∩ =∅  for any vertex ( )Cx N v∈ , then we called v  a 
simple leaf of T , otherwise, a compound leaf of T . Denote all simple leaves of T  by 

( )1V C  and all compound leaves of T  by ( )2V C , respectively. It is obvious that 
( ) ( ) ( )1 2V C V C V C= ∪ , and ( ) ( )1 2V C V C∩ =∅ . Let ( )( )1 1TV N V C′= ,  
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( )( )2 2TV N V C′ = . A generalized Halin graph G  is a Halin graph when each interior 
vertex of G  has degree at least 3. 

A 2-connected planar graph G  with minimum degree at least 3 is a pseudo-Halin 
graph if deleting the edges on the boundary of a single face 0f  yields a tree. It is a 
Halin graph if the vertices of 0f  all have degree 3 in G . The face 0f  is the exterior 
face; the others are interior faces. Vertices of 0f  are exterior vertices; the others are 
interior vertices. Vertices of 0f  with degree 3 in G  are regular vertices; the others 
are irregular vertices. Let ( )0R f  and ( )0I f  denote the sets of regular and irregular 
vertices in 0f , respectively. 

The main theme of this paper is to study the competition numbers of a kind of 
pseudo-Halin graphs with ( )0 1I f = , and gets the exact value or the upper bound of 
the competition number of this kind of pseudo-Halin graphs. 

2. Lemmas  

We first introduce two useful Lemmas. 
Lemma 1 (Harary et al. [22]). Let ( ),D V A=  be a digraph. Then D  is acyclic if 

and only if there exists an ordering of vertices, [ ]1 2, , , nv v vσ =  , such that one of the 
following two conditions holds:  

1) For all { }, 1, 2, ,i j n∈  , ( ),i jv v A∈  implies that i j< ;  
2) For all { }, 1, 2, ,i j n∈  , ( ),i jv v A∈  implies that i j> .  
By this lemma, if D  is an acyclic digraph, we can find a vertex labelling 

{ }: 1, 2, ,V Vσ →   so that whenever ( ),x y A∈ , ( ) ( )<y xσ σ . We call σ  an 
acyclic labelling of D . Conversely, if D  is a digraph with an acyclic labelling, then 
D  is acyclic. 

Lemma 2 (Kim and Roberts [4]). For a tree T  and a vertex v  of T , there is an 
acyclic digraph D  so that { }0T v∪  is the competition graph of D  for 0v  not in 
T  and so that v  has only outgoing arcs in D .  

Kim and Roberts [4] proved Lemma 2 by the following algorithm. 
Let 1T T= , ( ) ( )1V D V T= , and ( )1A D = ∅ . Choose a vertex 1v  of degree 1 from 

1T . If 1v  is adjacent to 1v  in 1T , let 2 1T T v= − , ( ) ( ) { }2 1 0V D V D v= ∪  for some 
vertex 0v  not in T , and ( ) ( ) ( ){ }1

2 1 0 0, , ,A D v v v v= . Having defined iT  and iD , 
choose a vertex iv  of degree 1 from iT . If iv  is adjacent to iv  in iT , then let 

1i i iT T v+ = − , ( ) ( )1i iV D V D+ = , and ( ) ( ) ( ) ( ){ }1 1 1, , ,i
i i i i iA D A D v v v v+ − −= ∪ . Repeat 

this last step until nD  has been defined. Let ( ) ( )( ),n nD V D A D= . In the procedure, 
we may avoid selecting v  until we select all other vertices since there are at least two 
vertices of degree 1 in a tree with more than one vertex. 

In fact, this algorithm provides an acyclic labelling [ ]0 1 2, , , , nv v v vσ =   of D  such 
that 1n

nv v −= , ( )1n nv v E T− ∈ , and 1nv −  and nv  have only outgoing arcs in D , 
where ( )V T n= . 

Opsut [3] gave the following two lower bounds for the competition number of a 
graph. 

Theorem 1 (Opsut [3]). For any graph G , ( ) ( ) ( ) 2ek G G V Gθ≥ − + .  
Theorem 2 (Opsut [3]). For any graph G , ( ) ( )( ) ( ){ }min v Gk G N v v V Gθ≥ ∈ .  
Lemma 3. For any generalized Halin graph G T C= ∪ ,  
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( ) ( )
( ) ( )

1

1 1

2, ;
1, .

