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Abstract 
To categorize the nations to reflect the development status, to date, there are 
many conceptual frameworks. The Human Development index (HDI) that is 
published by the United Nations Development Programme is widely accepted 
and practiced by many people such as academicians, politicians, and donor 
organizations. However, though the development of HDI has gone through 
many revisions since its formulation in 1990, even the current version of the 
index formulation published in 2016 needs research to better understand and 
to gap-fill the knowledge base that can enhance the index formulation to faci-
litate the direction of attention such as release of funds. Therefore, in this pa-
per, based on principal component analysis and K-means clustering algo-
rithm, the data that reflect the measures of life expectancy index (LEI), educa-
tion index (EI), and income index (II) are analyzed to categorize and to rank 
the member states of the UN using R statistical software package, an open 
source extensible programming language for statistical computing and graph-
ics. The outcome of the study shows that the proportion of total eigen value 
(i.e., proportion of total variance) explained by PCA-1 (i.e., first principal 
component) accounts for more than 85% of the total variation. Moreover, the 
proportion of total eigen value explained by PCA-1 increases with time (i.e., 
yearly) though the amount of increase with time is not significant. However, 
the proportions of total eigen value explained by PCA-2 and PCA-3 decrease 
with time. Therefore, the loss of information in choosing PCA-1 to represent 
the chosen explanatory variables (i.e., LEI, EI, and II) may diminish with time 
if the trend of increasing pattern of proportion of total eigen value explained 
by PCA-1 with time continues in the future as well. On the other hand, the 
correlation between EI and PCA-1 increases with time although the magni-
tude of increase is not that significant. This same trend is observed in II as 
well. However, in contrast to these observations, the correlation between 
PCA-1 and LEI decreases with time. These findings imply that the contribu-
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tions of EI and II to PCA-1 increase with time, but the contribution of LEI to 
PCA-1 decreases with time. On top of these, as per Hopkins statistic, the clus-
terability of the information conveyed by PCA-1 alone is far better than the 
clusterability of the information conveyed by PCA scores (i.e., PCA-1, PCA-2, 
and PCA-3) and the explanatory variables. Therefore, choosing PCA-1 to 
represent the chosen explanatory variables is becoming more concrete. 
 
Keywords 
Human Development Index, Economy, Sustainability, United Nations  
Development Programme, Education, Life Expectancy, Per Capita Income, 
JavaScript, R Statistical Software, Principal Component Analysis, K-Means 
Clustering, Hopkins Statistic 

 

1. Introduction 

Since the incipient of relativity theory, the categorization of parameters of inter-
est has been surfaced in many fields, including in the scientific field. This has 
forced many apex bodies such as donor organizations (e.g., World Bank and 
United Nations Development Programme) to find some schemes to pool the 
countries into few categories to summarize the status of development, which can 
help to facilitate the direction of attention such as release of funds. Among all 
the categorization schemes practiced, the Human Development Index (HDI) [1] 
[2] [3] that is published annually by the human development office of the United 
Nations Development Programme (UNDP) and geared towards people centered 
policies has become one of the well accepted measures to categorize the member 
states of the United Nations (UN) into few tiers [1] [2] [3]. 

The HDI, which is to evaluate the development of a UN country from the 
perspective of well-being of human-beings, in addition to the economic ad-
vancement, is basically an index composed of three measures, namely life expec-
tancy, education, and per capita income [1] [2]. These three measures are de-
fined through three indices: Life expectancy index (LEI), education index (EI), 
and income index (II) [1] [2]. The LEI is used to measure the population health 
and the longevity. The EI is a measure of education and the access to knowledge. 
On the other hand, the II is to measure the standard of living. Though HDI has 
been widely used as the measure of development [1]-[8], many issues in the 
fundamental formulation of the underlying concept have been researched 
[3]-[8]. 

Stanton (2007) reviews the key issues on HDI into five categories: Poor data, 
incorrect choice of indictors, incorrect specification of income, redundancy, and 
formulation of HDI. [3] [4] [5] point out the quality of data and the frequency of 
data collection. [6] identifies three sources of data error which are due to data 
updating, formula revisions, and thresholds to classify a country’s development 
status, to formulate and propose a statistical framework to calculate country spe-
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cific measures of data uncertainty and its impact on rank assignments. Based on 
principle component analysis, [7] [8] provide a theoretical support for the HDI 
ranking system. The inclusion and the omission of the components in the index 
formulation has been criticized by [3]. 

To address some of the issues raised, with improved quality of data, the de-
velopment of HDI has gone through many revisions since its formulation in 
1990 [3]. However, even the current version of the index formulation published 
in 2016 okneeds research to better understand and to gap-fill the knowledge base 
that can enhance the index formulation to facilitate the direction of attention 
and for simplifying problems. As per the current version of the index, the HDI 
index is basically a multiple linear regression equation. The explanatory va-
riables in the equations are the logarithms of LEI, EI, and II. However, the 
weights that determine the strength of the explanatory variables are given equal 
values (i.e., 1/3). In other words, it is assumed that the index is defined by setting 
equal values to the measures chosen: LEI, EI, and II. Therefore, with the current 
version of the index formulation, country-A (LEI = 0.5, EI = 0.5, II = 1.0) and 
country-B (LEI = 1.0, EI = 0.5, II = 0.5) will have the same HDI index value (i.e., 
HDIcountry-A = (0.5 * 0.5 * 1.0)1/3 = HDIcountry-B = (1.0 * 0.5 * 0.5)1/3 = 0.62996) 
though they may be heading in two different directions as depicted by the values 
of LEI, EI, and II. Moreover, the current literature does not critically analyze the 
components that form the HDI with time, and the critical or the cut-off HDI 
values that are used to categorize the nations into tiers, to gap-fill the knowledge 
base that can enhance the index formulation in line with UNDP that the devel-
opment of HDI should be seen as evolving and improving with active participa-
tion of its users, rather than as something cast in stone [3]. 

