On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

Ramy Shaheen
Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria
Email: shaheenramy2010@hotmail.com

Received 21 March 2015; accepted 21 July 2015; published 24 July 2015
Copyright © 2015 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

Let D be a finite simple directed graph with vertex set $V(D)$ and arc set $A(D)$. A function $f: V(D) \rightarrow\{-1,1\}$ is called a signed dominating function (SDF) if $f\left(N_{D}^{-}[v]\right) \geq 1$ for each vertex $v \in V$. The weight $\omega(f)$ of f is defined by $\sum_{v \in V} f(v)$. The signed domination number of a digraph D is $\gamma_{s}(D)=\min \{\omega(f) \mid f$ is an SDF of $D\}$. Let $C_{m} \times C_{n}$ denotes the cartesian product of directed cycles of length m and n. In this paper, we determine the exact values of $\gamma_{s}\left(C_{m} \times C_{n}\right)$ for $m=8,9,10$ and arbitrary n. Also, we give the exact value of $\gamma_{s}\left(C_{m} \times C_{n}\right)$ when $m, n \equiv 0(\bmod 3)$ and bounds for otherwise.

Keywords

Directed Graph, Directed Cycle, Cartesian Product, Signed Dominating Function, Signed Domination Number

1. Introduction

Throughout this paper, a digraph $D(V, A)$ always means a finite directed graph without loops and multiple arcs, where $V=V(D)$ is the vertex set and $A=A(D)$ is the arc set. If $u v$ is an arc of D, then say that v is an out-neighbor of u and u is an in-neighbor of v. For a vertex $v \in V(D)$, let $N_{D}^{+}(v)$ and $N_{D}^{-}(v)$ denote the set of out-neighbors and in-neighbors of v, respectively. We write $d_{D}^{+}(v)=\left|N_{D}^{+}(v)\right|$ and $d_{D}^{-}(v)=\left|N_{D}^{-}(v)\right|$ for the out-degree and in-degree of v in D, respectively (shortly $d^{+}(v), d^{-}(v)$). A digraph D is r-regular if $d_{D}^{+}(v)=d_{D}^{-}(v)=r$ for any vertex $v \in D$. Let $N_{D}^{+}[v]=N_{D}^{+}(v) \bigcup\{v\}$ and $N_{D}^{-}[v]=N_{D}^{-}(v) \cup\{v\}$. The maximum out-degree and in-degree of D are denoted by $\Delta^{+}(D)$ and $\Delta^{-}(D)$, respectively (shortly Δ^{+}, Δ^{-}). The minimum out-degree and in-degree of D are denoted by $\delta^{+}(D)$ and $\delta^{-}(D)$, respectively (shortly δ^{+}, δ^{-}).

A signed dominating function of D is defined in [1] as function $f: V \rightarrow\{-1,1\}$ such that $f\left(N_{D}^{-}[v]\right) \geq 1$ for every vertex $v \in V$. The signed domination number of a directed graph D is
$\gamma_{s}(D)=\min \{\omega(f) \mid f$ is an SDF of $D\}$. Also, a signed k-dominating function (SKDF) of D is a function $f: V \rightarrow\{-1,1\}$ such that $f\left(N_{D}^{-}[v]\right) \geq k$ for every vertex $v \in V$. The k-signed domination number of a digraph D is $\gamma_{k s}(D)=\min \{\omega(f) \mid f$ is an SKDF of $D\}$. Consult [2] for the notation and terminology which are not defined here.

The Cartesian product $D_{1} \times D_{2}$ of two digraphs D_{1} and D_{2} is the digraph with vertex set $V\left(D_{1} \times D_{2}\right)$ $=V\left(D_{1}\right) \times V\left(D_{2}\right)$ and $\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right) \in A\left(D_{1} \times D_{2}\right)$ if and only if either $u_{1}=v_{1}$ and $\left(u_{2}, v_{2}\right) \in A\left(D_{2}\right)$ or $u_{2}=v_{2}$ and $\left(u_{1}, v_{1}\right) \in A\left(D_{1}\right)$.

In the past few years, several types of domination problems in graphs had been studied [3]-[7], most of those belonging to the vertex domination. In 1995, Dunbar et al. [3], had introduced the concept of signed domination number of an undirected graph. Haas and Wexler in [1], established a sharp lower bound on the signed domination number of a general graph with a given minimum and maximum degree and also of some simple grid graph. Zelinka [8] initiated the study of the signed domination numbers of digraphs. He studied the signed domination number of digraphs for which the in-degrees did not exceed 1, as well as for acyclic tournaments and the circulant tournaments. Karami et al. [9] established lower and upper bounds for the signed domination number of digraphs. Atapour et al. [10] presented some sharp lower bounds on the signed k-domination number of digraphs. Shaheen and Salim in [11], were studied the signed domination number of two directed cycles $C_{m} \times C_{n}$ when m $=3,4,5,6,7$ and arbitrary n. In this paper, we study the Cartesian product of two directed cycles C_{m} and C_{n} for $m n \geq 8 n$. We mainly determine the exact values of $\gamma_{s}\left(C_{8} \times C_{n}\right), \gamma_{s}\left(C_{9} \times C_{n}\right), \gamma_{s}\left(C_{10} \times C_{n}\right)$ and for some values of m and n. Some previous results:

Theorem 1.1 (Zelinka [8]). Let D be a directed cycle or path with n vertices. Then $\gamma_{s}(D)=n$.
Lemma 1.2 (Zelinka [8]). Let D be a directed graph with n vertices. Then $\gamma_{s}(D) \equiv n(\bmod 2)$.
Corollary 1.3 (Karami et al. [9]). Let D be a directed of order n in which $d^{+}(v)=d^{-}(v)=k$ for each $v \in V$, where k is a nonnegative integer. Then $\gamma_{s}(D) \geq \frac{n}{1+k}$.