V C
k G

V C V C
 = ∅≤  + ≠ ∅

 

Proof. Let G T C= ∪  be a generalized Halin graph, where T  and C  are the 
characteristic tree and the adjoint cycle of G , respectively. Suppose that along cycle C  
by clockwise order we can partition ( )2V C  (if ( )2V C ≠ ∅ ) into 1k ≥  subsets 

( )2
iV C  such that ( ) ( )2 1 2

k i
iV C V C== ∪  and the vertices in each ( )2

iV C  are con- 
secutive on C , where 1 i k≤ ≤ . Let iu  be the common neighbor of the vertices in 

( )2
iV C , where 1 i k≤ ≤ . We assume that the vertices in ( )2

iV C  by clockwise order 
are 1 2, , ,i i i

i
v v vα , where 2iα ≥  and 1 i k≤ ≤ . Denote all vertices on C  between i

i
vα  

and 1
1
iv +  by ( )1

iV C , where 1 i k≤ ≤  and 1 1
1 1
kv v+ = . We assume that the vertices in 

( )1
iV C  (if ( )1

iV C ≠ ∅ ) by clockwise order are 1 2, , ,i i i
i

x x xβ , where 1iβ ≥  and 
{ }1,2, ,i k∈  . Note that ( ) ( )1 1 1

k i
iV C V C== ∪ , and if ( )1V C ≠ ∅  then we always let 

( )1
kV C ≠ ∅ . If ( )2V C = ∅ , then let ( ) ( )1

1V C V C=  and arbitrarily select a vertex in 
( )V C  as 1

1x . 
By Lemma 1 and the algorithm in the proof of Lemma 2, we can construct an acyclic 

digraph D  so that { }0T v∪  is the competition graph of D  for 0v  not in T , and 
get an acyclic labelling  

{ } { }0: 1, 2, , 1V v Vσ ∪ → +  

of D  so that  

( )0 1;vσ =  

( ) ( )
1

1
1 , where 1 and 1 ;

i
i
j k k i

k
v j i k jσ α β α

−

=

= + + + ≤ ≤ ≤ ≤∑  

( )
1

1 1
1 , where 1 and 1 .

i i
i
j k k i

k k
x j i k jσ α β β

−

= =

= + + + ≤ ≤ ≤ ≤∑ ∑  

Note that, if ( )2V C = ∅ , then let 1 0α = , if 1
iV = ∅ , then let 0iβ = , where  

{ }1,2, ,i k∈  , and we always have ( )0
1 0k kk α β
=

+ =∑  and 0
1 0kk β
=

=∑ . Label the  

other vertices of T  arbitrarily. 
Case 1. ( )1V C = ∅ . 
Let 1D  be a digraph whose vertex set is  

( ) { }0 1,V G v v∪  

and whose arc set is  

( ) ( ){ } ( ){ }
( ) ( ){ } ( ){ }

1
1

2 1 1
1 2 1

1
1 1 1 1

1

, ,

         , , , , ,

k ki
i i i i
j j i

i j i

k
k i i

k i
i

A D v v v v

v v v v u v

α

α

α α

−
+

− −
= = =

−
=

∪ ∪

∪ −

 



 

where 1
0 0v v= , 1

0 1
i i

i
v vα

−

−
=  for each { }2,3, ,i k∈  , and 0 1,v v  are new added vertices. 

Case 2. ( )2V C = ∅ . 
Let 2D  be a digraph whose vertex set is  

( ) { } { }1 2 1
0 1 2 1

, , ,V G v y y yβ∪ ∪   
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and whose arc set is  

( ) ( ) ( ){ }
1

1 1 1 1
1

1
, , , ,j j j j

j
A D x y x y

β

+
=

∪


 

where 
1

1 1
1 1x xβ + = , and all 1

jy  ( )11 j β≤ ≤  are new added vertices. 
Case 3. ( )1V C ≠ ∅  and ( )2V C ≠ ∅ . 
Let 3D  be a digraph whose vertex set is  

( ) { } { }0 1 2
1 , 0

, , ,i i i
i

i k i

V G v y y yβ
β≤ ≤ >

∪ ∪ 



 

and whose arc set is  

( ) ( ){ } ( ){ } ( ){ }

( ) ( ){ } ( ){ }

1
2 1 1 1 1

1 2 1 , 0 1 , 0

1 1
1 , 0 1 1

, , ,

, , , , ,

k i
i i i i i i
j j i i

i j i k i ki i

ki
i i i i i i
j j j j i

i k j ii

A D v v x v v v

x y x y u v

α

α α
β β

β

α
β

+
− − −

= = ≤ ≤ > ≤ ≤ =

+ −
≤ ≤ > = =

∪ ∪ ∪

∪ −

  