Having said this, the information from the data that represent the measures of 
LEI, EI, and II could be potentially maximized with the help of some of the well- 
established clustering algorithms and multivariate analysis techniques [9] [10] 
[11]. In fact, this will avoid the use of any form of ad-hoc combinations such as 
geometric or linear combination. Instead, the countries will be clustered based 
on the underlying data chosen to reflect the people centered policies. Moreover, 
the well-established clustering algorithms and multivariate analysis techniques 
may also lead to categorize the countries within a region or cluster of interest 
into few tiers solely based on those countries’ LEI, EI, and II. This will, in turn, 
help to categorize the member states of the UN from local and global perspec-
tive. Therefore, the objective of this paper is to analyze the data that reflect the 
measures of life expectancy index, education index, and income index based on 
principal component analysis and K-means clustering algorithm to understand 
the trends of the indices that form HDI with time; to categorize; and to rank the 
member states of the UN using R statistical software package, an open source 
extensible programming language for statistical computing and graphics. 

2. Human Development Index 

The HDI reported by the human development office of the UNDP is basically an 
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index composed of three measures, namely life expectancy, education, and per 
capita income [1] [2]. These measures are defined through three indices: LEI, EI, 
and II [1] [2]. The underlying theoretical formulation of HDI developed by a few 
economists is shown in Figure 1 [1] [2]. 

2.1. Life Expectancy Index 

The LEI that measures the population health and the longevity is defined by: 

LE 20LEI
85 20

−
=

−
                         (1) 

where LE is the life expectancy at birth in years. The value of LEI varies between 
0 and 1. The LEI becomes 1 if LE is 85. Similarly, the LEI becomes 0 if LE is 20. 

2.2. Education Index 

The EI measures the level of education and the access to knowledge. As shown in 
Equation (2), the EI is formed of two indices, namely mean years of schooling 
index (MYSI) and expected years of schooling index (EYSI). 

MYSI EYSI MYS EYSEI 0.5 0.5
2 15 18
+

= = ∗ + ∗            (2) 

where MYS and EYS are the mean years of schooling (years) and the expected 
years of schooling (years), respectively. The value of EI varies between 0 and 1. 

2.3. Income Index 

The II that measures the standard of living is defined by: 

( ) ( )
( ) ( )

ln ln 100
II

ln 75000 ln 100
GDP −

=
−

                      (3) 

where GDP is the gross domestic product per capita (2011 PPP $). The value of 
II varies between 0 and 1. The II becomes 1 if GDP is 75000. Similarly, the LEI 
becomes 0 if LE is 100. 

2.4. Computation of Human Development Index 

The theoretical formulation of HDI is given by: 
 

 
Figure 1. The conceptual framework of HDI. 
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( )1 3HDI LEI EI II= ∗ ∗                      (4) 

Taking the logarithm of Equation (4): 

( )1ln HDI ln LEI ln EI ln II
3

= + +                 (4)’ 

With further simplification, 

1 1 2 2 3 3Y a X a X a X= + +                    (4)’’ 

where 1 2 3
1
3

a a a= = =  and 1 ln LEIX = , 2 ln EIX =  and 3 ln IIX = . There- 

fore, the Equation (4-4’’) is basically a multiple linear regression equation. The 
explanatory variables in the equations are the logarithms of LEI, EI, and II. 
However, the weights that determine the strengths of the explanatory variables 
are given equal values. 

To demonstrate the computation of HDI, the values reported for the measures 
discussed in Sections 2.1-2.3 are extracted for Norway, one of the UN member 
states. These values are extracted from the human development report published 
in 2016 [1]. The extracted values are placed in Table 1. 

As per the current methodology implemented by UNDP, the values of LEI, II,  

and EI are 81.7 20 0.949
85 20

−
=

−
, 

( ) ( )
( ) ( )

ln 67614 ln 100
0.984

ln 75000 ln 100
−

=
−

,  

12.7 17.70.5 0.5 0.915
15 18

∗ + ∗ = , respectively. Therefore, the value of HDI for this 

country is ( )1 3LEI EI II 0.949∗ ∗ = . 

3. Methodology 

In this section of the manuscript, the methodologies adopted to analyze the data 
that reflect the measures of life expectancy index, education index, and income 
index; to categorize; and to rank the member states of the UN are presented. The 
Section 3.1 outlines the fundamental behind the principal component analysis 
which is used to reduce the complexity of multidimensional data; the Section 3.2 
outlines the clustering algorithm, particularly the k-means clustering algorithm 
that is used to form groups or clusters such that the variation within each cluster 
is minimized; the Section 3.3 outlines the development of virtual human devel-
opment index; and the Section 3.4 presents the implementation of virtual human 
development index using R statistical programming language. 
 
Table 1. The measures of HDI in Norway in 2015. 

Measures of HDI Reported Values in 2015 

Life expectancy at birth (years) 81.7 

Mean years of schooling (years) 12.7 

Expected years of schooling (years) 17.7 

Gross domestic product  
(GDP) per capita (2011 PPP $) 

67614 
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3.1. Principal Component Analysis 

Principal component analysis (PCA) is one of the techniques or tools used in 
information theory to reduce dimensions in a multidimensional data. In other 
words, PCA is used to reduce the complexity of multidimensional data to en-
hance the handling, analysis, interpretation, and visualization of multidimen-
sional data [9] [10] [11]. In simple terms, PCA helps to define the multidimen-
sional data using principal component axes, instead of conventional coordinate 
system such as Cartesian coordinate system (i.e., x − y − z). However, the prin-
cipal component axes are formed in way that the variance in the multidimen-
sional data is maximized along the principal component axes. 

