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ABSTRACT 

Let G be a properly colored bipartite graph. A rainbow matching of G is such a matching in which no two edges have 
the same color. Let G be a properly colored bipartite graph with bipartition ( X , Y )  and . We show that if   =G k  3

  7
max ,

4

k
X Y  , then G has a rainbow coloring of size at least 

3

4

k 
  

. 
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1. Introduction and Notation 

We use [1] for terminology and notations not defined 
here and consider simple undirected graphs only. Let 

 be a graph. A proper edge-coloring of G is a 
function :c    the set of non-negative in-
tegers) such that any two adjacent edges have distinct 
colors. If G is assigned such a coloring c, then we say 
that G is a properly edge-colored graph, or simply a 
properly colored graph. Let  denote the color of 
the edge . For a subgraph H of G, let 

= ,G V E

e


 ( isE  

E
 c e

      = :c H c e e E H . 

A subgraph H of G is called rainbow if its edges have 
distinct colors. Recently rainbow subgraphs have re-
ceived much attention, see the survey paper [2]. Here we 
are interested in rainbow matchings. The study of rain-
bow matchings began with the following conjectures.  

Conjecture 1. (Ryser [3,4]) Every Latin square of odd 
order has a Latin transversal. 

Conjecture 2. (Stein [5]) Every Latin square of order 
n has a partial Latin transversal of size at least 1n  . 

An equivalent statement is that every proper n-edge- 
coloring of the complete bipartite graph ,n nK  contains a 
rainbow matching of size 1;n   Moreover, if n is odd, 
there exists a rainbow perfect matching. Hatami and Shor 
[6] proved that there is always a partial Latin transversal 
(rainbow matching) of size at least .  n O n 2log

Another topic related to rainbow matchings is or-
thogonal matchings of graphs. Let G be a graph on n 
vertices which is an edge disjoint union of m k-factors 
(i.e. k regular spanning subgraphs). We ask if there is a 
matching M of m edges with exactly one edge from each 
k-factor? Such a matching is called orthogonal because 

of applications in design theory. A matching M is subor-
thogonal if there is at most one edge from each k-factor. 
Alspach [7] posed the above problem in the case . 
Stong [8] proved that if , then there is a such 
orthogonal matching. For , the answer is yes, see 
[9]. In the same paper, Anstee and Caccetta proved the 
following theorem when . 

= 2k
3n m 
= 3k

= 1k

2

Theorem 3. [9] Let G be an m-regular graph on n 
vertices. Then for any decomposition of  into m 
1-factors 1 2

 E G
, , , mF F F , there is a matching M of p edges, 

at most one edge from each 1-factor, with 
2

2
3

33 3
> min , .

2 2 2 2

n n
p m m

 
     

   

 

In any decomposition of  into m k-factors, we 
can construct an edge colored graph by giving each k- 
factor a color. Then a rainbow matching of G corre-
sponds to a suborthogonal matching of G. In particular, 
when , the edge colored graph obtained above is 
properly colored. So we can pose a more general prob-
lem: Let G be a properly colored graph of minimum de-
gree 

 E G

= 1k

 G . Is there a rainbow matching of size  G ? 
Unfortunately, the answer is negative, see [10]. More-
over, if G is a properly colored complete graph, then G 

has no rainbow matching of size more than 
 
2

G 
 
 

. In 

addition, the following theorem was shown in [11]. 
Theorem 4. [8] Let G be a properly colored graph, 

4G K , and     2V G G  . Then G contains a 

rainbow matching of size 
 
2

G 
 
 

. 
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However, we believe that if the order of a properly 
colored graph G is much larger than its minimum degree 

, there should be a rainbow matching of size 
. In [10], we propose the following problem. 

 G
 G
Problem 5. [10] Is there a function  f n  such that 

for each properly colored graph G with  
   V G f G  , G must contain a rainbow matching 

of size ?  G
Since when n is even, an  Latin square has no 

Latin transversal (perfect rainbow matching) (see [3]), if 
the function 

n n

 f n  exists,  f n  should be greater than 
2n. Motivated by this problem, we prove the following 
results in [10]. 

Theorem 6. [10] Let G be a properly colored graph 

and    8

5

G
V G


 . Then G has a rainbow matching 

of size at least 
 3

5

G 
 
 

. 

Theorem 7. [10] Let G be a properly colored triangle- 
free graph. Then G has a rainbow matching of size at 

least 
 2

3

G 
 
 

. 

In [12], Wang, Zhang and Liu proved that if 

 
2 14 1

4

n n
f n

 
 , 

then G has a rainbow matching of size  , which an-
swers the above question in the affirmative. Eiemunsch 

et al. [13] improved this bound to 
13 23 41

1
2 2 8

n

n
     

. 

Later, this bound was improved to 
9 5

2

n 
 by Lo in [14]. 