  

 

where 1
0 0v v=  and 1

0 1
i i

i
v xβ

−

−
=  (if 1 0iβ − > ) or 1

1
i

i
vα

−

−
 (if 1 0iβ − = ) for any  

{ }2,3, ,i k∈  , 1
1 1k

kx vβ + =  and 1
1 1

i i
i

x vβ
+

+ =  for any { }1,2, , 1i k∈ −  such that 
0iβ > . All ( )  1 ,1i

j iy i k j β≤ ≤ ≤ ≤  are new added vertices. 
We note that 1D , 2D  and 3D  are acyclic. This is because every arc added here 

goes either from a big label vertex to a small label vertex or from a vertex in ( )V G  to 
a new added vertex not in ( ) { }0V G v∪ . It is not difficult to check that  

( ) { }1 0 1, ,C D G v v= ∪  

( ) ( ) { } { }1

1 2 1
2 0 1 2, , , andC D V G v y y yβ= ∪ ∪   

( ) { } { }3 0 1 2
1 , 0

, , , .i i i
i

i k i

C D G v y y yβ
β≤ ≤ >

= ∪ ∪ 



 

And we know that ( ) { }1

1 2 1
1 1 2, , ,V C x x xβ=   if ( )2V C = ∅ , and  

( ) { }1 1 2
1 , 0

, , ,i i i
i

i k i

V C x x xβ
β≤ ≤ >

= 



 if ( )1V C ≠ ∅  and ( )2V C ≠ ∅ . So the result follows. 


 
Lemma 4. For any not 4K  generalized Halin graph G T C= ∪ ,  

( ) ( ) ( )1 1.eV C G V Gθ= − +  

Proof. Let G T C= ∪  be a not 4K  generalized Halin graph, where T  and C  
are the characteristic tree and the adjoint cycle of G , respectively. Since  

( ) ( )\G V G V C    is a tree, then ( ) ( )( ) ( ) ( )\ 1e G V G V C V G V Cθ = − −   . Note that 
( ) 2G V C V ′∪    just includes all triangles in G  and the edges in C , so 

( )( ) ( )2e G V C V V Cθ ′∪ =   . It is easy to check that ( )( ) ( )1 1 1e G V C V V Cθ ′∪ =   . 
Furthermore, each pair of graphs ( ) ( )\G V G V C   , ( ) 2G V C V ′∪    and  

( )1 1G V C V ′∪    has not any common edges. So we have  

( ) ( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )
( ) ( )

2 1 1

1

1

\

1

| 1

e e e eG G V G V C G V C V G V C V

V G V C V C V C

V G V C

θ θ θ θ′ ′= + ∪ + ∪          

= − − + +

= + −
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or  

( ) ( ) ( )1 1.eV C G V Gθ= − +
                        

  

3. Pseudo-Halin Graph 

Now we consider a pseudo-Halin graph G  with the exterior face 0f  and ( ) { }0I f x= . 
Let u  and v  be the neighbors of x  on the boundary of 0f . Without lose of 
generality, we may always assume that u  is on the left of x  and v  on the right of 
x . Let { },G G xu xv uv′ = − + . Note that G′  is a generalized Halin graph since 

( ) 2Gd x′ ≥  is accepted. See Figure 1. Let G T C′ ′= ∪ , where T  and C′  are the 
characteristic tree and the adjoint cycle of G′ , respectively. Then it is easy to see that 
C′  is got from the boundary of 0f  by deleting the edges xu  and xv , and adding the 
edge uv . So we have ( ) ( )0V C R f′ = . Let b x≠  be another neighbor of u  on cycle 
C′ . The characteristic tree T  of G′  is just the tree got from G  by deleting the edges 
on the boundary of the face 0f . So T  may also be called the characteristic tree of G . 
Let u′  be the neighbor of u  in T  and v′  the neighbor of v  in T , respectively. 

We construct a graph G′′  from G′  by replacing the edge uv  by a path ux v′ , 
and joining x  with x′ . It is not difficult to see that G′′  is a Halin graph. Since every 
Halin graph contains a triangle, and x′  is not a vertex of any triangle in G′′ , then G′  
also contains a triangle. Therefore ( )2V C′ ≠ ∅ . So we just need to consider the 
following cases. 

