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Abstract 
In this study, Artificial Neural Network has been employed for analysis of triangular plate with 
different geometrical and loading parameters. Plates, having different sizes of concentric holes are 
analyzed. Finite element analysis for 81 cases is carried out using ANSYS Workbench 15.0 software. 
Using these data of FEM analysis an Artificial Neural Network has been trained. The successfully 
trained network is further used for analysis of four new cases which are also validated by using 
ANSYS Workbench 15.0 software. 
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1. Introduction 
Regardless of the powerful analysis software now available those allow us to find out the numerical solution of 
various problems, including problems of structural analysis, the development of methods of approximate solu-
tion which would provide solutions in the form of simple analytic expressions is very important. One of the me-
thods is artificial neural network also known as ANN. These are a functional abstraction of the biologic neural 
structures of the central nervous system. 

Scientists have long been inspired by the human brain. In 1943, Warren S. McCulloch, a neuroscientist, and 
Walter Pitts [1], a logician, developed the first conceptual model of an Artificial Neural Network. In their paper, 
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“A logical calculus of the ideas imminent in nervous activity”, they described the concept of a neuron, a single 
cell living in a network of cells that receives inputs, processes those inputs, and generates an output. Their work, 
and the work of many scientists and researchers that followed, did not mean to accurately describe how the bio-
logical brain works. Rather, an Artificial Neural Network was designed as a computational model based on the 
brain to solve certain kinds of problems.  

ANNs are powerful pattern recognizers and classifiers. Garrett [2] has given an interesting engineering defini-
tion of the ANN as: “a computational mechanism able to acquire, represent, and compute mapping from one 
multivariate space of information to another, given a set of data representing that mapping”. Their computing 
abilities have been proven in the fields of prediction and estimation, pattern recognition, and optimization. They 
are suitable particularly for problems too complex to be modeled and solved by classical mathematics and tradi-
tional procedures. Neural networks can be hardware (neurons are represented by physical components) or soft-
ware based (computer models), and can use a variety of topologies and learning algorithms. Neural networks 
have been used for various structural analysis like fully stressed design of trusses, buckling behavior of plates, 
stress concentration factor analysis for membranes etc.  

In Figure 1, an Artificial Neural Network consisting of an input layer with three neurons, one hidden layer 
with four neurons, and an output layer with two neurons is shown. There would be a state function and transfer 
function like summation function, sigmoid squashing function respectively. Here, a training algorithm is needed 
that can be a back-propagation algorithm. Neurons are the processing elements of network. Neuron consists of a 
set of weighted input connections, a bias input, a state function, a nonlinear transfer function, and an output. Fig-
ure 2 shows the structure of a neuron. 

P. Emmanuel Nicholas et al. [3] proposed a novel approach to study neural network based buckling strength 
prediction of laminated composite plate with central cut-out. The laminated composite plates with holes ana-
lyzed using finite element analysis by optimizing the parameters like thickness, orientation, material and the 
stacking sequence to obtain the desired characteristics for these structures. They showed that using finite ele-
ment analysis makes the process a more tedious job and thus proposed to construct the Artificial Neural Net-
work to predict the buckling behavior of the composite plate. Hojjat Adeli [4] presented the first journal article 
on neural network application in civil/structural engineering in 1989.  
 

 
Figure 1. Neural network structure. 

 

