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ABSTRACT 

Let  be a finite nilpotent group of odd order and  be a subset of G S  0G  . We say that  is complete if every 

element of  can be represented as a sum of different elements of  and incomplete otherwise. In this paper, we 
obtain the characterization of large incomplete sets. 

S

G S
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1. Introduction 

Let  be a finite additively written group (not neces-
sarily commutative). Let 

G
 1, , kS a a 

| ,a a 

S
cr

 be a subset of 
.  Define {

1 1li i l  are dis-
tinct }. For technical reasons we define  

 We call  an additive basis of 
if  The critical number  of is 

the smallest integer  such that every subset  of 
 with 

 0
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 0

G

0

G 

G

 S 

 0 .

t

,i 
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i
l k 
 S S

 S 

.G G

S
S t  forms an additive basis of  

 was first introduced and studied by Erdős and 
Heilbronn in 1964 [1] for 

.G
 Gcr

pG    where  is a prime. 
This parameter has been studied for a long time and its 
exact value is known for a large number of groups (see 
[2-10]).  

p

Following Erdős [1], we say that is complete 
if and incomplete otherwise. 

S
 S G 

In this paper, we would like to study the following 
question: What is the structure of a relatively large in-
complete set? Technically speaking, we would like to 
have a characterization for incomplete sets of relatively 
large size. Such a characterization has been obtained re-
cently for finite abelian groups (see [11-13]). In this pa-
per, we shall prove the following result. 

Theorem 1.1. Let be a finite nilpotent group with 
order  where  is the smallest prime di-
viding  Also assume that h  is composite and 

 Let be a subset of  such that 

G
p,n ph

.n
7 3.

5

h p S  0G
3.p  S h  If S  is incomplete, then there exist a 

subgroup H  of order  and h g H



 

 such that  
  0 a

2. Notations and Tools 

If  be a subset of the group , we shall denote by S G
S  the cardinality of , by S S  the subgroup gener-

ated by . If 1 nS , ,A A  are subsets of , let 

1

G

nA A   denote the set of all sums 1 na a  , 
where i .Aia   Recall the following well known result 
obtained by Cauchy and Davenport. 

Lemma 2.1. Let  be a prime number. Let p X  and 
 be non-empty subsets of Y .p  Then 

 min , 1 .X Y p X Y     

We also use the following well known result. 
Lemma 2.2 [14]. Let  be a finite group. Let G X  

and  be subsets of  such that Y G .X Y G   Then 

.X Y G   

Lemma 2.3 [3]. Let  be a cyclic group of order , 
where  are primes. Then 

G pq
,p q

 2 1p q G p q .     cr  

Lemma 2.4 [8]. Let G  be a non-abelian group of 
order  where  are distinct primes. Then  10,pq  ,p q

 G p q 2.  cr  
Lemma 2.5 [10]. Let  be a finite nilpotent group 

of odd order and let  be the smallest prime dividing 
G

p
.G  If G p  is a composite number then  
  2.pG G p  cr  
Lemma 2.6. Let  be a finite nilpotent group of odd 

order and let be the smallest prime dividing 
G

p .G  If 
1p   then   .GS   S G p

.ndH S S H g H  g H   Proof. Obviously, this follows from Lemmas 2.3-2.5. 
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Lemma 2.7 [15]. Let S  be a subset of a finite group 
G  of order n . If 3S n  then  0 .S  

Lemma 2  [16 be a no o.8 ]. Let up. Let 
be

G  
en

ncyclic gr S  
 a subset  0 .G   Th     0 min 1,2GS S  
Let B G .

.  
 and x G  As usual, we write  

   .B x B    x B  have the following result ob-

Lemma 2.9 [5]. 

We

tained by Olson. 
Let be a nonempty subset of S

 0  and .G y S  Let  .S   Then B

     .y    0 0 BSS y 

We shall also use the following result of Olson. 
be a 

ge
Lemma 2.10. Let G  be a finite group and let S
nerating subset of  such that 0 .S Let B be a sub-

set of G  such that 
G

2.G TheB n there is x S such 
that 

  1 2
min , .