To illustrate the concept of PCA, for example, consider the data points shown 
in Figure 2(a). The data points are shown in a 2-D Cartesian coordinate system. 
On the other hand, in Figure 2(b), the given data points are shown using prin-
cipal component axes. As can be observed, basically, PCA transforms the multi-
dimensional to a new coordinate system. However, the coordinate system is 
formed in a way that the variance in the multidimensional data is maximized 
along the principal component axes. Moreover, the number of principal com-
ponent axes is equal to the dimension of the multidimensional data. In the con-
sidered problem, there are two variables (i.e., X and Y). Therefore, there are two 
principal component axes as shown in Figure 2(b). 

3.1.1. Mathematical Formulation of PCA 
Consider the below shown multidimensional data vector (X) with three va-
riables: 

1

2

3

X
X X

X

 
 =  
 
 

 

The principal component scores (i.e., multidimensional data in the new coor-
dinate system) for this multidimensional data are given by Equations (5)-(7). 

1 11 1 12 2 13 3Y e X e X e X= + +                       (5) 

2 21 1 22 2 23 3Y e X e X e X= + +                      (6) 

3 31 1 32 2 33 3Y e X e X e X= + +                      (7) 

 

   
(a)                                       (b) 

Figure 2. Formation of principal component axes. 
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As can be observed, the principal component scores (i.e. 1Y , 2Y  and 3Y ) are 
the linear combinations of the given multidimensional data without an intercept. 
The coefficients e11, e12, e13, e21, e22, e23, e31, e32, and e33 are the regression coeffi-
cients. Since there are three variables (i.e. 1X , 2X  and 3X ) involved in this 
problem, there should be three principal components. The first principal com-
ponent is obtained by maximizing the variance of Y1 subjected that the sum of 
squared coefficients is equal to one (i.e., 2 2 2

11 12 13 1e e e+ + = ). However, when find-
ing the remaining principal components, in addition to maximizing the variance 
and setting the sum of squared coefficients to one, it is also ensured that the 
correlation between the principal component of interest (e.g., second principal 
component) and previous principal components (e.g., first principal compo-
nent) is zero. The regression coefficients and the variance of the principal com-
ponents are found using the eigen vectors (x) and eigen values (λs) of the va-
riance-covariance matrix (A, i.e., variance-covariance matrix of the given multi-
dimensional data), respectively, as shown in Equations (8)-(9). The solution of 
Equation (9) leads to solve the Equation (8). Moreover, it is noted that the num-
ber of eigen vectors is equal to the dimension of the multidimensional data, and 
every eigen vector is associated with an eigen value. 

Ax xλ=                             (8) 

0A Iλ− =                            (9) 

where “I” is the identity matrix. 

3.1.2. Reduction of Dimensions Using PCA 
As explained in Section 3.1.1, each principal component is associated with an 
eigen value. Moreover, the eigen value (λ) is the amount of variance associated 
with the principal component. Therefore, the proportion of total variation ex-
plained by a given principal component (say i) and the cumulative proportion of 
total variation explained by a given principal component are given by Equation 
(10) and Equation (11), respectively. 

Proportion of Total Variation of Principal Component “i” 

= 
1 2

i

p

λ
λ λ λ+ + +

                   (10) 

Cumulative Proportion of Total Variation of Principal Component “i” 

= 1

1 2

i

p

λ λ
λ λ λ

+ +
+ + +





                  (11) 

where iλ  is the amount of variance associated with the principal component “i” 
and “p” is the number of principal components (i.e., dimension of the data). The 
proportion of total variation explained by a given principal component and the 
cumulative proportion of total variation explained by a given principal compo-
nent are used to determine the number of dimensions required to express the 
problem of interest, considering the correlations between the variables in the 
multidimensional data. 
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3.1.3. Computation of PCA for a 2-Dimensional Data 
To demonstrate the computation of PCA for a 2-Dimensional data, consider the 
multidimensional data of two variables that are extracted from the report pub-
lished in 2016 [1] and placed in Table 2. The variables X and Y represent the 
education index and the life expectancy index, respectively. 

To compute the PCA scores, at first, the variance-covariance matrix is com-
puted. For the given multidimensional data, the variance-covariance matrix is 
given by 

0.02500196 0.02057909
0.02057909 0.02224321

X Y
X
Y

 

The eigen vectors and the eigenvalues associated with the variance-covariance 
matrix is obtained following Equations (8)-(9). For the given multidimensional 
data, the eigen vectors are given by 

Eigen Vector-1 Eigen Vector-2
0.7303690 0.6830528
0.6830528 0.7303690

+ +
+ −

 

The sum of squared coefficients for the first principal component (PCA-1) is 
equal to 2 20.7303690 0.6830528 1+ = . Similarly, the sum of squared coefficients 
for the second principal component (PCA-2) is equal to 

( )220.6830528 0.7303690 1+ − = . The eigen values associated with eigen vector-1 
and eigen vector-2 are 0.044247849 and 0.002997318, respectively. Therefore, as 
per the computed eigen values, the maximum variation is explained by PCA-1. 
The proportion of variation explained by PCAs are placed in Table 3. Since the 
variation explained by the first principal component is very high (0.9365582)  
 
Table 2. Multidimensional data of two variables extracted from the report published in 
2016 [1]. 

 X Y  X Y Summary 

1 0.398 0.626 6 0.694 0.865 

Mean (X) = 0.6962 
Mean (Y) = 0.8301 

Var (X) = 0.025 
Var (Y) = 0.022 

2 0.715 0.892 7 0.808 0.869 

3 0.658 0.847 8 0.73 0.844 

4 0.718 0.946 9 0.939 0.962 

5 0.482 0.503 10 0.82 0.947 

 
Table 3. Proportion and cumulative proportion of total variance of principal compo-
nents. 