In [11], the following results are proved.
Theorem 1.4 [11]:

$$
\begin{aligned}
& \gamma_{s}\left(C_{3} \times C_{n}\right)=n: n \equiv 0(\bmod 3), \text { otherwise } \quad \gamma_{s}\left(C_{3} \times C_{n}\right)=n+2 . \quad \gamma_{s}\left(C_{4} \times C_{n}\right)=2 n . \\
& \gamma_{s}\left(C_{5} \times C_{n}\right)=2 n: n \equiv 0(\bmod 10), \quad \gamma_{s}\left(C_{5} \times C_{n}\right)=2 n+1: n \equiv 3,5,7(\bmod 10), \\
& \gamma_{s}\left(C_{5} \times C_{n}\right)=2 n+2: n \equiv 2,4,6,8(\bmod 10), \quad \gamma_{s}\left(C_{5} \times C_{n}\right)=2 n+3: n \equiv 1,9(\bmod 10) . \\
& \gamma_{s}\left(C_{6} \times C_{n}\right)=2 n: n \equiv 0(\bmod 3), \text { otherwise } \quad \gamma_{s}\left(C_{6} \times C_{n}\right)=2 n+4 . \quad \gamma_{s}\left(C_{7} \times C_{n}\right)=3 n .
\end{aligned}
$$

2. Main Results

In this section we calculate the signed domination number of the Cartesian product of two directed cycles C_{m} and C_{n} for $m=8,9,10$ and $m \equiv 0(\bmod 3)$ and arbitrary n.

The vertices of a directed cycle C_{n} are always denoted by the integers $\{1,2, \cdots, n\}$ considered modulo n. The i th row of $V\left(C_{m} \times C_{n}\right)$ is $R_{i}=\{(i, j): j=1,2, \cdots, n\}$ and the j th column $K_{j}=\{(i, j): i=1,2, \cdots, m\}$. For any vertex $(i, j) \in V\left(C_{m} \times C_{n}\right)$, always we have the indices i and j are reduced modulo m and n, respectively.

Let us introduce a definition. Suppose that f is a signed dominating function for $C_{m} \times C_{n}$, and assume that $1 \leq j, h \leq n$. We say that the h th column of $f\left(C_{m} \times C_{n}\right)$ is a t-shift of the j th column if $f(i, j)=f(i+t, h)$ for each vertex $(i, j) \in K_{j}$, where the indices $i, t, i+t$ are reduced modulo m and j, h are reduced modulo n.

Remark 2.1: Let f is a $\gamma_{s}\left(C_{m} \times C_{n}\right)$-function. Then $f[(r, s)] \geq 1$ for each $1 \leq r \leq m$ and each $1 \leq s \leq n$. Since $C_{m} \times C_{n}$ is 2-regular, it follows from $f((i, j))=-1$ that $f((i \pm 1, j))=f((i, j \pm 1))=1$ because
$f[(i, j)] \geq 1, \quad f((i+1, j-1))=1$ because $f[(i+1, j)] \geq 1$ and $f((i-1, j+1))=1$ because
$f[(i, j+1)] \geq 1$. On the other hand, if $f((i \pm 1, j))=f((i, j \pm 1))=1, \quad f((i+1, j-1))=1$ and $f((i-1, j+1))=1$, then we must have $f((i, j))=-1$ since f is a minimum signed dominating function.
Remark 2.2. Since the case $f((i, j))=f((i+1, j))=-1$ is not possible, we get $s_{j} \geq 0$. Furthermore, s_{j} is odd if m is odd and even when m is even.

Let f be a signed dominating function for $C_{m} \times C_{n}$, then we denote $f\left(K_{j}\right)=\sum_{i=1}^{m} f((i, j))$ of the weight of a column K_{j} and put $s_{j}=f\left(K_{j}\right)$. The sequence $\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ is called a signed dominating sequence corresponding to f. We define

$$
X_{i}=\left|\left\{j: s_{j}=i\right\}\right|, i=0,1, \cdots, m .
$$

Then we have

$$
\begin{gathered}
X_{0}+X_{1}+\cdots+X_{m}=n . \\
\omega(f)=X_{1}+2 X_{2}+\cdots+m X_{m} .
\end{gathered}
$$

For the remainder of this section, let f be a signed domination function of $C_{m} \times C_{n}$ with signed dominating sequence $\left(s_{1}, \cdots, s_{n}\right)$. We need the following Lemma:

Lemma 2.3. If $s_{j}=k$ then $s_{j-1}, s_{j+1} \geq m-2 k$. Furthermore, $s_{j-1}+s_{j} \geq m-k$ and $s_{j}+s_{j+1} \geq m-k$.
Proof. Let $s_{j}=k$, then there are $(m-k) / 2$ of vertices in K_{j} which get value -1 . By Remark 2.1, K_{j+1} include at least $2(m-k) / 2$ of vertices which get the value 1 and at most $m-(m-k)=k$ of vertices which has value -1 . Hence, $s_{j+1} \geq m-2 k$. Furthermore, $s_{j}+s_{j+1} \geq m-k$. By the same argument, we get $s_{j-1} \geq m-2 k$ and $s_{j-1}+s_{j} \geq m-k$. \square

Theorem 2.4.

$$
\begin{aligned}
& \gamma_{s}\left(C_{8} \times C_{n}\right)=\left\{\begin{array}{l}
3 n \quad: n \equiv 0(\bmod 16), \\
3 n+1: n \equiv 3,13(\bmod 16), \\
3 n+2: n \equiv 6,10(\bmod 16), \\
3 n+3: n \equiv 5,7,9,11(\bmod 16),
\end{array}\right. \\
& 3 n+2 \leq \gamma_{s}\left(C_{8} \times C_{n}\right) \leq 3 n+4: n \equiv 2,4,8,12,14(\bmod 16), \\
& 3 n+3 \leq \gamma_{s}\left(C_{8} \times C_{n}\right) \leq 3 n+5: n \equiv 1,15(\bmod 16),
\end{aligned}
$$

Proof. We define a signed dominating function f as follows:
$f((i, 2 j-1))=f((i+2,2 j-1))=f((i+5,2 j-1))=-1$ for $1 \leq j \leq\lceil n / 2\rceil$ and $i \equiv(7 j-6)(\bmod 8)$,
$f((i, 2 j))=f((i+3,2 j))=-1$ for $1 \leq j \leq\lfloor n / 2\rfloor$ and $i \equiv(7 j-3)(\bmod 8)$, and
$f((i, j))=1$ otherwise. Also we define $f_{n}((i, n))=1$ for $i=1, \cdots, 8$.
By the definition of f, we have $s_{j}=2$ for j is odd and $s_{j}=4$ for j is even. Notice, f is a SDF for $C_{8} \times C_{n}$ when $n \equiv 0(\bmod 16)$. Therefore, there is a problem with the vertices of K_{1} when $n \equiv 1, \cdots, 15(\bmod 16)$.