 
Figure 2. Structure of a neuron. 
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In many previous research papers, membrane with holes or cutouts analysed using finite element software like 
ANSYS [5], also stress field around circular holes in plates with arbitrary thickness has been studied but most of 
the time loading considered is to be in plane loading, However, it seems to be difficult to locate a work that 
quantifies the use of ANNs for analysis of equivalent stress, strain and directional deformation in a triangular 
plate subjected to vertical surface pressure without performing finite element analysis. The Artificial Neural 
Network is used as an alternative analysis tool to analyze plates with hole since it can handle uncertainty 
through the probability method. In some of the following research papers finite element analysis has been per-
formed for plates and membranes with cut-outs. Zuxing Pan, Yuansheng Cheng and Jun Liu [6], dealt with a 
complex variable method and proposed stress functions to obtain the solution for stress distribution around rec-
tangular hole in finite plate subjected to uniaxial tension. They analyzed effect of hole sizes, hole orientation and 
plate’s aspect ratio on stress distribution. Jeom Kee Paik [7] examined the ultimate strength of metallic plates 
with central circular cut-out under shear loading. The influence of boundary conditions on the buckling load for 
rectangular plates of various cut-out shape, length/thickness ratio, and ply orientation was examined by Buket 
Okutan Baba [8]. Boundary conditions considered and their various combinations were clamped, and pinned. 
The plates were subjected to in-plane compression load. The results of experimentation were validated using 
numerical analysis by ANSYS. A.V Singh, U.K Paul [9], presented the results of their study which was based on 
generalized work-energy method for rectangular plates with circular cut-out. Optimum design of holes and 
notches by considering fatigue life was presented by Hwai Chung Wu, and Bin Mu [10]. V.G. Ukadgaonker, 
and D.K.N. Rao [11] gave a general solution for bending of symmetric laminates with holes considering any 
shape of hole in symmetric laminates subjected to remotely apply bending or twisting moments. Moments 
around circular, elliptical, triangular, square, rectangular and several irregular shaped holes in cross-ply and an-
gle ply symmetric laminates are obtained. Hsuan-Teh Hu, and Bor-Horng Lin [12] studied the buckling resis-
tance of symmetrically laminated plates with a given material system subjected to uniaxial compression. The 
research was done with plates having different plate thicknesses, aspect ratios, central circular cut-outs and dif-
ferent end conditions.  

In this study, Artificial Neural Network has been employed for analysis of maximum equivalent von Mises 
stress, strain and directional deformation in equilateral triangular plate with different geometrical and loading 
patterns. Plates, having different size concentric holes are analyzed. Finite element analysis for 81 cases is car-
ried out using ANSYS Workbench 15.0 software. Using these data of FEM analysis an Artificial Neural Net-
work has been trained. The successfully trained network is further used for analysis of five new cases which are 
also validated using ANSYS Workbench 15.0 software. 

2. Structural Modelling and Analysis 
Modeling, meshing and analysis contours of plate are shown in Figure 3. Plate is a polygon of three sides hav-
ing concentric hole. Size of edges of plate, thickness, size of hole diameter and loading pressure are varying pa-
rameters. In Table 1, isotropic elastic constants values are shown, those were used given to as elemental proper-
ties. Other, in use entities for finite element modeling is provided in Table 2. In total 81 cases are generated, and 
these are stated in Table 3. 

Geometry of the plates are created using ANSYS workbench 15.0 geometry tool, design modeler and then 
analysed using ANSYS mechanical or multi-physics too. In these models, fixed edge support condition is pro-
vided. Varying loading pressure is acting in -z direction where plates are lying in X-Y plane. 

In Figure 3, A is showing the model view, B is the meshed structure, in C, Loading has been shown and in D, 
E, F, contour of variation in maximum equivalent von Mises stress, strain and directional deformation are shown 
respectively. 

3. Finite Element Analysis 
Finite element analysis has been performed using ANSYS Workbench 15.0 and results for following parameters 
are recorded, 

1) Maximum Equivalent von Mises Stress 
2) Maximum Equivalent von Mises Strain 
3) Directional Deformation in Z-Direction 
Output results are tabulated in Table 4. These values have been used as training data for Artificial Neural 

Network, in the next section. 
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Figure 3. Modeling, meshing & analyses of plate. 

 
Table 1. Isotropic elastic constants. 

Young’s Modulus 
(MPa) Poisson’s Ratio Bulk Modulus  

(Pa) 
Shear Modulus  

(MPa) 

2E+5 0.3 1.6667E+5 7.692E+4 

 
Table 2. Entities for finite element modeling. 