Principal  
Component 

Eigen Value (Variance) 
Proportion of Total  

Variance 
Cumulative Proportion of 

Total Variance 

1 0.044247849 0.9365582 0.9365582 

2 0.002997318 0.06344179 1.0000000 
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compared to the second principal component (0.06344179), without loss of sig-
nificant information, the given multidimensional dataset could be reduced to 
one dimension that is explained by PCA-1. 

The principal component scores are obtained by following Equations (5)-(7). 
In PCA, it is a widespread practice to use the difference between the variables 
and their sample means, instead of using the raw data. Therefore, considering 
the first row (i.e., X = 0.398 and Y = 0.626) in the given data, the mean adjusted 
first principal component score is given by 

1 1 20.7303690 0.6830528Y X X= + ∗ + ∗  

( ) ( )1 0.7303690 0.398 0.6962 0.6830528 0.626 0.8301
0.35720711

Y = + ∗ − + ∗ −

= −
 

Similarly, the second principal component is given by 

2 1 20.6830528 0.7303690Y X X= + ∗ − ∗  

( ) ( )2 0.6830528 0.398 0.6962 0.7303690 0.626 0.
0.0546180239

8301Y = + ∗ − − ∗ −

= −
 

Following the same procedure, the new dataset for the given multidimensional 
data is placed in Table 4. 

Since the variables in multidimensional data may not have the same units, to 
enhance the interpretation of PCA, often, the multidimensional data is standar-
dized. 

3.2. Measure of Clusterability Using Hopkins Statistic 

Hopkins statistic which is a statistical hypothetical test measures the clusterabil-
ity (i.e., cluster tendency) of a given dataset [12] [13]. The null hypothesis of 
Hopkins statistic checks if the given dataset comes from a uniform distribution. 
To test the null hypothesis, at first, few points are uniformly selected from the 
given dataset. The distances between these points and their closest nearest points 
are computed ( actual,id ). Similarly, few points are uniformly selected from a 
random dataset. The distances between these points and their closest nearest 
points in the actual dataset are computed ( random,id ) [12] [13]. Then, the Hopkins 
statistic is found using the following equation: 

random,

actual, random,

Hopkins Statistic i

i i

d
d d

=
+

∑
∑ ∑

         (12) 

 
Table 4. Principal component scores of the multidimensional data. 

 PCA Score-1 PCA Score-2  PCA Score-1 PCA Score-2 

1 −0.35720711 −0.0546180239 6 0.02223173 −0.0269925947 

2 0.05601190 −0.0323684497 7 0.10822601 0.0479539464 

3 −0.01635650 −0.0384358526 8 0.03418091 0.0129350547 

4 0.09508786 −0.0697592181 9 0.26742826 0.0695095426 

5 −0.37987161 0.0925937985 10 0.17026855 −0.0008182033 
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where actual,id  is the distance between the “i”th point and its closest nearest 
point. If the given dataset comes from a uniform distribution, Hopkins statistic 
will be towards zero. Therefore, a dataset with a Hopkins statistic that is greater 
than zero (ideally above 0.5) is considered clusterable. 

3.3. K-Means Clustering Algorithm 

Clustering is one of the techniques or information tools used to group a set of 
multidimensional data. In other words, using clustering algorithms, the multi-
dimensional data is pooled into a set of groups such that the data within a group 
behaves in an equivalent or homogeneous manner, but the data between groups 
behave dissimilarly [9] [11]. 

K-means clustering algorithm, which is an unsupervised algorithm, is the 
simplest and most widely used clustering algorithm to partition n observations 
into k (<n) clusters. In other words, given a set of observations  
( 1 2 3, , , , ny y y y ), K-means algorithm partitions the observations into k clusters 
( 1 2 3, , , , kG G G G ) such that the total variation within each clusters is kept at 
minimum. This is accomplished by minimizing the sum of squared distances 
(e.g., Euclidean distance, Manhattan distance, and Correlation based distance) 
from the data points within a cluster to the centroid of the cluster [9] [11]. 

To illustrate the concept of K-means clustering algorithm, consider the data 
points shown in Figure 3. These data points are extracted from [2]. If the objec-
tive is to cluster these points into two clusters, at first, two of the given data 
points are considered as the centroids of the clusters. If the datasets for coun-
try-1 and country-2 are assumed to be the initial guesses, the centroids of the 
clusters are [LEI = 0.948, EI = 0.916, II = 0.983] and [LEI = 0.858, EI = 0.631, II 
= 0.730]. These could be visualized as points lying on a 3-D space whose X, Y, 
and Z coordinates are denoted by LEI, EI, and II, respectively. The remaining 
data points are assigned to one of these clusters such that the distance (it is em-
phasized that the term distance does not refer to the spatial distance corres-
ponding to the geographical coordinates of the data points) between the data 
point and the centroid of the cluster is minimum. For example, as shown in 
Figure 3, if d1 < d2, country-3 will be assigned to the cluster that is centered at 
 

 
Figure 3. The implementation of k-mean clustering algorithm using LEI, EI, and II. 
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country-1. Otherwise, country-3 belongs to country-2. Having assigned the data 
points to one of the two clusters, the centroids of the clusters are updated. This 
procedure is repeated until the centroids of the clusters do not change with fur-
ther iteration. 