Now, let us define the following functions:

$$
\begin{aligned}
& f_{1}((i, j))=\left\{\begin{array}{ll}
f((i, j)) & \text { if } j \neq n, \\
+1 & \text { if } i=1,2,3,4,5,6,7,8, j=n,
\end{array}, \quad f_{2}((i, j))= \begin{cases}f((i, j)) & \text { if } j \neq n, \\
-1 & \text { if } i=5,8, j=n, \\
+1 & \text { if } i=1,2,3,4,6,7, j=n,\end{cases} \right. \\
& f_{3}((i, j))=\left\{\begin{array}{ll}
f((i, j)) & \text { if } j \neq n, \\
-1 & \text { if } i=5, j=n, \\
+1 & \text { if } i=1,2,3,4,6,7,8, j=n,
\end{array}, \quad f_{4}((i, j))= \begin{cases}f((i, j)) & \text { if } j \neq n, \\
-1 & \text { if } i=8, j=n, \\
+1 & \text { if } i=1,2,3,4,5,6,7, j=n,\end{cases} \right.
\end{aligned}
$$

We note:
f_{1} is a SDF of $C_{8} \times C_{n}$ when $n \equiv 1,2,4,8,12,14,15(\bmod 16)$.
f_{2} is a SDF of $C_{8} \times C_{n}$ when $n \equiv 3,13(\bmod 16)$.
f_{3} is a SDF of $C_{8} \times C_{n}$ when $n \equiv 6,9,11(\bmod 16)$. f_{4} is a SDF of $C_{8} \times C_{n}$ when $n \equiv 5,7,10(\bmod 16)$.
Hence,

$$
\begin{align*}
& \gamma_{s}\left(C_{8} \times C_{n}\right) \leq 3 n: n \equiv 0(\bmod 16) \\
& \gamma_{s}\left(C_{8} \times C_{n}\right) \leq 3 n+1: n \equiv 3,13(\bmod 16) \\
& \gamma_{s}\left(C_{8} \times C_{n}\right) \leq 3 n+2: n \equiv 6,10(\bmod 16) \tag{1}\\
& \gamma_{s}\left(C_{8} \times C_{n}\right) \leq 3 n+3: n \equiv 5,7,9,11(\bmod 16) \\
& \gamma_{s}\left(C_{8} \times C_{n}\right) \leq 3 n+4: n \equiv 2,4,8,12,14(\bmod 16) \\
& \gamma_{s}\left(C_{8} \times C_{n}\right) \leq 3 n+5: n \equiv 1,15(\bmod 16)
\end{align*}
$$

For example, f_{1} is a SDF of $C_{8} \times C_{12}$, where $\gamma_{s}\left(C_{8} \times C_{12}\right) \leq 40=3(12)+4$, see Figure 1.
\{Here, we must note that, for simplicity of drawing the Cartesian products of two directed cycles $C_{m} \times C_{n}$, we do not draw the arcs from vertices in last column to vertices in first column and the arcs from vertices in last row to vertices in first row. Also for each figure of $C_{m} \times C_{n}$, we replace it by a corresponding matrix by signs - and + which descriptions -1 and +1 on figure of $f\left(C_{m} \times C_{n}\right)$, respectively .

By Remark 2.2, for any minimum signed dominating function f of $C_{8} \times C_{n}$ with signed dominating sequence $\left(s_{1}, \cdots, s_{n}\right)$, we have $s_{j}=0,2,4,6$ or 8 for $j=1, \cdots, n$. By Lemma 2.3, if $s_{j}=0$ then $s_{j-1}, s_{j+1} \geq 8$, and if $s_{j}=2$ then $s_{j-1}, s_{j+1} \geq 4$. This implies that

$$
\begin{gather*}
\omega(f)=\sum_{j=1}^{n} s_{j} \geq 3 n \text { for } n \equiv 0(\bmod 2) \tag{2}\\
\omega(f)=\sum_{j=1}^{n} s_{j} \geq 3 n+1 \text { for } n \equiv 1(\bmod 2) \tag{3}
\end{gather*}
$$

Hence, by (1), (2) and (3) we get

$$
\begin{gathered}
\gamma_{s}\left(C_{8} \times C_{n}\right)=3 n \text { for } n \equiv 0(\bmod 16) \\
\gamma_{s}\left(C_{8} \times C_{n}\right)=3 n+1 \text { for } n \equiv 3,13(\bmod 16)
\end{gathered}
$$

Assume that $n \not \equiv 0,3,13(\bmod 16)$.
Let f^{\prime} ba a signed dominating function with signed dominating sequence $\left(s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{n}^{\prime}\right)$.
If $m, n \leq 7$, then by Theorem 1.4 is the required (because $C_{m} \times C_{n} \cong C_{n} \times C_{m}$). Let $m, n \geq 8$. We prove the following claim:

Claim 2.1. For $k \geq 2$, we have $\sum_{d=j+1}^{j+k} s_{d}^{\prime} \geq 3 k$ if k is even and $\sum_{d=j+1}^{j+k} s_{d}^{\prime} \geq 3 k-1$ when k is odd.

(a)
(b)

Figure 1. (a) A signed dominating function of $C_{8} \times C_{12}$; (b) A corresponding matrix of a signed dominating function of $C_{8} \times C_{12}$.

Proof of Claim 2.1. We have the subsequence $\left(s_{j+1}^{\prime}, \cdots, s_{k}^{\prime}\right)$ is including at least two terms. Then, immediately from Remark 2.2 and Lemma 2.3, gets the required. The proof of Claim 2.1 is complete.

Now, if $s_{j}^{\prime}=0$ for some j, then $s_{j-1}^{\prime}=s_{j+1}^{\prime}=8$. Without loss of generality, we can assume that $s_{2}^{\prime}=0$. Then Claim 2.1, imply that

$$
\begin{equation*}
\omega\left(f^{\prime}\right)=\sum_{j=1}^{n} s_{j}^{\prime}=\sum_{j=1}^{3} s_{j}^{\prime}+\sum_{j=4}^{n} s_{j}^{\prime} \geq 16+3(n-3)-1=3 n+7 . \tag{4}
\end{equation*}
$$

Assume that $s_{j}^{\prime} \geq 2$ for all $j=1, \cdots, n$. We have three cases:
Case 1. If $s_{j}^{\prime}=8$ for some j. Let $s_{1}^{\prime}=8$. Then from Claim 2.1, we get

$$
\begin{align*}
& \omega\left(f^{\prime}\right)=\sum_{j=1}^{n} s_{j}^{\prime}=s_{1}^{\prime}+\sum_{j=2}^{n} s_{j}^{\prime} \geq 8+3(n-1)-1=3 n+4, \text { when } n \equiv 0(\bmod 2) . \tag{5}\\
& \omega\left(f^{\prime}\right)=\sum_{j=1}^{n} s_{j}^{\prime}=s_{1}^{\prime}+\sum_{j=2}^{n} s_{j}^{\prime} \geq 8+3(n-1)=3 n+5, \text { when } n \equiv 1(\bmod 2) . \tag{6}
\end{align*}
$$