Theorem 3. Let G  be a pseudo-Halin graph with ( ) { }0I f x= , and C′  the 
adjoint cycle of graph { },G G xu xv uv′ = − + . If ( )1V C′ = ∅ , then ( ) 2k G = .  
Proof. Suppose that G is a pseudo-Halin graph with ( ) { }0I f x=  and ( )1V C′ = ∅ , 
where C′  is the adjoint cycle of graph { },G G xu xv uv′ = − + . Denote and labelling 
the vertices of G′  in a similar way as used in Lemma 3. By Lemma 3, ( ) 2k G′ ≤ . Let 

1
1v v=  and by the similar way used in the proof of Lemma 3, there is a digraph D′  

such that  

( ) { }0 1, ,C D G v v′ ′= ∪  

and  

( ) ( ) ( ) ( ) ( ){ } ( )0 0 1 1, , , , , , , , ,v v v v u v v v u b A D′ ′⊂  

but  

( ) ( ), ,u b A D′ ′∉  

 

 
Figure 1. G  and G′ . 
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where 0v  and 1v  are two isolated vertices not in G′ . Note that ( ) { }DN b u−
′ = . Let  

( ) ( )V D V D′=  

and  

( ) ( ) ( ) ( ){ } ( ){ }1 1, , , \ , .A D A D x b x v u v′= ∪  

See Figure 2. Note that D  is acyclic since every arc added here goes from a big 
label vertex to a small label vertex. It is easy to see that ( ) { }0 1, .C D G v v= ∪  So we 
have ( ) 2k G ≤ . On the other hand, since for each vertex ( )v V G∈ , ( ) 3Gd v ≥ , and 
note that the maximal clique in G  is a triangle, so we have ( )( ) 2v GN vθ ≥ . By 
Theorem 2, ( ) ( )( ) ( ){ }min 2v Gk G N v v V Gθ≥ ∈ ≥ . Therefore ( ) 2k G = . 


 

Lemma 5. Let G  be a pseudo-Halin graph with ( ) { }0I f x= , and C′  the adjoint 
cycle of graph { },G G xu xv uv′ = − + . If ( )1V C′ ≠ ∅ , then we have ( ) ( )1 2k G V C′≤ + .  

Proof. Suppose that G  is a pseudo-Halin graph with ( ) { }0I f x=  and ( )1V C′ ≠ ∅ , 
where C′  is the adjoint cycle of graph { },G G xu xv uv′ = − + . Denote and labelling 
the vertices of G′  in a similar way as used in Lemma 3. By Lemma 3,  
( ) ( )1 1k G V C′ ′≤ + , and there is a digraph D′  such that ( ) ( )1 1V CC D G I ′ +

′ ′= ∪ , where 

( )1 1V CI ′ +  are ( )1 1V C′ +  isolated vertices not in G′ . By the similar way used in the 
proof of Lemma 3, there exists a vertex ( )1 1V Cy I ′ +∈  or ( )y V C′∈  such that  

( ),uy vy A D′∈ . Let  

( ) ( ) { }V D V D w′= ∪  

and  

( ) ( ) ( ) ( ) ( ){ } ( ){ }, , , , , \ , ,A D A D x w u w x y u y′= ∪  

 

 
Figure 2. G  and D  ( )1V = ∅ . 
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where w  is a new added vertex to D′ . Note that D  is acyclic since every arc added 
here goes from a big label vertex to a small label vertex or to a new added vertex. It is  
easy to see that ( ) ( ) { }11V CC D G I w′ +

= ∪ ∪ . So we have ( ) ( )1 2k G V C′≤ + . 


 

Lemma 6. Let G  be a pseudo-Halin graph with ( ) { }0I f x= , and C′  the adjoint 
cycle of graph { },G G xu xv uv′ = − + .  

1) If ( ),xu xv E G′ ′∉ , then ( ) ( ) 1e eG Gθ θ′ = − ,  

2) If ( ),xu xv E G′ ′∈ , then ( )
( ) ( )
( ) ( )
( )

1

2

3, , ;
1, , ;
2, otherwise,

e

e e

e

G u v V C
G G u v V C

G

θ
θ θ

θ

′+ ∈
′ ′= + ∈
 +

  

3) If ( )xp E G′∈ , but ( )xq E G′∉ , then ( ) ( ) ( )
( ) ( )

1

2

1, ;
, ,

e
e

e

G p V C
G

G p V C
θ

θ
θ

′ + ∈′ =  ′∈
 where  

{ } { }, ,p q u v= .  
Proof. 1) ( ),xu xv E G′ ′∉ . 

Obviously, { },x u  and { },x v  are two maximal cliques of G . Since { },u v  is a 
maximal clique of G′ , then ( ) ( ) 1e eG Gθ θ′ = − . 

