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Abstract

In this paper, Bayesian computational method is used to estimate inverse Ray-
leigh Scale parameter with fuzzy data. Based on imprecision data, the Bayes es-
timates cannot be obtained in explicit form. Therefore, we provide Tierney and
Kadane’s approximation to compute the Bayes estimates of the scale parameter
under Square error and Precautionary loss function using Non-informative
Jefferys Prior. Also, we provide compared numerically through Monte-Carlo
simulation study to obtained estimates of the scale parameter in terms of mean
squared error values.
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1. Introduction

The Rayleigh distribution (RD) is originated from two parameter Weibull distri-
bution and it is an appropriate model for life-testing. It can be shown by transfor-

mation of random variable that if the random variable X'has Rayleigh distribution,

Then the random variable Y = % has an inverse Rayleigh distribution (IRD)

[1]. The Inverse Rayleigh distribution (IRD) has been introduced by Trayer
(1964) [2]. The distribution of life times of several types of experimental units
can be approximated by the IRD [3]. The IRD plays an important role in many
applications, including life test and reliability studies [4]. A random variable Yis

said to have a one-parameter (IRD) if it has the following (PDF),

(1)
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and (CDEF), is given by:

-4
FY(y;;t)zeyz;yZO,/1>O (2)

where A is the scale parameter.

2. Maximum Likelihood Estimators (MLE)

Given y :(yl, Yo, ot ym) be an (i.i.d.) random vector of a random sample of

size m from (IRD), the complete-data likelihood function is:

1
1 bz
L(;L;X)zzm/lmHLFe v (3)
i
Now if y is not observed precisely. Then, we can compute its probability by
using Zadeh’s definition of an imprecision event [5]. The observed-data

log-likelihood function can then be obtained as,

L(W)jjf fy (i) ufy, (y)dy

(1) =TT 2 a, () W

where uf, (y) isthe Borel measurable membership function.
Now, by take the natural logarithm for the likelihood function and differen-

tiating with respect to A4 and then equating to zero we get:

1

8InL(/1;y) m mj’?ey wfy, (y)dy
G ik e =0 (5)
Jyreuty (v)ey

Since, the (MLE) of A is the solution of Equation (5), so, we used the mod-
ified Newton’s Method to determine the MLE of the parameter A .
Where, at iteration (h+1)

oln L(xl;)_?)
2(0+1) =ﬂ:(h)—(v) o4 2=i u>1 ©6)
o InL(4:9)
—
=i
and
1 1 > i
21n L(/I;y) m o j7ey ufy, (y)dy . ery ufy (y)dy
TR EA D 2 b O

3. Bayes Estimator

In this section, we describe Bayesian method to estimate the parameter A.In
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Bayesian opinion the parameter itself is considered as a random variable from a
given probability distribution whose variability can be described by the prior
distribution.

Assume that the prior distribution of the unknown scale parameter A of

IRD defined as using Jeffery’s prior information 7z (1), which is given by [2]:

m(A) o J1(4)

where 1(4)=-mE [M}

oA?

0A*

2 .
=>z(1)= \/—mE{M} , a is a constant,

where

0A? A7 A>0

E{—az Inf (y;l)}z_—l:wr(ﬂ): am

Now, the posterior density function of A given imprecision data is:

N QLG
"(#19)= J:ﬁ(ﬂ)L(ﬂ;)Z)dﬂ

o —ey 5 (y)dy
eig)— - ®
(y)dy

i=1 F
In this study we consider non-informative prior density for A based on

square error and precautionary loss function as the following:

3.1. Bayes Estimator Based on Square Error Loss Function

Bayes estimation of any function of the scale parameter A say g(4),based on

a squared error loss function, may be written as,
[F9(2)7(2)L(2:9)da

[“x(A)L(4:)da ®

6.(2)=E[g(2)17]=

3.2. Bayes Estimator Based on Precautionary Loss Function

Precautionary loss function was proposed by Norstrom (1996) [6], as follows:

L(é,&):@,

where 6 isan estimate of 6.
Bayes estimation of any function of the scale parameter A say g(4), based

on a precautionary error loss function, may be written as,
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; j g (ﬂ,y)dﬁ
I W (43)d4

Note that, Bayes estimator in (9) and (10) cannot be simplified in to a closed

(10)

form. Therefore, we consider Tierney and Kadane’s approximation form to ob-

tain Bayes estimator of A of IRD.

4. Tierney and Kadane’s Approximation Form

Tierney and Kadane (1986) [7] proposed an alternative method for the evalua-

tion of the ratio of integrals of the form (9) and (10).

Setting Q(4)=In(z(2))+ '”(L(’l;@)
j g(2

G,(4)=Elg(2)1¥]= (11)
G,(4)=yE[9°(D)1¥]= (12)
Now, set
-2
()= "0 ) 03
And
H;(ﬂ):M+H(ﬂ) (14)
j e™
oy (15)
J' n
® NnHp(2) 2
g,(4)= I v (16)

Now, the Equation (15) and Equation (16) can be written as

§! (/1)=\/T—jeXp{n(H;‘(i*)—H (ﬂ))} (17)
g, (/1):\/\/gexp{n(H;(i*)—H(/i))} (18)

where, 7: is the minus the inverses of the second derivative of H. (1) or

H,(4) at i depending on what loss function have been used. 7 : is the mi-

nus the inverses of the second derivative of H (1) at A.And 1" maximize
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H;(4) and H;(ﬂ,) aswellas A maximize H(/l)

S

Now, the function H (1) is given by,
H(4)== k+(m -1)In(2 InJ' ey wuf; (y)dy (19)
m
where,
k:In(a)+mIn(2)+%ln(m) (20)
and A that maximize H (4), can be obtained by solving the following equa-

tion,

- B=yn Y =0 21)