Case 2. Let $2 \leq s_{j}^{\prime} \leq 6$. If $\left(s_{1}^{\prime}, \cdots, s_{n}^{\prime}\right)$ include at least two terms which are equals 6 , then

$$
\begin{equation*}
\omega\left(f^{\prime}\right)=\sum_{j=1}^{n} s_{j}^{\prime} \geq 3 n+4 \tag{7}
\end{equation*}
$$

For $n \equiv 1(\bmod 2)$, then $8 n$ is even. By Lemma 1.2, $\gamma_{s}\left(C_{8} \times C_{n}\right)=\omega\left(f^{\prime}\right)$ must be even number. Hence, from (7) is

$$
\begin{equation*}
\omega\left(f^{\prime}\right)=\sum_{j=1}^{n} s_{j}^{\prime} \geq 3 n+5 \tag{8}
\end{equation*}
$$

Assume that $2 \leq s_{j}^{\prime} \leq 4$ for all $j=1, \cdots, n$ except once which equals 6 . Thus,

$$
\begin{align*}
& \omega\left(f^{\prime}\right)=\sum_{j=1}^{n} s_{j}^{\prime} \geq 3 n+2 \text { for } n \equiv 0(\bmod 2) \tag{9}\\
& \omega\left(f^{\prime}\right)=\sum_{j=1}^{n} s_{j}^{\prime} \geq 3 n+3 \text { for } n \equiv 1(\bmod 2) . \tag{10}
\end{align*}
$$

For the case 3, we need the following claim:
Claim 2.2. Let f^{\prime} be a minimum signed dominating function of $C_{8} \times C_{n}$ with signed dominating sequence $\left(s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{n}^{\prime}\right)$.Then for $\left(s_{j}^{\prime}, s_{j+1}^{\prime}, s_{j+1}^{\prime}, s_{j+2}^{\prime}\right)=(2,4,2,4)$, and up to isomorphism, there is only one possible configuration for $f^{\prime \prime}$, it is shown in Figure 2. The prove is immediately by drawing.

Figure 2. The form $\left(s_{j}^{\prime}, s_{j+1}^{\prime}, s_{j+1}^{\prime}, s_{j+2}^{\prime}\right)=(2,4,2,4)$.

Case 3. Let $2 \leq s_{j}^{\prime} \leq 4$ for all $j=1, \cdots, n$. We define

$$
X_{i}=\left|j: s_{j}^{\prime}=i\right|, i=2,4 .
$$

Then we have

$$
\begin{gathered}
X_{2}+X_{4}=n . \\
\omega\left(f^{\prime}\right)=2 X_{2}+4 X_{4} .
\end{gathered}
$$

Since the case $\left(s_{j}^{\prime}, s_{j+1}^{\prime}\right)=(2,2)$ is not possible, we have $X_{4} \geq X_{2}$.
If $X_{4} \geq\lceil n / 2\rceil+2$. Then $\omega\left(f^{\prime}\right) \geq 2(n-\lceil n / 2\rceil-2)+4(\lceil n / 2\rceil+2)=2 n+2\lceil n / 2\rceil+4$. Thus

$$
\begin{align*}
& \omega\left(f^{\prime}\right)=\sum_{j=1}^{n} s_{j}^{\prime} \geq 3 n+4 \text { for } n \equiv 0(\bmod 2) \tag{11}\\
& \omega\left(f^{\prime}\right)=\sum_{j=1}^{n} s_{j}^{\prime} \geq 3 n+5 \text { for } n \equiv 1(\bmod 2) \tag{12}
\end{align*}
$$

If $X_{4}=\lceil n / 2\rceil+1$. Then $\omega\left(f^{\prime}\right) \geq 2(n-\lceil n / 2\rceil-1)+4(\lceil n / 2\rceil+1)=2 n+2\lceil n / 2\rceil+2$. Hence

$$
\begin{align*}
& \omega\left(f^{\prime}\right)=\sum_{j=1}^{n} s_{j}^{\prime} \geq 3 n+2 \text { for } n \equiv 0(\bmod 2) \tag{13}\\
& \omega\left(f^{\prime}\right)=\sum_{j=1}^{n} s_{j}^{\prime} \geq 3 n+3 \text { for } n \equiv 1(\bmod 2) \tag{14}
\end{align*}
$$

Let $X_{4}=\lceil n / 2\rceil$ and $X_{2}=\lfloor n / 2\rfloor$.
Then we have one possible is as the form $\left(s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{n}^{\prime}\right)=(2,4,2,4, \cdots, 2,4, \cdots)$. This implies that $\omega\left(f^{\prime}\right)=3 n$ for $n \equiv 0(\bmod 2)$ and $\omega\left(f^{\prime}\right)=3 n+1$ for $n \equiv 1(\bmod 2)$. By Claim 2.2, we have f^{\prime} is as the function f, which defined in forefront of Theorem 2.4. However, f is not be a signed dominating function for $C_{8} \times C_{n}$ when $n \not \equiv 0,3,13(\bmod 16)$. Thus

$$
\begin{gathered}
\gamma_{s}\left(C_{8} \times C_{n}\right)>3 n \text { for } n \equiv 0(\bmod 2) \\
\gamma_{s}\left(C_{8} \times C_{n}\right)>3 n+1 \text { for } n \equiv 1(\bmod 2)
\end{gathered}
$$

By Lemma 1.2, and above arguments, we conclude that

$$
\begin{gather*}
\gamma_{s}\left(C_{8} \times C_{n}\right) \geq 3 n+2 \text { for } n \equiv 0(\bmod 2) \tag{15}\\
\gamma_{s}\left(C_{8} \times C_{n}\right) \geq 3 n+3 \text { for } n \equiv 1(\bmod 2) \tag{16}
\end{gather*}
$$

