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Abstract

In this paper, we discuss about the b-colouring and b-chromatic number for middle graph of Cycle, Path, Fan
graph and Wheel graph denotedas M [C, ], M[P,], M [FLJ and M [W, ].

Keywords: Chromatic Number, b-chromatic, b-colouring, Middle Graph

1. Introduction

Let G be a finite undirected graph with no loops and
multiple edges. A coloring (i.e., proper coloring) of a
graph G = (V,E) is an assignment of colors to the vertices
of G, such that any two adjacent vertices have different
colors. A coloring is called a b-coloring [1], if for each
color i there exists a vertex x; of color i such that every
color j # i, there exists a vertex Y; of color j adjacent to X;,
such a vertex X; is called a dominating vertex for the
colour class i or color dominating vertex which is known
as b-chromatic vertex.

The b-chromatic number of a graph G, denoted by
@(G) is the largest positive integer k such that G has a
b-colouring by k colors. The b-chromatic number of a
graph was introduced by R.W. Irwing and manlove [2] in
the year 1999 by considering proper colorings that are
minimal with respect to a partial order defined on the set
of all partitions of V(G). They proved that determining
@(G)[3] is NP-hard for general graphs, but polynomial
for trees.

Let G be a graph with vertex set V(G) and the edge set
E(G). The middle graph [4,5] of G, denoted by M(G) is
defined as follows. The vertex set of M(G) is defined as
follows. The vertex set of M(G) is V(G) u E(G). Two
vertices X, Y in the vertex set of M(G) are adjacent in
M(G) in case one of the following holds;

1) X, y are in E(G) and X, y are adjacent in G

2)xisin V(G), y is in E(G), and X, y are incident in G.
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2. b-chromatic Number of Middle Graph of
Cycle

2.1. Definition of Cycle

A Cycle is a circuit in which no vertex except the first
(which is also the last) appears more than once. A cycle
with n vertices is denoted by Cn.

2.2. Theorem

For any n >3, o[M(Cn)] =n.

Proof

Let C, be a cycle of length n with the vertices Vi, V,,

-, Vi. By the definition of middle graph the edge Vj
for 1 <i<n,1<j<nof the cycle C, is subdivided by
the vertex V, for m =1, 2, ---, n. Here the vertices
VLV, V., Viinduces a clique of order n.

Now assign a proper colouring to these vertices as fol-
lows. Consider a colour class C = {cj, ¢y, ¢3 -, Cpn}.
Assign the color ¢; to the vertex V, fori=1,2, .-+, n.
Here M(C,) contains a clique of order n, so for proper
colouring we require maximum n colours to colour the
vertices of V,, which produces a b-chromatic coloring.
Next we assign a colouring to the vertices V; for i =1, 2,
.-+, Nn. Suppose if we assign any new colour ¢, to the
vertex V; Vi =1, 2, -+, n, it will not produce a
b-chromatic colouring because none of the vertices V;
does not realizes its own colours. Therefore the only pos-
sibility is to assign an existing colors to the vertices V;.

0JDM



86 D. VIIAYALAKSHMI ET AL.

[ V¢,
C, '
1 vy
v
v Cs
c3 V4
q
V2 / C
1% Vs ,
V5 Cy
[ ,
2 Vi
vy A Vs
V3 v G G s
(@) (b)

Figure 1. (a) [Cs]; (b) p{M(C5)} = 5.

Hence by colouring procedure the above said colouring
is maximal and b-chromatic.

~@[M(C,)]=n forn=3
Eg: (p[M (CS)]:5

3. b-chromatic Number of Middle Graph of
Path

3.1. Definition of Path

A Path is a sequence of consecutive edges in a graph and
the length of the path is the number of edges traversed. A
path with n vertices is denoted as P,,.