Sr. No. Parameters Value 

1 Material Structural steel 

2 Polygon Three sided equilateral triangle 

3 Hole Single and concentric 

4 Support condition All fixed edges 

5 Loading Surface pressure in -Z direction 

6 Meshing element Eight noded hexahedral element 

7 Meshing inflation Automatic (program controlled) 

8 Relevance  0 

9 Relevance center Fine  

10 Meshing smoothing Medium  

11 Span angle center Fine  

4. Application of Neural Network  
The input, output data given in Table 3 and Table 4 are used for training of the neural network. A 4-6-3 size 
back propagation neural has been trained. The input parameters are edge dimension, hole diameter, thickness of 
plate and pressure applied and output parameters are maximum equivalent von Mises stress, maximum equiva-
lent von Mises strain and directional deformation in Z-direction. For ANN, an in-house developed software has 
been used. The error tolerance is kept 0.005. It took 1996082 epochs to converge to this tolerance. Thus trained 
network is used for fully analysis of four new cases of model plates, given in Table 5. 
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Table 3. Input for finite element models. 

Sr. No. 

Input for ANSYS 

Sr. No. 

Input for ANSYS 

Edge 
Dimension 

(mm) 

Hole Dia. 
(mm) 

Thickness 
of Plate 
(mm) 

Pressure 
Applied 
(MPa) 

Edge  
Dimension 

(mm) 

Hole Dia. 
(mm) 

Thickness 
of Plate 
(mm) 

Pressure 
Applied 
(MPa) 

1 500 50 10 0.3 42 750 75 20 0.7 

2 500 50 10 0.5 43 750 75 30 0.3 

3 500 50 10 0.7 44 750 75 30 0.5 

4 500 50 20 0.3 45 750 75 30 0.7 

5 500 50 20 0.5 46 750 100 10 0.3 

6 500 50 20 0.7 47 750 100 10 0.5 

7 500 50 30 0.3 48 750 100 10 0.7 

8 500 50 30 0.5 49 750 100 20 0.3 

9 500 50 30 0.7 50 750 100 20 0.5 

10 500 75 10 0.3 51 750 100 20 0.7 

11 500 75 10 0.5 52 750 100 30 0.3 

12 500 75 10 0.7 53 750 100 30 0.5 

13 500 75 20 0.3 54 750 100 30 0.7 

14 500 75 20 0.5 55 1000 50 10 0.3 

15 500 75 20 0.7 56 1000 50 10 0.5 

16 500 75 30 0.3 57 1000 50 10 0.7 

17 500 75 30 0.5 58 1000 50 20 0.3 

18 500 75 30 0.7 59 1000 50 20 0.5 

19 500 100 10 0.3 60 1000 50 20 0.7 

20 500 100 10 0.5 61 1000 50 30 0.3 

21 500 100 10 0.7 62 1000 50 30 0.5 

22 500 100 20 0.3 63 1000 50 30 0.7 

23 500 100 20 0.5 64 1000 75 10 0.3 

24 500 100 20 0.7 65 1000 75 10 0.5 

25 500 100 30 0.3 66 1000 75 10 0.7 

26 500 100 30 0.5 67 1000 75 20 0.3 

27 500 100 30 0.7 68 1000 75 20 0.5 

28 750 50 10 0.3 69 1000 75 20 0.7 

29 750 50 10 0.5 70 1000 75 30 0.3 

30 750 50 10 0.7 71 1000 75 30 0.5 

31 750 50 20 0.3 72 1000 75 30 0.7 

32 750 50 20 0.5 73 1000 100 10 0.3 

33 750 50 20 0.7 74 1000 100 10 0.5 

34 750 50 30 0.3 75 1000 100 10 0.7 

35 750 50 30 0.5 76 1000 100 20 0.3 

36 750 50 30 0.7 77 1000 100 20 0.5 

37 750 75 10 0.3 78 1000 100 20 0.7 

38 750 75 10 0.5 79 1000 100 30 0.3 

39 750 75 10 0.7 80 1000 100 30 0.5 

40 750 75 20 0.3 81 1000 100 30 0.7 

41 750 75 20 0.5      
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Table 4. Data recorded as output of finite element analyses. 

