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ABSTRACT 

In this paper, we suggest to study the behavior of a mat foundation on subsoil from the plate theory taking into account 
the soil-structure interaction. The objective is to highlight the soil-structure interaction particularly the influence of the 
rigidities of the soil and the concrete on the subgrade reaction (k) and the displacements of the mat foundation subjected 
to vertical loads. From plate theory and the soil-structure interaction, the general equation is reached. This equation de-
pends more on the subgrade properties than the concrete foundation properties. Consequently, the behavior of the mat 
foundation is more influenced by soil properties than the concrete. 
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1. Introduction 

The structural and geotechnical calculations of civil en-
gineering works involve the limit state method and re-
quire the determination of characteristic values for resis-
tance and deformation criteria of structures and soils. 
However, the geotechnical design is mainly based on the 
determination of the displacement caused by the actions 
applied to foundation and the determination of stresses 
under limit state service. The structural design is strongly 
based on the determination of stresses and displacements. 
A computational approach that takes into account struc-
tural and geotechnical aspects related to the design of 
foundation structures must be developed. It is then ques-
tion of interaction between two bodies of very different 
characteristics of deformability. The rupture is often fol-
lowed by the formation of a thin region led in the direc-
tion of contact. This area is called soil-structure interface 
and it is the location of the major displacements. This 
work focused on the foundation slab and, more particu-
larly, on the characterization of the soil-structure inter-
face. A precise knowledge of moduli characterizes its 
deformability and stress paths which should facilitate the 
optimization of the structural and geotechnical design of 
foundation. 

2. Modelisation 

A foundation is responsible for transmitting the loads 
from the superstructure to the soil; it provides an inter-
face between the upper part of the structure and the soil. 
A mat foundation is a continuous reinforced concrete 
slab and the study may be governed by the theory of 
plates whose behavior can be studied from the Lagrange 
equation which take into account the soil-structure inter-
action. The solution of the Lagrange equation is possible 
with the use of the methods of Fourier series or finite 
differences with well-defined boundary conditions. Cha- 
racterization of the interface has also allowed us to see 
that the soil-structure interaction is important for the de-
sign of foundation. Selvadurai [1] presented a detailed 
analysis of the soil-foundation interaction problem, ex-
plaining the different approaches proposed to model this 
interaction. These models recognize that soil reaction is a 
linear function of the displacement of the soil-founda- 
tion interface layer. Several models have been devel-
oped: 
 Winkler model [2], 
 Elastic continuum model [1]; 
 Biparametric model [3]; 
 Filonenko Borodich model [4,5];  
 Hetenyi model model [6];  
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 Reissner model [8];  
 Vlazov and Leontiev model [9];  
 Vlazov modified model [10].  

The system is similar to a concrete slab (Eb, νb) resting 
on an elastic soil (Es, νs). The plate is assumed to rest on 
a spring assembly infinitely close to each other with k as 
the modulus of reaction. These springs are connected by 
an elastic membrane of shear modulus (2T). Modeling of 
the system is shown in Figure 1. 

The problem is governed by the following general eq-
uation: 
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where D is the flexural rigidity of the plate and is given 
by: 
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with: 
Eb: elastic modulus of the material constituting the 

plate; 
e: the thickness of the plate; 
νb: Poisson’s ratio of the plate; 
k is the modulus of subgrade reaction.  
Biot [11] developed an empirical formula for k ex-

pressed as follow: 
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Vesic [12] improved (3) by: 
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where: 
Es is the modulus of subgrade; 
νs is the Poisson’s ratio of the subgrade; 
B is the width of the foundation; 
Eb is the Young’s modulus of the concrete foundation; 
I is the moment of inertia of the cross section of the 

concrete. 
Equation (2) can be written as: 
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and Equation (4) by: 
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Generally for foundations, Poisson’s ratio is between 

0.15 and 0.4 [13], and the term 
0.108
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 is between  

1.0025 and 1.019 [13] (which leads to ignore this term in 
the expression) for k in Equation (6) which can be re-
written as follows: 
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Thus by combining (3) and (6), k is expressed by the 
following equation: 
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where a and   are constants according to different au-
thors (Table 1). 

It should specify that the vertical modulus of subgrade 
reaction can be determined from the results of geotech-
nical testing. T is the horizontal elastic modulus of sub-
grade reaction. Vlasov [9] proposes the following rela- 
tion: 

           (4) 

    
 

 

Figure 1. Discretisation of the system. 
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Table 1. Equations giving k [13].  

Authors a   k 
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To a relatively deep layer of soil where the normal 
stress may vary with depth, it is possible to use, for the 
function Φ(z), the non-linear continuous variable defined 
by Equation 10(a). Φ(z) is a function which describes the 
variation of the displacement w(x,y) along the z axis, 
such that: 
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Selvadurai [1] suggests two expressions of Φ(z): 
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H: thickness of the soil layer (depth of the rigid sub-
stratum). 

And for a linear variation of Φ(z), the shear parameter 
model is given after integration by: 

    212 1 1 1
s

s s s

E H
T

   





      (11) 

3. Analytical Solutions 

Before the calculation of displacements due to load, it 
should be consider that the motion of the interface is a 
result of the weight of the slab. This displacement is con-
stant on the entire extension of the interface and is a 
function of the thickness of the plate and the modulus of 
vertical subgrade reaction. The displacement w0 is given 
by: 

0 25000w e k             (12) 

In the case of an elastic homogeneous soil, a uniform 
distribution of the forces applied to the foundation sys-
tem is assumed. This amounts to admitting that the stress 
q(x,y) is constant (Q value) from each point of the foun-
dation. For a foundation of infinite dimension, a zero 
displacement at the edges of the plate is imposed. If each 
edge is far from one to another, this is true. Although, 
this questionable assumption allows an accurate resolu-
tion of the problem using the Fourier series. At first, we 
assume a uniform distribution of the applied foundation 
system forces. So q(x,y) is constant (Q value) for ana-
lytical solution, and the double Fourier series is used. 

q(x,y) can be written as: 
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It result that for m and n impair: 
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For the calculation of the displacem
th

ents, we assume 
at w(x, y) can also be decomposed into Fourier series: 
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By replacing the differential equation governing the 
behavior of the system we have: 
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According to (23), the expression bmn can be given by 
the following relation: 
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The axial deflection is: 
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The total displacement is obtained by summing the 

i

is study that the elastic modulus and 

 

elastic modulus of the soil. Hence the importance of 
 d splacements given by Equations (12) and (25). 

Figures 2 to 7 show the evolution of k according to the 
different parameters of the mechanical behavior model. 
Figure 2 shows the increase of k with the increase of Es. 
Figures 3-5 show that k is sensitive to the mechanical 
properties of the soil foundation. These figures show that 
k and the displacements vary slightly with the mechani-
cal properties of concrete foundation and are strongly 
dependent on elastic modulus of the soil foundation. 

4. Conclusion 

It appears from th
the Poisson’s ratio of the subgrade are the most influen-
tial parameters on the displacements of the plate. The 
results show that modulus of subgrade reaction and dis-
placements varies slightly with the mechanical properties 
of concrete foundation and is more influenced by the

mastering the property of the foundation soil is to better 
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Figure 2. Modulus of subgrade reaction versus B/e ratio of 
the plate for various values of Es. 
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