3.3.1. Optimum Number of Clusters 
To determine the optimum number of clusters, as underscored in the literature, 
there are many methods available such as elbow, silhouette, and gap statistic 
methods [9] [10] [11] [14] [15]. In elbow method, the optimum number of clus-
ters is found by minimizing the total sum of squared distances between the 
points and the centroids. To illustrate the method, consider the data points and 
the clusters shown in Figure 4. For each data point, the distance (i.e., di) be-
tween the data point and the centroid of the corresponding cluster (i.e., cluster 
that the point lies) is computed. Subsequently, the total sum of squared distance 
between the points and the centroids (i.e., id∑ ) is computed. 

On the other hand, silhouette method is based on the quality of the clusters. 
The quality of the clusters is defined based on how well the data points fall 
within the clusters. To demonstrate this method, consider the data point, 
point-A in Figure 5. At first, the average distance (say d1) between the points in 
the cluster (i.e., Cluster-1) and point-A is computed. Subsequently, the average 
distance between point-A and the points that fall within Cluster-2 is determined. 
This same procedure is repeated for Cluster-3 as well, to determine the mini-
mum average distance between point-A and the clusters that do not contain 
point-A (say d2). 

Having computed these values, the quality of point-A within Cluster-1 is de- 

termined based on the silhouette value (i.e., 
( )

2 1

2 1max ,
d d

d d
−

, where ( )2 1max ,d d   

is the maximum between 2d  and 1d ). This same procedure is carried out for 
the remining points as well. Subsequently, the average silhouette value is com-
puted to measure the quality of the clusters. Therefore, as per this method, 
 

 
Figure 4. The elbow method to determine the optimum number of clusters. 
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Figure 5. The silhouette method to determine the optimum 
number of clusters. 

 
higher the average silhouette value is better the quality of the clusters. Moreover, 
the average silhouette value can vary from −1 to 1. A value of 1 indicates that a 
point in a cluster is far away from any of the points in any of the neighboring 
clusters. Therefore, the optimum number of clusters is the one having the high-
est average silhouette value (i.e., closer to 1) [14]. 

The gap statistic method is based on a reference dataset generated using 
Monte Carlo simulation. This method compares the total intra variation for dif-
ferent number of clusters using the actual data against the total intra variation 
for different number of clusters using a reference dataset generated using Monte 
Carlo simulation based on the maximum and minimum values extracted from 
the actual data [15]. 

3.4. Development of Virtual Human Development Index 

Having clustered the member states of the UN following the Sections 3.1-3.3, the 
ranks of the nations within each cluster are determined based on a composite 
index that is termed virtual human development index (VHDI). The composite 
index is based on the weighted values of the principal component scores 
bounded between 0 and 1. The weights are based on the proportions of total 
variation of the principal components. The mathematical representation of 
VHDI is given by Equation (13) and Equation (14). 

,min

,max ,min

i i
i

i i

PCA PCA
PCA

PCA PCA
−

=
−

                 (13) 

1
1 2

VHDI p i
ii

p

PCA λ
λ λ λ=

= ∗
+ + +∑



            (14) 

where PCAi is the ith principal component score bounded between 0 and 1, iλ  
is the variation of principal component “i”, and “p” is the number of explanatory 
variables. ,miniPCA  and ,maxiPCA  are the minimum and maximum values of 
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the ith principal component score, respectively. 

3.5. Implementation of VHDI Using R Statistical Software 

R which is supported by the R Foundation for Statistical Computing [11] is an 
open source extensible programming language for statistical computing and 
graphics. The installation of R comes with a set of packages that are known as 
core packages. These core packages provide a wide variety of statistical tech-
niques such as linear and nonlinear modelling, classical statistical tests, time-se- 
ries analysis, classification, and clustering, and graphical techniques [11]. To ex-
tend the capabilities of R, there are also many community developed packages 
that are available at various repositories such as the Comprehensive R Archive 
Network [11]. Moreover, to make the coding easier using R programming lan-
guage, an integrated development environment (IDE) that is known as RStudio 
is also available. 

In the implementation of VHDI, initially, as shown in the code snippet (see 
snippet-1 in Appendix-A), the UNDP dataset stored in a Microsoft Excel 
spreadsheet is read using read_excel () and stored in a variable named “pDa-
taAll”. This variable contains six columns of data. The first three columns con-
tain the descriptive information (i.e., latitudes, longitudes, and the names of the 
member states of the UN), and the last three columns contain the indices (i.e., 
LEI, EI, and II) for the member states of the UN. Since the principal component 
analysis is based on the indices, a new variable named “pData” is created to store 
the last three columns (i.e., LEI, EI, and II) extracted from “pDataAll”. 

To perform the principal component analysis (see snippet-2 in Appendix-A), 
prcomp () is called. The resultant object returned from the principal component 
analysis is used to extract the variance associated with each principal compo-
nent. Subsequently, the proportion of total variance and the cumulative propor-
tion of total variation explained by each principal component are computed us-
ing sum () and the cumsum (), respectively. Moreover, the eigen vectors which 
define the direction of the principal components and the mean adjusted princip-
al component scores are obtained by calling the rotation and x components of 
the resultant object returned from the principal component analysis. To visual-
ize (see snippet-3 in Appendix-A) the proportion of total variance and the cu-
mulative proportion of total variation explained by each principal component, 
few plots are developed using plot (). 

Since there are three explanatory variables (i.e., LEI, EI, and II) involved in the 
principal component analysis, a variable named “NPCA” is used to determine 
the number of principal components used in the subsequent analysis using clus-
tering algorithms (see snippet-4 in Appendix-A). Based on this variable, a varia-
ble named “pDataCluster” is formed. This variable is used in the clustering algo-
rithm. Since the optimum number of clusters is unknown, as discussed in sec-
tion 3.3.1, three methods namely elbow, silhouette, and gap statistic methods are 
used to determine the optimum number of clusters. The implementation of 
these methods using factoextra package in R is shown in snippet-4 in Appen-
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dix-A. Based on the said three methods, the optimum number of clusters is de-
cided and set to a variable named “numberCluster”. Subsequently, the k-means 
algorithm is called with the value of “numberCluster” (see snippet-5 in Appen-
dix-A). The details about the clusters such as the variation within each cluster, 
the number of member states of the UN within each cluster, the centroids of the 
clusters, and the cluster number of each member states of the UN are extracted 
as shown in snippet-5 in Appendix-A. 