It is clear there is no explicit solution to Equation (21). Therefore, modified

Newton method is applied to solve the required equation.

oH (1)

V= U | (22)

where

PH(2) 1 —(m—l)+i y' o 3 h (23)

8/12 m 12 i=1 1 j i=1 -

then,

Now, following the same argument with g(1)= 21

4.1. Tierney and Kadane’s Approximation of A Based on Square
Error Loss Function (TKS)

Set (4)=A,Equation (13) will be,

H:(l):% k+(m)|n(/1)+zimllnj%ey2yfyi (Ydy| 2
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where kis a constant as in (20).
Now, A~ that maximize H;(4) in (24) can be obtained by solving follow-

ing equation iteratively as in

aH:(ﬂ)
) ) o | .
A0 =270 (v azH*(/l)Mi’ . -
oA 0!
where
(1) 1| m el Hh ()Y
o4 m /i*_i; =

And

oA®

21 L
[aH_w ] )
2=

Now, Bayes estimate of A4 of IRD based on square error loss function, de-
noted by A7, can be obtained from Equation (17), where all the Hand H

elements are evaluatedin A and A~ respectively.

4.2. Bayes Estimate of A Based on Precautionary Loss Function
(TKP)

Set, g(A4)=A,Equation (14) will be,

i ()= M) )

j
H;(ﬂ)=% k+(m+1)|n(z)+z:“1|nj%evzyfyi (Vdy| @)

where kis a constant as in (20).
Now, A" that maximize H;(4) in (27) can be obtained by solving follow-
ing equation

3

-4
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iteratively as in

oH, (4)
l"*(hﬂ) :i*(h)_ ) o4 &, v>1 (28)
oH, (2)
Y S
where
. . 2
1 5 1
FHI(1) 1| —(me1) wlyre Al | e uty (v)dy
P I ~ _;,_z — —z >
oAt ml q7E H
Jppe utuMay | [Lae” afy ()
And

oA*

2 * -1
lw } 09)
2=

Now, Bayes estimate of A of IRD based on prec. loss function, denoted by

/i;K , can be obtained from Equation (18), where all the Fand H ; elements are

evaluatedin A and A~ respectively.

5. Simulation Study

In trying to illustrate and compare the methods as described above, a Monte-Carlo
simulation study was perform to generate an (ii.d) random samples, say Y,
according to IRD through the adoption of inverse transformation method with
size n = 10, 30 and 90 to take care of small, medium and large data sets. The
scale parameter A = 0.3, 0.5, 1, 1.5, 2. Then, each observation of y was made
Imprecision based on an appropriate selected membership function among four
membership functions in the Imprecision Information System as the following
Figure 1.

The simulation program has been written by using MATLAB (R2010b) pro-
gram. The results of Monte-Carlo simulation have been summarized in Table 1.

The initial values required for proceeding modified Newton-Raphson method
chosen to be the symmetrical rank regression estimators. The comparisons be-

tween the parameter estimates were based on values from MSE where [8]:

o 1
L
&
<
o
é 0.5
)
el
5 0
-0.5 0.5 1.5 2.5

Figure 1. Imprecision information system.
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Table 1. MSE values for estimates of the scale parameter (1) of IRD with different cases.

. Bayes Estimates Best
“ P 2 2 Estimate
A A
A=03
10 0.3016845 0.4254903 0.0999919 TKP
30 0.2213556 0.3593909 0.0999881 TKP
90 0.1380426 0.2075041 0.0899999 TKP
A=05
10 0.4445674 0.6759990 0.1456790 TKP
30 0.3999456 0.5888219 0.1444456 TKP
90 0.2000347 0.3211106 0.1000000 TKP
A=1
10 0.9238011 0.6187163 0.6395949 TKS
30 0.6336614 0.5504253 0.5527095 TKS
90 0.0333695 0.0299999 0.0300257 TKS
A=15
10 2.0795793 1.3326324 1.387364 TKS
30 1.4255994 1.2227846 1.2287826 TKS
90 0.0750782 0.0656017 0.065692 TKS
A=2
10 4.0827706 2.7752958 2.8630777 TKS
30 0.8928044 0.7653234 0.7693016 TKS
90 0.0883097 0.0864630 0.0864936 TKS

: sample size; /I‘L\MNR : maximum likelihood estimate of A by newton-raphson; /iKS : Bayes estimate of 1 of

IRD based on square error loss function; im: : Bayes estimate of 1 of IRD based on prec. loss function.

le_:l(ij - /1)2

C (30)

MSE (1) =
7. ; : h
A;:is the estimate of A respectively at the /" run.

L: is the number of sample replicated chosen to be (500).

6. Conclusions and Recommendations

The most important conclusions of Monte-Carlo simulation results are:

Tierney and Kadane’s approximation based on square error loss function
(TKS) estimate introduced the best perform compared with the different esti-
mates for all sample sizes and for all cases except 1=0.3 and 4=0.5, where
Bayes Estimate based on Precautionary loss function (TKP) is the best.

Based on this, we recommend,

1) Using the TKS estimate to compute estimates of the scale parameter of IRD
for all sample sizes and with cases A=1, 1=15 and A=2.

DOI: 10.4236/0japps.2019.98054

680 Open Journal of Applied Sciences


https://doi.org/10.4236/ojapps.2019.98054

S. A. K. AL-Sultany

2) Using the TKP estimate to compute estimates of the scale parameter of IRD
for all sample sizes and with the cases 41 =0.3 and 1=0.5.

3) For further study, we suggest such type of work can be done by using other
informative priors for the parameter of the IRD and also the parameter can be
estimated by other methods.

4) Research can be applied to real data and demonstrate the importance of

this distribution in practice.
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