Sr. No. 

Output from ANSYS 

Sr. No. 

Output from ANSYS 

Maximum 
Equivalent von 

Mises Stress 
(MPa) 

Maximum 
Equivalent von 

Mises Strain 
*10−5 (mm/mm) 

Maximum 
Directional (-z) 

Deformation 
(mm) 

Maximum 
Equivalent von 

Mises Stress 
(MPa) 

Maximum 
Equivalent von 

Mises Strain 
*10−5 (mm/mm) 

Maximum 
Directional (-z) 

Deformation 
(mm) 

1 66.202 33.261 0.18405 42 87.259 43.827 0.27533 

2 110.34 55.436 0.30674 43 17.679 8.8397 0.036354 

3 154.47 77.61 0.42944 44 29.466 14.733 0.060589 

4 17.685 8.842 0.0242 45 41.252 20.626 0.084825 

5 29.475 14.737 0.040393 46 162.05 81.025 0.88067 

6 41.264 20.632 0.056551 47 270.08 135.04 1.4678 

7 9.0018 4.5009 0.00778 48 378.12 189.06 2.0549 

8 15.003 7.5015 0.012967 49 39.943 19.534 0.11334 

9 21.004 10.502 0.018154 50 64.905 32.557 0.18889 

10 67.227 33.753 0.1706 51 90.867 45.579 0.26445 

11 112.04 56.256 0.28433 52 17.486 8.743 0.034888 

12 156.86 78.758 0.39806 53 29.143 14.572 0.058146 

13 17.195 8.5975 0.02245 54 40.801 20.4 0.081404 

14 28.658 14.329 0.037417 55 283.38 141.69 2.8552 

15 40.122 20.061 0.052384 56 472.3 236.15 4.7587 

16 8.7944 4.3972 0.007203 57 661.22 330.61 6.6622 

17 14.657 7.3286 0.012005 58 71.716 35.858 0.36461 

18 20.52 10.26 0.016868 59 119.53 59.764 0.60768 

19 62.198 31.23 0.14494 60 167.34 83.669 0.85075 

20 103.66 52.05 0.24157 61 32.137 16.069 0.11049 

21 145.13 72.869 0.3382 62 53.562 26.781 0.18415 

22 16.042 8.0209 0.019119 63 74.987 37.494 0.25781 

23 26.736 13.368 0.031865 64 281.18 140.59 2.8977 

24 37.431 18.715 0.044611 65 468.64 234.32 4.8296 

25 8.2377 4.1189 0.006158 66 656.09 328.04 6.7614 

26 13.73 6.8648 0.010262 67 68.241 34.121 0.36989 

27 19.221 9.6107 0.014367 68 113.74 53.868 0.61648 

28 152.1 76.054 0.90679 69 159.23 79.615 0.86307 

29 253.51 126.76 1.5113 70 30.622 15.311 0.11199 

30 354.91 177.46 2.1158 71 51.036 25.518 0.18666 

31 39.871 19.937 0.11829 72 71.45 35.726 0.26132 

32 66.452 33.228 0.19714 73 278.23 139.12 2.8834 

33 93.033 46.519 0.276 74 463.72 231.86 4.8057 

34 17.929 8.9651 0.036494 75 649.21 324.6 6.728 

35 29.882 14.942 0.060824 76 65.935 33.129 0.36806 

36 41.835 20.919 0.085153 77 109.89 55.215 0.61343 

37 156.9 78.45 0.91551 78 153.85 77.301 0.8588 

38 261.5 130.75 1.5258 79 29.562 14.844 0.11137 

39 366.1 18.305 2.1362 80 49.27 24.739 0.18562 

40 37.397 18.785 0.118 81 69.978 34.635 0.25987 

41 62.328 31.305 0.19666     
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Validation of results has been performed in Table 6, also percentage (%) variation is carried out between the 
analysed parameters Artificial Neural Network and ANSYS Workbench. Graphical representation of analysed 
parameters for new cases model plates are shown in Figure 4, Figure 6, Figure 8 and percentage variation are 
shown in Figure 5, Figure 7, and Figure 9. It can be observed that averages of absolute positive errors are 3.85, 
4.2, and 3.98 for maximum equivalent von Mises stress, maximum equivalent von Mises strain and directional 
deformation in -Z direction respectively which are small values. Thus it has been proved that the use of Artifi-
cial Neural Network can avoid the lengthy and tedious complex modeling and analysis using costly FEM soft-