To be able to visualize the clusters and to rank the member states of the UN 
within each cluster, a new dataset named “combinedData” is formed as shown in 
snippet-6 in Appendix-A. This dataset is formed based on the variable named 
“NPCA”. For example, if the number of principal components used in the clus-
tering algorithm is 3, the first three columns of “combinedData” contain the 
PCA scores bounded between 0 and 1. The fourth, fifth, and sixth columns of 
“combinedData” is used to store the cluster numbers, VHDIs, and the ranks of 
the member states of the UN within the cluster, respectively. As shown in the 
code snippet, initially, the sixth column is set to zero. However, this column is 
populated with the ranks of the member states of the UN based on the values of 
VHDIs within each cluster. The last few columns of “combinedData” are used to 
store the descriptive information about the member states of the UN (i.e., lati-
tudes, longitudes, and the names of the member states of the UN) and the indic-
es (i.e., LEI, EI, and II). These columns are added to ensure that the outcome of 
the clustering is visualized using Google Maps JavaScript API. 

“combinedData” contains all the nations and the associated the cluster num-
bers. However, to rank the nations within each cluster, as shown in snippet-6 in 
Appendix-A, a new variable is developed to extract the nations that belong to a 
particular cluster number. Within each cluster, as outlined in section 3.4, the 
values of VHDIs are computed and stored in the variable named “combinedDa-
taSub”. As discussed previously, the fifth column which was set to zero is used to 
store the VHDI values. Then using the order function, the data points within a 
cluster are ordered and assigned the rankings for the member states of the UN 
within each cluster. This is accomplished using the snippet-7 in Appendix-A. 
Finally, as shown in snippet-8 in Appendix-A, the content of “combinedData-
Sub” which contains the rankings of the nations within the clusters and the as-
sociated PCA scores is exported to a Microsoft Excel spreadsheet. This Microsoft 
Excel spreadsheet is used to visualize the clustered member states of the UN us-
ing Google Maps JavaScript API. 

4. Discussion of Results 

In 2014, the proportions of total variation explained by the principal compo-
nents and the cumulative proportions of total variation explained by the prin-
cipal components are shown in Figure 6(a) and Figure 6(b), respectively. The 
proportion of total variation explained by PCA-1 amounts to 0.885. This ac-
counts for around 89% of the total variation. Therefore, the proportions of total  
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Figure 6. (a) The proportion and (b) cumulative proportion of total variance explained by 
the principal components in 2014. 
 
variation explained by the remaining two principal components are very much 
negligible compared to the proportion of total variation explained by PCA-1. 
This gives an indication that among all the principal components, PCA-1 scores 
more towards explaining the variation. In other words, this problem of multidi-
mensional data could be reduced to PCA-1 with little loss of information in the 
analysis. 

4.1. Trends of Proportions of Total Eigen Value Explained by the 
Principal Components with Time 

The proportions of total variation explained by the principal components (i.e., 
proportions of total eigen value explained by the principal components, see Eq-
uation (10)) with time are shown in Figure 7. The proportion of total eigen val-
ue explained by PCA-1 increases with time though the amount of increase with 
time is not significant. However, the proportions of total eigen value explained  
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Figure 7. The proportions of total eigen value explained by PCA-1, PCA-2, and PCA-3 
with Time. 
 
by PCA-2 and PCA-3 decrease with time. Therefore, these findings indicate that, 
with time, the considered explanatory variables (i.e., LEI, EI, and II) are well de-
fined by choosing PCA-1 alone. In other words, the loss of information in 
choosing PCA-1 to represent the chosen explanatory variables may diminish 
with time if the trend of increasing pattern of proportion of total eigen value ex-
plained by PCA-1 with time continues in the future as well. 

4.2. Correlation between the Principal Component Scores and the 
Explanatory Variables 

To understand and interpret the principal component scores, as placed in Table 
5, the correlation matrix between the principal component scores and the ex-
planatory variables (i.e., LEI, EI, and II) that are used in the analysis are com-
puted using the R statistical software package. As per the computed correlation 
matrix, in 2014, PCA-1 is positively and very strongly correlated with all the 
considered explanatory variables, as depicted by the signs and the magnitudes 
of the correlation values. The positive correlation indicates that an increase  
in the value of one of the explanatory variables increases the value of PCA-1.  
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Table 5. The correlation matrix between the principal component scores and the expla-
natory variables in 2014. 

 LEI EI II 

PCA-1 0.8951269 0.9517458 0.95340788 

PCA-2 −0.1012986 −0.2607833 0.29603426 

PCA-3 0.4341503 −0.1617774 −0.05811306 

 
Moreover, among all the considered explanatory variables, II which measures 
the standard of living has the highest correlation (0.953) followed by EI which 
measures the level of education and the access to knowledge (0.952), and LEI 
which measures the population health and the longevity (0.895) with PCA-1. On 
the other hand, except the correlation (0.434) between PCA-3 and LEI, the cor-
relations between the other two principal components (i.e., PCA-2 and PCA-3) 
and the explanatory variables are very much negligible, as depicted by the mag-
nitudes of the correlations. Moreover, there are also negative correlations. This 
indicates that some of the explanatory variables have a negative trend with 
PCA-2 and PCA-3. Therefore, in essence, as stated previously, this problem of 
interest could be reduced to one principal component (i.e., PCA-1) with a little 
loss of information in the analysis. 