2 4B

B S S
x

    
  




 



This result follows by applying Lemma 3.1 of [15] to 
S S  Let x  be a subset of G with cardinality .k  Let 

k 1, ,x x  be an ordering of .   X  For 0 i k   set 


,
 |1jiX x

de
j i   and  0 .iB X   

1, ,


The or
i

ring  kx x  is called a resolving se-
quence of X if, fo 1, , ,k   

   
r each i

m 1
i iB i ax .B jx x j   i  

 of the resolviThe critic l indexa ng sequence is the 
largest  1, 1t k  such that 1tX  generates a proper sub-
group rly, every nempty subsets S has a 
resolving quence. 

We need the follo

of G . Clea  no
se

wing basic property of resolving se-
quence which is implicit in [5]. 

Lemma 2.11. Let X be a generating subset of a finite 
gr

 and 

oup G such that 

X X   02 .X G   

Let the ordering  1, , kx x be a resolving quence 
of

 se
X with critical i Then, there is a subset 

V X such that
ndex .t  

 1,V t V G    and 

    
0

5 1 2
4 .

4

X V
X V

   
    

Proof. This is essentially formula (4) of [5]. By Lem- 
m

X V

a 2.9 we have 

     
10 1 .

k tB k B t tX x x B 
      

By Lemma 2.10 we have 



  1

2iB i

i
x    

 for each  

On the other hand, by Lemma 2.8 we have  .i t  

 2 1 .t   By the definition of t , we have  1tB 

 2 4 1 .B B t     By taking

1,tV X   
Lemma

we have the claimed inequali
with order 

ty. 
 2.12. Let G be a finite group 

,phn   where 5p   the smallest prime dividing n  
7 3.h p   Let S  be a subset of 

 is
and  0G   such 
that 3S h p    and   .S G   Then t ists a 
set 

here ex
X S  such that  1 2,X X XS     and  

 0

1
2 1

S
.

4
X n


    

Proof. Since  and  is the smallest 
pri



7 3h p 
we have 

p
me dividing ,n

2
9 .S p  By Lemma 2.7, h

   0 .S S    
y partit V  such that Clearly, we ma ion S U

1VU    and U U V V .   
We consider two cases. 

  

Case 1.   .
n

V
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Set  0 VC   y V. By Lemma 2.10, there is such 
that 

  1
1.

4C

S
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    0 0

1
1

4

S
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    It follows  by  

Lemma 2.9. 

1 1 1t t t t tB B x      

Since     0 0 0S U V       we have, by G
Le .2, mma 2

    0 0

1
1

4

S
U V y


n      . 

Case 2.  0 2

n
V  . 

By Lem  0 2

n
U  . Put  0E U ma 2.2, . By  

Lemma 2.10, there is y V , such that 

  1
1

S



. 

4E y  

Therefore,  

     0 0

1
1 .

4E

S
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By Lemma 2.2, 
       0G S U y V y       implies 0 0

    0 0

1
1

4

S
U V y
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In both cases, one of the sets v the 
co

 . 

  ,U V y  
pletes the proo

erifies 
nclusion of the lemma. This com f. 

Lemma 2.13. Let 
2

2
2

n p
k

p


  , where p  is the  

smallest prime dividing  If .n
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Proof. Set 
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First, let us show that . Assume the contrary that 
.  We have 
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Second, let us show that 
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v
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 have 

3 28

Then, 
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A contradiction to (1). Therefore, we have  

2p
  2.

n
v p   This completes the proof. 

h order
Let

Lemma 2.14. Let G be a finite group wit n . 
H be a proper subgroup of G and S a subset of 

 If 0 .G    0 S H H G   and G H is a pr  

th

ime, 

en 2
G

S H
H
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    then t  is  here

g H  such that    .S H g H g H      

Proof. By x  we shall mean  x , where  
G G H  is th . Put e canonical morphism

 1, , jS H a a  . 

From tion we have  our assump  0 .S H G H   

By Lemma 2.1, we have 

       0 10, 0, , 1 .jS H a a q j      

It follows that 2.j q   

Assume now 2j q  . If there is  such that i
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