Hence, from (1), (15) and (16), deduce that

$$
\begin{gathered}
\gamma_{s}\left(C_{8} \times C_{n}\right) \geq 3 n+2 \text { for } n \equiv 6,10(\bmod 16) \\
\gamma_{s}\left(C_{8} \times C_{n}\right) \geq 3 n+3 \text { for } n \equiv 5,7,9,11(\bmod 16) \\
3 n+2 \leq \gamma_{s}\left(C_{8} \times C_{n}\right) \leq 3 n+4 \text { for } n \equiv 2,4,8,12,14(\bmod 16) \\
3 n+3 \leq \gamma_{s}\left(C_{8} \times C_{n}\right) \leq 3 n+5 \text { for } n \equiv 1,15(\bmod 16)
\end{gathered}
$$

Finally, we result that:

$$
\begin{gathered}
\gamma_{s}\left(C_{8} \times C_{n}\right)=3 n \text { for } n \equiv 0(\bmod 16) \\
\gamma_{s}\left(C_{8} \times C_{n}\right)=3 n+1 \text { for } n \equiv 3,13(\bmod 16) \\
\gamma_{s}\left(C_{8} \times C_{n}\right)=3 n+2 \text { for } n \equiv 6,10(\bmod 16) \\
\gamma_{s}\left(C_{8} \times C_{n}\right)=3 n+3 \text { for } n \equiv 5,7,9,11(\bmod 16)
\end{gathered}
$$

$$
\begin{gathered}
3 n+2 \leq \gamma_{s}\left(C_{8} \times C_{n}\right) \leq 3 n+4 \text { for } n \equiv 2,4,8,12,14(\bmod 16) . \\
\quad 3 n+3 \leq \gamma_{s}\left(C_{8} \times C_{n}\right) \leq 3 n+5 \text { for } n \equiv 1,15(\bmod 16) .
\end{gathered}
$$

Theorem 2.5.

$$
\gamma_{s}\left(C_{9} \times C_{n}\right)=\left\{\begin{array}{l}
3 n \quad: n \equiv 0(\bmod 3), \\
3 n+6: n \equiv 1,2(\bmod 3)
\end{array}\right.
$$

Proof. We define a signed dominating function f as follows: $f((i, j))=f((i+3, j))=f((i+6, j))=-1$ for $1 \leq j \leq n$ and $i \equiv j(\bmod 9)$, and $f((i, j))=1$ otherwise. Also, let us define the following function:

$$
f_{1}((i, j))= \begin{cases}f((i, j)) & \text { if } j \neq n \\ +1 & \text { if } i=1,2,3,4,5,6,7,8,9, j=n\end{cases}
$$

By define f, we have $s_{j}=3$ for $1 \leq j \leq n$. Notice, f is a SDF for $C_{9} \times C_{n}$ for $n \equiv 0(\bmod 3)$. And f_{1} is a SDF of $C_{9} \times C_{n}$ for $n \equiv 1,2(\bmod 3)$. For an illustration $\gamma_{s}\left(C_{9} \times C_{6}\right)$, see Figure 3. Hence,

$$
\begin{gather*}
\gamma_{s}\left(C_{9} \times C_{n}\right) \leq 3 n \text { for } n \equiv 0(\bmod 3) \tag{17}\\
\gamma_{s}\left(C_{9} \times C_{n}\right) \leq 3 n+6 \text { for } n \equiv 1,2(\bmod 3) \tag{18}
\end{gather*}
$$

From Corollary 1.3 is $\gamma_{s}\left(C_{9} \times C_{n}\right) \geq 3 n$. Then by (17), $\gamma_{s}\left(C_{9} \times C_{n}\right)=3 n$ for $n \equiv 0(\bmod 3)$. For $n \equiv 1,2(\bmod 3)$.
If $4 \leq n \leq 8$, then by Theorems 1.4 and 2.4 , gets the required. Assume that $n \geq 9$.
By Remark 2.2, we have $s_{j}=1,3,5,7$ or 9 . By Lemma 2.3, if $s_{j}=1$ then $s_{j-1}, s_{j+1} \geq 7, s_{j}=3$ then $s_{j-1}, s_{j+1} \geq 3$ and $s_{j}=5$ then $s_{j-1}, s_{j+1} \geq 3$ (because if $s_{j-1}, s_{j+1}<3$, then we need $s_{j} \geq 7$). By Lemma 2.3, the cases $\left(s_{j+1}, s_{j+2}\right)=(1,3),(3,1)$ are not possible. Hence, $\sum_{d=j+1}^{j+k} s_{d} \geq 3 k$, for $k \geq 2$. This implies that,

$$
\begin{equation*}
\sum_{d=1}^{n-1} s_{d} \geq 3(n-1) \tag{19}
\end{equation*}
$$

We define

$$
X_{i}=\left|\left\{j: s_{j}=i\right\}\right|, i=1,3,5,7,9 .
$$

Then we have

K_{1}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	
R_{1}						
R_{2}						
R_{3}	+	+	+	+	+	+
R_{4}	-	+	+	+	-	+
R_{5}						
R_{6}	+	-	+	+	+	-
R_{7}						
R_{8}						
R_{9}	+	+	+	+	+	+
$s_{j}:$	3	+	+	+	+	+

Figure 3. A corresponding matrix of a signed dominating function of $C_{9} \times C_{6}$.

$$
\begin{gathered}
X_{1}+X_{3}+X_{5}+X_{7}+X_{9}=n . \\
\omega(f)=X_{1}+3 X_{3}+5 X_{5}+7 X_{7}+9 X_{9} .
\end{gathered}
$$

If we have one case from the cases $X_{9} \geq 1, X_{7} \geq 2, X_{5}+X_{7} \geq 2$ or $X_{5} \geq 3$. Then by (19) is $\omega(f) \geq 3 n+6$.
Assume the contrary, i.e., ($X_{9}=0, X_{7}<2, X_{5}+X_{7}<2$ and $X_{5}<3$).
Hence, $\omega(f)=X_{1}+3 X_{3}+5 X_{5}+7 X_{7}$. We consider the cases $X_{7}<2$ and $X_{5}<3$, which are including the remained cases, i.e., $X_{7}=1$ and $X_{5}=2$. First, we give the following Claim:

Claim 2.3. There is only one possible for $\left(s_{j}, s_{j+1}\right)=(3,3)$ is
$f((i, j))=f((i+3, j))=f((i+6, j))=f((i+1, j+1))=f((i+4, j+1))=f((i+7, j+1))=-1$ and
$f((i, j))=f((i, j+1))=1$, otherwise for $1 \leq i \leq 9$.
The proof comes immediately by the drawing. \square
Case 1. $X_{7}=1$ and $X_{5}=X_{9}=0$. Without loss of generality, we can assume $s_{n}=7$. Then we have the form $(3,3, \cdots, 3,7)$. By Claim 2.3, for $j<n-1$, each column K_{j+1} is 1-shift of K_{j}, K_{j+2} is 2-shift of K_{j} and K_{j+3} is 3-shift $=(0$-shift $)$ of K_{j}. Without loss of generality, we can assume $f((1,1))=f((4,1))=f((7,1))=-1$ and $f((i, 1))=1$ otherwise. We consider two subcases:
Subcase 1.1. For $n \equiv 1(\bmod 3)$. Then K_{n-1} is $(n-2)$-shift $=\left(2\right.$-shift) of K_{1}. This implies that $f((3, n-1))=f((6, n-1))=f((9, n-1))=-1$. Hence, we need $f((i, n))=1$ for all $i=1, \cdots, 9$. This is a contradiction with $\omega\left(f\left(K_{n}\right)\right)=7$. Thus, $\omega(f) \geq 3 X_{3}+9 X_{9}=3(n-1)+9=3 n+6$.

Subcase 1.2. For $n \equiv 2(\bmod 3)$. Then K_{n-1} is $(n-2)$-shift $=(0$-shift $)$ of K_{1}. This implies that $f((1, n-1))=f((4, n-1))=f((7, n-1))=-1$. So, we need $f((i, n))=1$ for all $i=1, \cdots, 9$. Again, we get a contradiction with $\omega\left(f\left(K_{n}\right)\right)=7$. Thus, $\omega(f) \geq 3 X_{3}+9 X_{9}=3(n-1)+9=3 n+6$.

Case 2. $X_{5}=2$ and $X_{7}=X_{9}=0$. Here we have $s_{k}=s_{k+d}=5$ and $s_{j}=3$ otherwise. By the same argument similar to the Case 1, we have K_{j} is $(j-1)$-shift of K_{1}. Thus, if $j \equiv 1(\bmod 3)$, then
$f((1, j))=f((4, j))=f((7, j))=-1$ and for $j \equiv 2(\bmod 3)$ is $f((2, j))=f((5, j))=f((8, j))=-1$. Also, for position the vertices of K_{1}, we always have
$f((1, n))=f((2, n))=f((4, n))=f((5, n))=f((7, n))=f((8, n))=1$. We consider four Subcases:
Subcase 2.1. $d=1$, without loss of generality, we can assume $s_{n-1}=s_{n}=5$.
For $n \equiv 1(\bmod 3), \quad f((2, n-2))=f((5, n-2))=f((8, n-2))=-1$. Then
$f((1, n-1))=f((2, n-1))=f((4, n-1))=f((5, n-1))=f((7, n-1))=f((8, n-1))=1$. The three remaining vertices from each K_{n-1} and K_{n}, most including two values -1 , and this is impossible. The same arguments is for $n \equiv 2(\bmod 3)$.

Subcase 2.2. $d=2$, let $s_{n-2}=s_{n}=5$. Then we have the form $\left(s_{1}, s_{2}, \cdots, s_{n}\right)=(3,3, \cdots, 3,5,3,5)$.
If $n \equiv 1(\bmod 3)$, then $n-3 \equiv 1(\bmod 3)$. This implies that K_{n-3} is 0 -shift of K_{1}. Therefore,
$f((1, n-3))=f((4, n-3))=f((7, n-3))=-1$. Hence, the three columns K_{n-2}, K_{n-1}, K_{n} must be including seven values of -1 , two in K_{n-2}, three in K_{n-1} and two in K_{n} and this impossible. The same argument is for n $\equiv 2(\bmod 3)$.

Subcase 2.3. $d=3$, let $s_{n-3}=s_{n}=5$. We have the form $\left(s_{1}, s_{2}, \cdots, s_{n}\right)=(3,3, \cdots, 3,5,3,3,5)$. Then for $n \equiv 1(\bmod 3), \quad K_{n-4}$ is 2-shift of K_{1}. Therefore $f((3, n-4))=f((6, n-4))=f((9, n-4))=-1$. Also, $s_{n-2}=s_{n-1}=3$. Therefore, two vertices of $\{(1, n-3),(4, n-3),(7, n-3)\}$ must has value -1 . By symmetry, let $f((1, n-3))=f((4, n-3))=-1$. Then by Claim 2.3, there is one case for $\left(s_{n-2}, s_{n-1}\right)=(3,3)$. Hence, $f((2, n-2))=f((5, n-2))=f((8, n-2))=f((3, n-1))=f((6, n-1))=f((9, n-1))=-1$. Therefore, we need two vertices from K_{n} with value -1 . This is a contradiction, (because the vertices of the first column must be a signed dominates by the vertices of the last column). The same argument is for $n \equiv 2(\bmod 3)$.

Subcase 2.4. $d \geq 4$, let $s_{n-d}=s_{n}=5$ (by symmetry is $n-d \geq 4$).
We have the form $\left(s_{1}, s_{2}, \cdots, s_{n}\right)=(3,3, \cdots, 3,5,3, \cdots, 3,5)$. By Claim 2.3, if $\left(s_{j}, s_{j+1}, \cdots\right)=(3,3, \cdots)$ then for each two vertices $f((i, j))=f((q, j))=-1$ we must have $|i-q|=3$ and so for $K_{j+1}, \cdots, K_{n-d-1}$. Since $s_{j}=3(j \leq n-d-1)$ and $s_{n-d}=5$, then K_{n-d} including two vertices with value -1 by 1-shift of two vertices in K_{n-d-1}. Also, K_{n-d+1} including two vertices with value -1 by 1-shift of vertices in K_{n-d} and the third vertex must be distance 3 from any one has value -1 (Since $s_{n-d+1}=s_{n-d+1}=\cdots=3$, Claim 2.3). Thus, the order of the values -1 or 1 of the vertices $K_{n-d+1}, \cdots, K_{n-1}$ does not change. Hence the vertices of K_{n-1} has the same order of K_{n-1} when we have the signed dominating sequence $(3,3, \cdots, 3,3)$ and this impossible is signed dominating sequence of $C_{9} \times C_{n}$ for $n \equiv 1,2(\bmod 3)$. In Subcases 2.1, 2.2, 2.3 and 2.4 there are many details, we
will be omitted it.
Finally, we deduce that does not exist a signed dominating function f of $C_{9} \times C_{n}$ for $n \equiv 1,2(\bmod 3)$ with $\omega(f) \leq 3 n+4$. Hence,

$$
\begin{equation*}
\gamma_{s}\left(C_{9} \times C_{n}\right) \geq 3 n+6: n \equiv 1,2(\bmod 3) . \tag{20}
\end{equation*}
$$