2) ( ),xu xv E G′ ′∈ . 
It is easy to see that { }, ,x u u′  and { }, ,x v v′  are two maximal cliques of G . Note 

that uv  is a maximal clique of G′ . If ( )1,u v V C′∈ , then { },x u′ , { },u u′ , { },x v′  and 
{ },v v′  are all maximal cliques of graph G′ . So ( ) ( ) 3e eG Gθ θ′ = + ; If ( )2,u v V C′∈ , 
then { },x u′  and { },x v′  are two maximal cliques of graph G′ , but { },u u′  and 
{ },v v′  not. Hence ( ) ( ) 1e eG Gθ θ′ = + ; Otherwise, say ( )1u V C′∈  and ( )2v V C′∈ . 
Then { },x u′ , { },u u′  and { },x v′  are all maximal cliques of graph G′ , but { },v v′  
not. Therefore ( ) ( ) 2e eG Gθ θ′ = + . 

3) ( )xu E G′∈  but ( )xv E G′∉  (or ( )xv E G′∈  but ( )xu E G′∉ ). 
Without lose of generality, we just need to consider the case xu E′∈  but xv E′∉ . 

By the proof of Case (1), ( ) ( )e eG xu uv Gθ θ− + = . If ( )1v V C′∈ , then { },x v′  and 
{ },v v′  are all maximal cliques of graph G′ . If ( )2v V C′∈ , then { },x v′  is a maximal 
clique of graph G′ , but { },v v′  not. So the result follows.    

For a pseudo-Halin graph G , suppose that 0f  be the exterior face of G  and 
( ) { }0I f x= . Note that G′  can not be 4K , so by Lemmas 4 we have  
( ) ( ) ( )1 1eV C G V Gθ′ ′= − + , by Lemma 5 we have  
( ) ( ) ( ) ( )1 2 3ek G V C G V Gθ′ ′≤ + ≤ − + . On the other hand, by Theorem 1 we have 
( ) ( ) ( ) 2ek G G V Gθ≥ − + . So by lemmas 6, we have the following result. 
Theorem 4. Let G  be a pseudo-Halin graph with ( ) { }0I f x=  and ( )1V C′ ≠ ∅ , 

where C′  is the adjoint cycle of graph { },G G xu xv uv′ = − + .  
1) If ,xu xv E′ ′∉ , then ( ) ( ) ( ) 2ek G G V Gθ= − + ,  
2) If ,xu xv E′ ′∈ , then  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1

2

6, , ;

2 4, , ;

5, otherwise,

e

e e

e

G V G u v V C

G V G k G G V G u v V C

G V G

θ

θ θ

θ

 ′− + ∈
 ′− + ≤ ≤ − + ∈
 − +

 

3) If xp E′∈ , and xq E′∉ , then  
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

2

4, ;
2

3, ,
e

e
e

G V G p V C
G V G k G

G V G p V C

θ
θ

θ

 ′− + ∈− + ≤ ≤  ′− + ∈
 

where { } { }, ,p q u v= .  

4. Concluding Remarks 

In this paper, we study the competition numbers of a kind of pseudo-Halin graphs with 
just one irregular vertex. 

For a pseudo-Halin graph G  with the exterior face 0f  and ( )0 1I f = , we show 
that if all leaves of the characteristic tree of G  are compound leaves, then ( ) 2k G = , 
otherwise, ( ) ( ) ( ) ( ) ( )2 6e eG V G k G G V Gθ θ− + ≤ ≤ − + . Even we proved that  
( ) ( ) ( ) 2ek G G V Gθ= − +  for some cases, but we can not provide the accurate value of 

the competition number of G  for other cases. So it would be valuable to get the 
accurate value of the competition number of the pseudo-Halin graph with just one 
irregular vertex, and it may be interesting to study the competition numbers of general 
pseudo-Halin graphs. 

For a digraph ( ),D V A= , if we partition V  into k  types, then we may construct 
a undirected graph ( ) ( ),kC D V E=  of D  as follows  

1) uv E∈  if and only if there exists some vertex x V∈  such that ( ) ( ), , ,u x v x A∈  
and ,u v  are of same type, or  

2) uv E∈  if and only if there exists some vertex x V∈  such that ( ) ( ), , ,u x v x A∈  
and ,u v  are of different types.  

It is easy to see that ( ) ( )1C D C D=  for a given digraph D , and we note that 
multitype graphs can be used to study the multi-species in ecology and have been 
deeply studied, see [23] [24]. So these generalizations of competition graphs may be 
more realistic and more interesting. 
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