4.2.1. Eigen Vectors of the Principal Components 
Since PCA-1 is positively and very strongly correlated with all the considered 
explanatory variables, as depicted by the signs and the magnitudes of the corre-
lation values, the computed eigen vectors are evaluated. The eigen vectors that 
are used to weigh the explanatory variables to compute the principal scores are 
placed in Table 6. For PCA-1, in 2014, the coefficients that are used to weigh the 
contributions of EI and II are high compared to the coefficient that is used to 
determine the contribution of LEI. This agrees with the correlation values placed 
in Table 5. 

4.3. Trends of Correlation between PCA-1 and the Explanatory 
Variables with Time 

Since the proportion of total variation explained by PCA-1 in 2014 was around 
89%, to understand the trends of correlation between PCA-1 and the explanato-
ry variables (i.e., LEI, EI, and II) with time, few graphs were produced as shown 
in Figure 8. The results show that there exists a very strong relationship between 
the response (i.e., correlation between PCA-1 and the explanatory variable) and 
the explanatory variable (i.e., year). The correlation between PCA-1 and EI in-
creases with time (i.e., yearly) although the magnitude of increase is not that sig-
nificant. This same trend is observed in II as well. However, in contrast to these 
observations, LEI shows a negative trend. In other words, the correlation be-
tween PCA-1 and LEI decreases with time (i.e., yearly), in addition to the fact 
that LEI has the lowest correlation among the considered explanatory variables  
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Table 6. The eigen vectors of the principal component scores in 2014. 

 LEI EI II 

PCA-1 0.4361123 0.6271851 0.6453254 

PCA-2 −0.1837779 −0.6399271 0.7461360 

PCA-3 0.8809267 −0.4439956 −0.1638173 

 

   
Figure 8. The Correlation between PCA-1 and the explanatory variables (i.e., LEI, EI, and 
II). 
 
with PCA-1. These findings imply that the contributions of EI and II to PCA-1 
increase with time, but the contribution of LEI to PCA-1 decreases with time. 

4.4. Determination of Clusterability and Optimum Number of 
Clusters 

The assessment of clustering tendency which measures the clusterability was 
evaluated using the Hopkins statistic, as shown in Figure 9. The Figure 9(a)-(c) 
show the Hopkins statistic using the explanatory variables (i.e., LEI, EI, and II) 
from 2010 to 2014; Hopkins statistic using the PCA scores (i.e., PCA-1, PCA-2, 
and PCA-3) from 2010 to 2014; and Hopkins statistic using PCA-1 from 2010 to 
2014, respectively. In all the cases, the computed values of Hopkins statistic are  
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Figure 9. The trends of clusterability of PCA Scores and the explanatory variables with 
time. 
 
greater than zero. Therefore, the datasets that are used to cluster the member 
states of the UN into tiers are not uniformly distributed and in fact clusterable. 
However, as portrayed by Figure 9(a) and Figure 9(b), for the considered years, 
the Hopkins statistic using the PCA scores are higher than the Hopkins statistic 
using the explanatory variables. This is an indication that the clusterability of the 
information conveyed by the PCA scores is better than clusterability of the in-
formation conveyed by the explanatory variables. Moreover, as shown in Figure 
9(c), the clusterability of the information conveyed by PCA-1 alone is far better 
than the clusterability of the information conveyed by the PCA scores (i.e., 
PCA-1, PCA-2, and PCA-3). In fact, the clusterability of the information con-
veyed by PCA-1 alone based on the recent data (i.e., 2013 and 2014) shows 
Hopkins statistic reaching 0.5 and above to indicate that the clusterability of the 
information conveyed by PCA-1 using the recent data is better than the data 
from previous years. 

4.4.1. Determination of Optimum Number of Clusters 
The outcome of elbow method used to determine the optimum number of clus-
ters (k) is shown in Figure 10. As can be observed from the figure, the total sum 
of squared distances between the points and the corresponding centroids (i.e., 
intra cluster variation) decreases with increased number of clusters. However, 
there is a drastic drop from k = 1 to k = 2. In other words, the total sum of  
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Figure 10. The optimum number of clusters using elbow method. 

 
squared distances when k = 1 and k = 2 are 14.80743 and 5.09914, respectively. 
Therefore, the drop amounts to around 66%. This is an indication that there ex-
ist few tiers to pool the member states of the UN. This is also in agreement with 
the Hopkins statistic that measures the clusterability. 

However, beyond k = 4, the total sum of squared distances between the points 
and the corresponding centroids does not vary much. When k = 4 and k = 5, the 
total sum of squared distances is 2.508759 and 2.221448, respectively. Therefore, 
there is not much variation between k = 4 and k = 5. This gives an indication on 
the number of clusters that is required to pool the member states of the UN. To 
investigate further on the compactness of the individual clusters when k = 4, the 
individual sum of squared distances between the points and the corresponding 
centroids are computed and placed in Table 7. The % total variance ((i.e., intra 
cluster variance) within each cluster is evenly distributed among the clusters. 
Therefore, pooling the member states of the UN into four clusters is reasonable. 