3.2. Theorem

For any n>2, (o[M [Pnﬂ =n

Proof:

Let P, be any path of length n — 1 with vertices vy, V,,
--+, Vp. By the definition of middle graph each edge of vj;
for 1 <i<n, 1<]j<nof the path graph P, is subdivided
by the vertex V;, in M[P,] and the vertices V/,V},---,V;

m
along with v,v,,....,v, induces a clique of order n in
M[P,].

ie, V[M(PR)]={vi<i<nju{y,|[t<m<n}

n

n

Now consider a proper colouring to M[P,] as follows.
Consider the colour class C ={c,,C,,"-,C,} . Assign the
color ¢ to the vertices v, for i =1, 2, ---, n. Here
M[P,] contains a clique of order n. So for proper colour-
ing it require N distinct colours which results in b-chro-
matic coloring. Next we assign the coloring to the verti-
cesV; fori=1,2, ---, n. Suppose if we assign the colour
Cns1 to the vertex v; Vi = ---n which does not produces
b-coloring. Hence we should assign only an existing
colours to the vertices V,,V,,....,V, . Hence by coloring
procedure it is the maximal and b-chromatic coloring.
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Figure 2. (a) P3; (b) ¢[M(P3)] = 3.

.'.go[M(pn)]:n forn>2.

Eg: o[ M (p;)]=3

4. b-chromatic Number of Midlle Graph of
Fan Graph

4.1. Definition of Fan Graph

A fan graph F,, is defined as the graph join K_m+ P,
where K, is the empty graph on nodes and P, is the
path on n nodes.

4.2. Theorem

p[M(F,)]=n+1 forn>2

Proof

Let (X,y) be the bipartition of Fpn,, with [X] =m and |y| =
n. Let V be the only vertex of X and y = {V, V5, -+, Vp}.
By the definition of Middle graph each edge vv; for i =
1,2,3, ---, nof F, is subdivided by the vertex v, in
M[F,,] and the vertices V/,V,,---,V,,, V induces a clique
of order n + 1 in M[F, »].
ie., V[M (Fl,n)J ={v/1<i<nlui{v /I<m<nluV.

Now assign a proper colouring to these vertices as fol-
lows. Consider a colour class C = {c;, C5, -+, Cns1}. First
assign the colour ¢y, C;, -, C, to the vertices v, form
=1,2, .-+, n. Here M[F,,] contains a clique of order n.
So for proper colouring we require n distinct colours
which results as b-chromatic colouring. Next assign the
colour c,,, to the vertex v and C,,,, C,,,, -~ to the
vertices V,,V,,--+,V, . Here the vertex Vv realizes its own
colors but the vertices V,,V,,-:-,V, does not realizes its
own colors, so we cannot assign any new colours to the
vertices v/ fori=1,2, ---, n. Therefore by assigning
only existing colors to the v; produces a b-chromatic col-
oring. Hence by coloring procedure the above said col-
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(a) (b)
Figure 3. (a) [F13]; (b) @[M(F13)] = 4.

oring is maximal.

~p[M(F,)]=n+1 forn=2.
Eg: gp[M (F1’3)]:4

5. b-chromatic Number of Middle Graph of
Wheel Graph

5.1. Definition of Wheel Graph

A graph W, of order n which contains a cycle of order n
— 1, and for which every graph vertex in the cycle is
connected to one other graph vertex (which is known as
hub). The edges of a wheel which include the hub are
spokes.

5.2. Theorem

For any n>4, g[M(W,)] =n

Proof

Let v,,v,,---,v, be the vertices taken in anticlock
wise direction in the wheel graph w,, where Vv, is the hub.
In M(wp), by the definition of middle graph the edge in-
cident with v; together with vertex v; induces a clique of
n vertices in M(wy). Let v, be the clique in M(w,) for i
= 1’ 2, <N,

Now consider a proper colouring to these vertices as
follows. Consider the color class C ={c,,c,,*,C,} .
First assign the color ¢,,C,, --,C, to the vertex v, for
i=1,2, ---, n. By the above statement that M(w,) con-
tains a clique of order n, so we need only n colors to
colour the vertices. Next we assign the color Cpi; to the
hub. Here the vertices V/,v},---,v; and the hub v, real-
izes its colors, which produces a b-chromatic coloring.
Next if we assign any new color to the vertices V; for i =
1,2, ---,n—1, it will not produce a b-chromatic color-
ing. So we should assign the existing colors ¢y to the
vertices v; for i = 1, 2, ---, n—2 and ¢, to the verter v,_;.
Hence by coloring procedure it is the maximum and
b-chromatic coloring.
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Figure 4. (a) [ws]; (b) @[M(ws)] =5.

(p[M (Wn)] =n forn>4.
Eg: (/J[M (W5 )] =5
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