ware. 

Furthermore, correlation analysis of ANSYS and ANN results have been also carried out and shown in Fig-
ures 10-12. 

These regression maps are between ANSYS as observed values and ANN as predicted values. The more va-
riance that is accounted for by the regression model the closer the data points will fall to the fitted regression 
line. Theoretically, if a model could explain 100% of the variance, the fitted values would always equal the ob-
served values and, therefore, all the data points would fall on the fitted regression line. It can be observed that 
the sum of squared residuals (R2) for all three output parameters are close to 1 that accounts for 100% of the va-
riance. Hence it can be proved that neural network predictions are close to FEM results. 
 
Table 5. New model cases for validation. 

Sr. No. 
New Cases 

Edge Dimension (mm) Hole Dia. (mm) Thickness of Plate (mm) Pressure Applied (MPa) 

A 900 80 15 0.35 

B 600 60 25 0.4 

C 700 70 20 0.45 

D 800 90 25 0.5 

 
Table 6. Validation of results. 

Sr. No. Model 
Maximum Equivalent von Mises 

Stress 
Maximum Equivalent von Mises 

Strain 
Directional Deformation in (-Z) 

Direction 

ANN ANSYS % ANN ANSYS % ANN ANSYS % 

1 A 114.28 117.00 2.32 0.00065 0.00059 9.25 0.63140 0.66198 4.62 

2 B 22.79 21.85 4.31 0.00011 0.00011 1.59 0.03625 0.03450 5.08 

3 C 51.25 49.22 4.11 0.00024 0.00025 2.07 0.14082 0.13491 4.38 

4 D 47.74 45.62 4.66 0.00024 0.00023 3.89 0.13281 0.13041 1.84 

 

 
Figure 4. Max. equivalent von Mises stress by ANN and 
ANSYS for model case 1. 
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Figure 5. % Variation of max. equivalent stress for ANN 
and ANSYS for model case 1. 

 

 
Figure 6. Max. equivalent von Mises strain by ANN and 
ANSYS for model case 2. 

 

 
Figure 7. % Variation of max. equivalent strain for ANN 
and ANSYS for model case 2. 
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Figure 8. Directional deformation in -Z direction by ANN 
and ANSYS for model case. 

 

 
Figure 9. % Variation of directional deformation in -Z di-
rection of ANN and ANSYS for model case 3. 

 

 
Figure 10. Regression analyses for max. equivalent von Mises stress between ANN 
and ANSYS for new models. 
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Figure 11. Regression analyses for Max. equivalent von Mises strain between ANN 
and ANSYS for new models. 

 

 
Figure 12. Regression analyses for directional deformation in -Z direction between 
ANN and ANSYS for new models. 

5. Conclusions 
Followings are the salient conclusions of this study: 

1) Artificial Neural Network (ANN) is a very powerful tool for stress analysis of triangular plates with con-
centric cut-outs. 

2) Artificial Neural Network approach is easy and fast whereas traditional techniques are tedious and time 
consuming and require greater skills. 

3) The differences between the maximum equivalent von Mises stress, strain and directional deformation cal-
culated by ANN and ANSYS Workbench 15.0 are low. 

4) Using ANN, dependency upon costly analysis and design packages can be avoided.  
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