From (18) and (20) is $\gamma_{s}\left(C_{9} \times C_{n}\right)=3 n+6: n \equiv 1,2(\bmod 3)$.
Theorem 2.6. $\gamma_{s}\left(C_{10} \times C_{n}\right)=4 n$.
Proof. We define a signed dominating function f as follows:
$f((i, j))=f((i+3, j))=f((i+6, j))=-1$ for $1 \leq j \leq n$ and $i \equiv j(\bmod 10)$, and $f((i, j))=1$ otherwise. Also, we define

$$
\begin{aligned}
& f_{n-7}((3, n-7))=f_{n-7}((7, n-7))=f_{n-7}((10, n-7))=-1, \\
& f_{n-6}((1, n-6))=f_{n-6}((5, n-6))=f_{n-6}((8, n-6))=-1, \\
& f_{n-5}((3, n-5))=f_{n-5}((6, n-5))=f_{n-5}((9, n-5))=-1, \\
& f_{n-4}((1, n-4))=f_{n-4}((4, n-4))=f_{n-4}((7, n-4))=-1, \\
& f_{n-3}((2, n-3))=f_{n-3}((5, n-3))=f_{n-3}((9, n-3))=-1, \\
& f_{n-2}((3, n-2))=f_{n-2}((7, n-2))=f_{n-2}((10, n-2))=-1, \\
& f_{n-1}((1, n-1))=f_{n-1}((5, n-1))=f_{n-1}((8, n-1))=-1, \\
& f_{n}((3, n))=f_{n}((6, n))=f_{n}((9, n))=-1,
\end{aligned}
$$

and $f_{j}((i, j))=1$ otherwise for $j=n-5, n-4, n-3, n-2, n-1, n$.
By define f and $f_{n-7}, f_{n-6}, f_{n-5}, f_{n-4}, f_{n-3}, f_{n-2}, f_{n-1}, f_{n}$ we have $s_{j}=4$ for all $1 \leq j \leq n$. Notice that: f is a SDF for $C_{10} \times C_{n}$ when $n \equiv 0,3,(\bmod 10)$.

$$
\begin{aligned}
& \left\{f \backslash\left\{f\left(K_{n-5}\right) \cup f\left(K_{n-4}\right) \cup f\left(K_{n-3}\right) \cup f\left(K_{n-2}\right) \cup f\left(K_{n-1}\right) \cup f\left(K_{n}\right)\right\}\right\} \\
& \cup\left\{f_{n-5} \cup f_{n-4} \cup f_{n-3} \cup f_{n-2} \cup f_{n-1} \cup f_{n}\right\}
\end{aligned}
$$

is a SDF for $C_{10} \times C_{n}$ when $n \equiv 1(\bmod 10)$.

$$
\left\{f \backslash\left\{f\left(K_{n-2}\right) \cup f\left(K_{n-1}\right) \cup f\left(K_{n}\right)\right\}\right\} \cup\left\{f_{n-2} \cup f_{n-1} \cup f_{n}\right\}
$$

is a SDF for $C_{10} \times C_{n}$ when $n \equiv 2(\bmod 10)$.

$$
\begin{aligned}
& \left\{f \backslash\left\{f\left(K_{n-6}\right) \cup f\left(K_{n-5}\right) \cup f\left(K_{n-4}\right) \cup f\left(K_{n-3}\right) \cup f\left(K_{n-2}\right) \cup f\left(K_{n-1}\right) \cup f\left(K_{n}\right)\right\}\right\} \\
& \cup\left\{f_{n-6} \cup f_{n-5} \cup f_{n-4} \cup f_{n-3} \cup f_{n-2} \cup f_{n-1} \cup f_{n}\right\}
\end{aligned}
$$

is a SDF for $C_{10} \times C_{n}$ when $n \equiv 4(\bmod 10)$.

$$
\left\{f \backslash\left\{f\left(K_{n-3}\right) \cup f\left(K_{n-2}\right) \cup f\left(K_{n-1}\right) \cup f\left(K_{n}\right)\right\}\right\} \cup\left\{f_{n-3} \cup f_{n-2} \cup f_{n-1} \cup f_{n}\right\}
$$

is a SDF for $C_{10} \times C_{n}$ when $n \equiv 5(\bmod 10)$.

$$
\left\{f \backslash\left\{f\left(K_{n}\right)\right\}\right\} \cup\left\{f_{n}\right\}
$$

is a SDF for $C_{10} \times C_{n}$ when $n \equiv 6(\bmod 10)$.

$$
\begin{aligned}
& \left\{f \backslash\left\{f\left(K_{n-7}\right) \cup f\left(K_{n-6}\right) \cup f\left(K_{n-5}\right) \cup f\left(K_{n-4}\right) \cup f\left(K_{n-3}\right) \cup f\left(K_{n-2}\right) \cup f\left(K_{n-1}\right) \cup f\left(K_{n}\right)\right\}\right\} \\
& \cup\left\{f_{n-7} \cup f_{n-6} \cup f_{n-5} \cup f_{n-4} \cup f_{n-3} \cup f_{n-2} \cup f_{n-1} \cup f_{n}\right\}
\end{aligned}
$$

is a SDF for $C_{10} \times C_{n}$ when $n \equiv 7(\bmod 10)$.

$$
\left\{f \backslash\left\{f\left(K_{n-4}\right) \cup f\left(K_{n-3}\right) \cup f\left(K_{n-2}\right) \cup f\left(K_{n-1}\right) \cup f\left(K_{n}\right)\right\}\right\} \cup\left\{f_{n-4} \cup f_{n-3} \cup f_{n-2} \cup f_{n-1} \cup f_{n}\right\}
$$

is a SDF for $C_{10} \times C_{n}$ when $n \equiv 8(\bmod 10)$.

$$
\left\{f \backslash\left\{f\left(K_{n-1}\right) \cup f\left(K_{n}\right)\right\}\right\} \cup\left\{f_{n-1} \cup f_{n}\right\}
$$

is a SDF for $C_{10} \times C_{n}$ when $n \equiv 9(\bmod 10)$.
For an illustration $\gamma_{s}\left(C_{10} \times C_{11}\right)$ see Figure 4, (here for $n \equiv 1(\bmod 10)$, we are changing the functions of the columns: $\left.K_{n-5}, K_{n-4}, K_{n-3}, K_{n-2}, K_{n-1}, K_{n}\right)$. In all the cases we have $\gamma_{s}\left(C_{10} \times C_{n}\right) \leq 4 n$.

