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ABSTRACT 

In this paper, we investigated the code over  2GF  which is generated by the incidence matrix of the symmetric (2,4) - 

net . By computer search, we found that this binary code of  has rank 13 and the minimum distance is 8.  
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1. Introduction 

A  , ,t v k 
k

 design  is an incidence structure with 
 points,  points on each block and any subset of  

points is contained in exactly 


v t

  blocks, where 
> , > 0v k  . the number of blocks is  and the number 

of blocks on a point is .  
b

r
The design  is resolvable if its blocks can be 

partitioned into  parallel classes, such that each pa- 
rallel class partitions the point set of . Blocks in the 
same parallel class are parallel. Clearly each parallel 
class has 


r



=m v k  blocks.   is affine resolvable, or 
simply affine, if it can be resolved so that any two non- 
parallel blocks meet in   points, where  

2k v= =k m  is constant. Affine 1-designs are also 
called nets. The dual design of a design  is denoted 
by . If  and  are both affine, we call  a  
symmetric net. We use the terminology of Jungnickel [1] 
(see also [2-5]). In this case 


   

2m= =v b   and  
= =k r m . That is,  is an affine  

 m m21 , , m    design whose dual  is also aff- 
ine with the same parameters. For short we call such a 
symmetric net a -net.  



 , m
If  is a symmetric net we shall refer to the parallel 

classes of  as block classes of  and to the parallel 
classes of  as point classes of . 








For any finite structure  with point set  and 
block set , the code p  of  over prime field 


 


 C 

pF  is the subspace of the space pF   of all functions 
from  to  pF  that is spanned by the incidence 
vectors of the blocks of . This code is equivalent to 
the code given by the column space of any incidence 
matrix of the incidence structure, where we use the 
blocks to index the columns (and the points the rows) of 

the incidence matrix. 



2. The Symmetric Net with  and  = 4m
= 2  

The symmetric net that we shall be concerned with in 
this paper is the one with  and = 4m = 2.  As a 
design it has parameters  

 1 32,8,8 .  

Its incidence matrix is (1). 
A computer search has shown that to within iso- 

morphism there is only one symmetric net with these 
parameters. We denote this symmetric net by .  

Butson [6] showed that there exist symmetric nets with 
 any prime and 2.m  =  This was extended to m  

any prime power by Jungnickel [7]. Therefo   is one 
of the family of symmetric nets constructed by Jung- 

re 

-d

nickel.  

3. The Codes 

The columns of the incidence matrix of   can be con- 
sidered as vectors of the 32 imensional vector space 
over any finite prime field .F  The su pace they ge- 
nerate is the code of the net   over .

bs
F  By computer 

we found that the bina  code (that is, the code over the 
field of order 2) of   has rank 13. The weight dis- 
tribution of its codewords is given below. The all one 
vector is in the code since it is obtained as the sum of the 
4 columns corresponding to the blocks of any parallel 
class in the incidence matrix. Therefore the code is 
self-complementary in that the complement of a code- 

ord is also a codeword, see [8] or [9]. Hence w

ry

e only 
e number of codewords of weight up to 16.   

w
list th
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
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
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
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
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











00100001111000100000000000000110

01000010000001001001000010101000

00001100000010000010011100000001

01000000101110010000010000100000

10011000010000001010000000001010

00000010000000100001101100010100

00100101000001000100000011000001

00001010011010000000100011000000

00000000100001000111010000010010

00110100000000010000001000101100

11000001000100101000000100000001

10000100001000100011000001100000

00100000000010011000000110010010

00000001010101000000111000001000

01011010100000000100000000000101

10000111100010000000000000011000

00001000000100100100001010100010

01000000010001010010000101000100

00110000001000001001110000000001

11100000010010000101001000000000

00010011000000000000010101100010

00001100001101001000000000010100

00000000100000110010100010001001

00010100110100000001000110000000

00000001000010001110100000100100

01101000000000100000010001011000

10000010001001010000001000000011

00000110010000111100010000000000

01010001001000000010001010010000

10101000100001000000100100100000

00000000000110000001000001001111

M        (1) 

 
Weight 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number 1 0 0 0 0 0 0 0 60 0 0 0 1 4792 0 0 0 486
 

Since im  ance i  t b ary od s 
-

r. 

the min um dist s 8, he in  c e i
3 error correcting.  

There doesn’t seem to be an easy proof that the 
dimension of the code is 13 over the binary field. The 
dimension of the code of   for odd characteristic is 25. 
This we prove in this pape  

The incidence matrix of   may be put in the form: 

=

I I I I I I II

I I A A B B C C

I A B C I A B C

I A C B B C A I
M

I B I B C A C A

I B A C A C I B

I C B A C I A B

I C C I A B B A

 
 
 
 
 
 
 
 
  
 

 

 
 

w e 















her

1 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0
= ,  =

0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0

I A

  
  
  
  
  
  

 

0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 1
= ,  and =

0 1 0 0 1 0 0 0

1 0 0 0 0 1 0 0

B C

  
  
  
  
  
  

 

 = , , ,G I A B C
der 4. 

 is an elementary abelian group of 
or

First suppose that the characteristic of the field is not 
2. 

The matrices in can be simultaneously diagona-  G  
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lised by  
1   1   1   1

1 1 1 1
=

1 1 1 1

1 1 1 1

P

 
   
  
 

  

 

 , , , , , , ,P P P P P P P P

then by , the permutation matrix which moves rows 
(and columns)  to the first eight 
positions, rows (and columns)  
to the next eight positions, rows (and columns)  

 to the next eight positions, rows 
(and columns)  to the last eight 
positions, we get 

Q

15,

1,5,9,13,17,21, 25, 29
2,6,

23, 27,31
4,8,12,16,20,24,28,32

10,14,18, 22, 26,30

3,7,11, 19,

M  conjugate to   and  Conjugating by diagonal 
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

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





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


















1111000000000000000000000000

1111000000000000000000000000

1111000000000000000000000000

1111000000000000000000000000

1111000000000000000000000000

1111000000000000000000000000

11111111000000000000000000000000

0000000011110000000000000000

0000000011110000000000000000

0000000011110000000000000000

0000000011110000000000000000

0000000011110000000000000000

0000000011110000000000000000

0000000011110000000000000000

00000000111111110000000000000000

0000000000000000111100000000

0000000000000000111100000000

00000000000000001110

0000000000000000111100000000

0000000000000000111100000000

0000000000000000111100000000

0000000000000000111100000000

00000000000000001111111100000000

00000000000000001

0000000000000000000000001111111

0000000000000000

0000000000000000000000001111111

000000000000000011

0000000000000000000000001111111

0000000000000000000000001111111

0000000000000000000000001111111

 

10000000

000000001111111

1

1

1

1

1

1

0000000011111111

0000000011111

 
where “−” denotes to −1. 

The diagonal block matrices 






1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

 
         
        
 

        
        
 

        
               

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
 and 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

  
        
      
  

     
      
  

     
          







        

 


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have determinant 4096. In fact they are Hadamard mat- 
rices. Hence the rank of M  is , if the char- 
acteristic is not 2. 
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