In this paper, we consider the rainbow matching of the 
properly colored bipartite graph, and prove the following 
result. 

Theorem 8. Let G be a properly colored bipartite 
graph with bipartition  , X Y  and . If   =G k  3

  7
max ,

4

k
X Y  , then G has a rainbow coloring of 

size at least 
3

4

k 
  

. 

For more result about rainbow matchings under the 
color degree conditions, we refer to [15,16]. 

2 Proof of Theorem 8 

Let . Without loss of generality, we assume 
that 

= ,G X Y 
 max , =X Y Y . Suppose that our conclusion is 

not true, we choose a maximum rainbow matching M. 
Let =t M . Without loss of generality, we assume that 

   = 1,2, ,c M t . 

Then 
3

1.
4

k
t

    
 Let   1=X V M X  and   1= .Y V M Y  

Put 1 2=Y Y Y  and 1 2=X X X . Let 11X  denote the 
vertices in X which are incident with 2  by three edges 
with new colors. Clearly, 11 1

Y
X X

11

. Otherwise, we can 
get a rainbow matching of size at least , which is a 
contradiction. Let 11Y  denote the vertices which are 
incident with the vertices in 

1t 

X  by the edges in M. We 
have the following claim. 

Claim 1. 11 4

k
X

    
. 

Proof. Let 2iy Y . If there is an edge ixy  such that 
   Mi , then 1c xy c  x X . Otherwise, there is a 

rainbow matchi ing M xy  of si 1t  , which is a 
contradiction. L 1E  denote the edges which are inci-
dent with vertices in 2Y  and have new colors. Since 
each verte n 2Y  has degree at l st 

 ze

ea

 

k , 

et 
 

x i

 1 2 1
4

k
E k t Y Y

         
2 . 

On the other hand,  1 11 . So 
we have the following equality 

2 11 12E Y X X X  

 2 2 11 1 111 2
4

k
Y Y X X X

          
. 

Hence 

   

2 1

11
2

2

2

2

2

1 2
4

2

3
1 2 1

4 4
       

2

1 2 2
4

      = .
2

k
Y X

X
Y

k k
Y

Y

k
Y k

Y

        


                    


          


2

 

Since 
7

4

k
Y  , 2

7 3
1

4 4

k k
Y k

          
1 , thus 

11 4

k
X

    
. 

Without loss of generality, we assume that 

 11 1 2= , , , pX x x x , 

where 
4

k
p

    
. Let  denote the vertex which is iy

incident with ix  by an edge in M. 
Claim 2. Let ix  be any vertex in 11X  and iy  de-

note the vertex which is incident with ix  by an edge in 
M. If  is incident with a vertex iy 2x X , then 
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   1, ,ic xy p t   . 

Proof. Suppose our conclusion does not hold. First, we 
know that  can not be a new color. Otherwise, 
since 

 ic xy

ix  are incident with three edges having new col-
ors, we can choose one edge (say e). Then we can get a 
new rainbow matching of size  by adding 1t  ,ixy e  
and deleting i ix y

ic xy

. Thus we will get a contradiction. So 
we conclude that . Since G is prop-
erly colored, . So without loss of generality, 
we assume that . Moreover, we assume that 
the edges with new colors are incident with 

  1,2,ic xy 
  i

  = 1ic xy

, p

1x  are 1  

2  and . Now we can choose  such 
that  and 

,e
e 3e

 
 = 1 3e j , 2,j

 c ejc e je  is not incident with y. Hence 
we have a new rainbow matching by adding  
and deleting 

, ,j ie xy e

1 1,i ix y x y , which is a contradiction. 
Claim 3. If there exists an edge xy  such that 

2x X  and , then . 2

Proof. Suppose, to the contrary, . 
If  is a new color, then clearly there exists a 
rainbow matching 

y Y    c xy p t 
c x p 

1, ,
 y 1, , t

 c xy
M xy

, p
= 1

 of size . So we assume 
that . Without loss of generality, we 
assume that . We can also choose one edge e 
incident with 1

1t 
  1,2,y 

 c xy
c x

x  such that e is not incident with y and 
 is a new color. Then we can also obtain a rainbow 

matching by adding  and deleting 1 1

 c e
,e xy x y , which is 

a contradiction. This completes the proof of Claim 3. 
Let xy be an edge such that 2x X  and 11 2y Y Y 

t
. 

By Claim 2 and Claim 3, . Let    y p 1, ,c x 
12 1 11=X X X  and . Since , 12 11Y=Y Y   d x k

 12 12=X Y k t p   . 

On the other hand, 12 1 11=X X X t p   . Hence 

t p k t p     . That is 
2 3

2 4

k p k
t

      
, which 

contradicts with 
3

1
4

k
t

    
. This completes the whole 

proof. 
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