By Remark 2.2, we have $s_{j}=0,2,4,6,8$ or 10 . Also by Lemma 2.3, if $s_{j}=0$, then $s_{j-1}, s_{j+1} \geq 10$ and when s_{j} $=2$, is $s_{j-1}, s_{j+1} \geq 6$ and $s_{j}=4$ is $s_{j-1}, s_{j+1} \geq 4$ (because if $s_{j-1}=2$ or $s_{j+1}=2$, then $s_{j} \geq 6$). This implies that

$$
\gamma_{s}\left(C_{10} \times C_{n}\right)=\sum_{j=1}^{n} s_{j} \geq 4 n .
$$

So, we get $\gamma_{s}\left(C_{10} \times C_{n}\right)=4 n$.
Corollary 2.7. For $m \equiv 0(\bmod 3)$, we have

$$
\begin{gathered}
\gamma_{s}\left(C_{m} \times C_{n}\right)=\frac{m n}{3} \text { if } n \equiv 0(\bmod 3) . \\
\frac{m n}{3} \leq \gamma_{s}\left(C_{m} \times C_{n}\right)=\frac{m n}{3}+\frac{2 m}{3} \text { if } n \equiv 1,2(\bmod 3) .
\end{gathered}
$$

Proof. By Corollary 1.3 we have

$$
\begin{equation*}
\gamma_{s}\left(C_{m} \times C_{n}\right) \geq \frac{m n}{3} \tag{21}
\end{equation*}
$$

Let us a signed dominating function f as follows: $f((3 i-2,3 j-2))=-1$ for $1 \leq i \leq m / 3,1 \leq j \leq n / 3$, $f((3 i-1,3 j-1))=-1$ for $1 \leq i \leq m / 3,1 \leq j \leq n / 3$, and $f((3 i, 3 j))=-1$ for $1 \leq i \leq m / 3,1 \leq j \leq n / 3$.
By define f, we have $s_{j}=m / 3$ for $1 \leq j \leq n$. Notice, f is a SDF for $C_{m} \times C_{n}$ for $m, n \equiv 0(\bmod 3)$. Hence, $\gamma_{s}\left(C_{m} \times C_{n}\right) \leq m n / 3$. Then from (21), is $\gamma_{s}\left(C_{m} \times C_{n}\right)=m n / 3$ for $m, n \equiv 0(\bmod 3)$.

For $n \equiv 1$, $2(\bmod 3)$.
Let $f_{n}((i, n))=1$ for $1 \leq i \leq m$. Notice, $\left\{f \backslash\left\{f\left(K_{n}\right)\right\} \cup\left\{f_{n}\right\}\right\}$ is a SDF for $C_{m} \times C_{n}$ for $n \equiv 1,2(\bmod 3)$.
Thus, $\gamma_{s}\left(C_{m} \times C_{n}\right) \leq m(n-1) / 3+m=m n / 3+2 m / 3$. Hence, by (21) is $m n / 3 \leq \gamma_{s}\left(C_{m} \times C_{n}\right) \leq m n / 3+2 m / 3$ if $n \equiv 1,2(\bmod 3)$.

Figure 4. A corresponding matrix of a signed dominating function of $C_{10} \times C_{11}$.

3. Conclusions

This paper determined that exact value of the signed domination number of $C_{m} \times C_{n}$ for $m=8,9,10$ and arbitrary n. By using same technique methods, our hope eventually lead to determination $\gamma_{s}\left(C_{m} \times C_{n}\right)$ for general m and n.

Based on the above (Lemma 2.3 and Theorems 1.4, 2.4, 2.5 and 2.6), also by the technique which used in this paper, we again rewritten the following conjecture (This conjecture was mention in [11]):

Conjecture 3.1.

$$
\gamma_{s}\left(C_{m} \times C_{n}\right)=\left\lceil\frac{m}{3}\right\rceil n \quad \text { when } n \equiv 0(\bmod 2 m) \text { or } n \equiv 1(\bmod 3) .
$$

References

[1] Haas, R. and Wexler, T.B. (1999) Bounds on the Signed Domination Number of a Graph. Discrete Mathematics, 195, 295-298. http://dx.doi.org/10.1016/S0012-365X(98)00189-7
[2] West, D.B. (2000) Introduction to Graph Theory. Prentice Hall, Inc., Upper Saddle River.
[3] Dunbar, J.E., Hedetniemi, S.T., Henning, M.A. and Slater, P.J. (1995) Signed Domination in Graphs, Graph Theory, Combinatorics and Application. John Wiley \& Sons, Inc., Hoboken, 311-322.
[4] Cockayne, E.J. and Mynhart, C.M. (1996) On a Generalization of Signed Domination Functions of Graphs. Ars Combinatoria, 43, 235-245.
[5] Hattingh, J.H. and Ungerer, E. (1998) The Signed and Minus k-Subdomination Numbers of Comets. Discrete Mathematics, 183, 141-152. http://dx.doi.org/10.1016/S0012-365X(97)00051-4
[6] Xu, B. (2001) On Signed Edge Domination Numbers of Graphs. Discrete Mathematics, 239, 179-189. http://dx.doi.org/10.1016/S0012-365X(01)00044-9
[7] Broere, I., Hattingh, J.H., Henning, M.A. and McRae, A.A. (1995) Majority Domination in Graphs. Discrete Mathematics, 138, 125-135. http://dx.doi.org/10.1016/0012-365X(94)00194-N
[8] Zelinka, B. (2005) Signed Domination Numbers of Directed Graphs. Czechoslovak Mathematical Journal, 55, 479482. http://dx.doi.org/10.1007/s10587-005-0038-5
[9] Karami, H., Sheikholeslami, S.M. and Khodkar, A. (2009) Lower Bounds on the Signed Domination Numbers of Directed Graphs. Discrete Mathematics, 309, 2567-2570. http://dx.doi.org/10.1016/j.disc.2008.04.001
[10] Atapour, M., Sheikholeslami, S., Hajypory, R. and Volkmann, L. (2010) The Signed k-Domination Number of Directed Graphs. Central European Journal of Mathematics, 8, 1048-1057. http://dx.doi.org/10.2478/s11533-010-0077-5
[11] Shaheen, R. and Salim, H. (2015) The Signed Domination Number of Cartesian Products of Directed Cycles. Submitted to Utilitas Mathematica.