The optimum number of clusters obtained from silhouette and the gap statis-
tic methods are placed in Figure 11 and Figure 12, respectively. In silhouette 
method, the average silhouette value peaks when k = 2 and then decreases with k 
to stabilize beyond a certain value of k. Moreover, the average silhouette values 
computed for different ks are less than one but greater than zero. Therefore, the 
magnitudes of the values indicate that a point within a cluster is reasonably dis-
tanced from the points within the remaining clusters. However, since the opti-
mum number of clusters obtained from silhouette method is two, for the same 
number of clusters (i.e., k = 2), the compactness of individual clusters was eva-
luated using elbow method. The computed values are placed in Table 8. In addi-
tion to the fact that the intra cluster variance when k = 2 is higher compared to k 
= 4, the % total variance within each cluster is also not evenly distributed among 
the clusters. In other words, the variance within Cluster-2 is 50% more than the 
variance within Cluster-1. Therefore, pooling the member states of the UN into 
two clusters is not considered. Moreover, as per the gap statistic method which is 
based on a reference dataset, the optimum number of clusters is 4. This is in  

https://doi.org/10.4236/ojapps.2017.712048


S. Mylevaganam 
 

 

DOI: 10.4236/ojapps.2017.712048 681 Open Journal of Applied Sciences 
 

 
Figure 11. The optimum number of clusters using silhouette method. 

 

 
Figure 12. The optimum number of clusters using gap statistic method. 

 
Table 7. Percentage of total variance within the clusters when k = 4. 

 Cluster-1 Cluster-2 Cluster-3 Cluster-4 

Total Sum of Squared Distances 
between the Points and the  

Centroid of the Cluster 
0.5618820 0.8312637 0.6016126 0.5140004 

% Total Variance  
(i.e., intra cluster variance) 

0.5618820 100
2.508759

22.40%

= ∗

=
 33.13% 23.98% 20.49% 

 
Table 8. Percentage of total variance within the clusters when k = 2. 

 Cluster-1 Cluster-2 

Total Sum of Squared Distances between the Points and 
the Centroid of the Cluster 

2.02599 3.073154 

% Total Variance (i.e., intra cluster variance) 
2.02599 100
5.099141
40%

= ∗

=
 60% 
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agreement with elbow method. Therefore, based on the selected three methods, 
pooling the member states of the UN into four clusters is reasonable and justi-
fied. 

4.5. Ranking of Member States of the UN within the Clusters 

The Map of VHDI using Google Maps JavaScript API, which is accessible from 
http://abzwater.com/undp/hdi.php, is shown in Figure 13. As shown in the fig-
ure, the locations of the member states of the UN are labeled with the corres-
ponding VHDI values. On clicking a location, as shown in the figure, a window 
pops up to show the rank, name of the cluster, and the values of VHDI, LEI, EI, 
and II. Following the human development report published in 2015 [2], the 
clusters are named as very high human development (VHHD), high human de-
velopment (HHD), medium human development (MHD), and low human de-
velopment (LHD). 

In 2014, the number of member states of the UN that fall within VHHD, 
HHD, MHD, and LHD are 49, 71, 31, and 37, respectively. However, as per the 
human development report published in 2015 [2], the number of member states 
of the UN that fall within VHHD, HHD, MHD, and LHD are 49, 56, 39, and 44, 
respectively. Further investigation shows that except for Montenegro which is 
replaced by Russian Federation, the member states of the UN that fall under the 
category of VHHD are found in one of the clusters with high VHDI values. To 
understand the reason for the elimination of Montenegro from VHHD, the re-
ported values of the explanatory variables for Montenegro [LEI = 0.865, EI = 
0.797, II = 0.754] are compared with Russian Federation [LEI = 0.771, EI = 
0.816, II = 0.828]. As can be noticed, in Russian Federation, the values of EI and 
II are higher than in Montenegro. This could be the reason as it was showed that 
the correlations of EI and II with PCA-1 are high compared to LEI, in addition 
to the fact that the contribution of LEI to PCA-1 decreases with time. 

The member states of the UN that are pooled under LHD are found to be less 
compared to what is reported in the human development report published in 
 

 
Figure 13. The map of VHDI using Google Maps JavaScript API  
(http://abzwater.com/undp/hdi.php). 
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2015 [2]. In the report, there are 44 member states of the UN in LHD. However, 
as per VHDI, there are 37 member states of the UN in LHD. Notably, Pakistan, 
Myanmar, Nepal, Swaziland, Kenya, Angola, and Nigeria are the nations that got 
elevated to MHD. The elevated nations are also ranked at the bottom in MHD. 
The likely reason for the elevation is the reason discussed in the previous para-
graph. 

To further understand the clustered nations, the statistical measures of VHDIs 
within each cluster are shown in Figure 14. The medians of VHDIs within 
VHHD, HHD, MHD, and LHD are 0.858, 0.633, 0.414, and 0.238, respectively. 
The magnitudes of the median values indicate that there exists a reasonable dis-
tinguishable separation between the groups or clusters. Moreover, the difference 
in the median values of VHDIs in between VHHD and HHD and HHD and 
MHD are around 0.22. However, the difference in the median values of VHDIs 
in between MHD and LHD is around 0.18. In other words, the possibility of ele-
vating the member states of the UN in LHD to MHD is easier than the possibili-
ty of elevating the member states of the UN in MHD to VHD and VHD to 
HVHD. 

Moreover, the number of member states of the UN that fall within VHHD, 
HHD, MHD, and LHD are around 26%, 38%, 16.5%, and 20% of the member 
states of the UN, respectively. Though these values may vary with time, the per-
centile of the member states of the UN within HHD and MHD are worth to be 
noted. Considering these percentile values with the medians of VHDIs discussed 
above, the efforts required to elevate the member states of the UN in HHD to 
VHHD may be sufficient to surrogate the efforts required to elevate the member 
states of the UN in LHD to MHD and MHD (except for few nations such as In-
dia due to its population that amounts to around 1295 million [2]) to VHD. 
Therefore, the possibility of having more percentile of the member states of the 
UN in HHD is becoming more imminent. 

4.5.1. Statistical Trends of VHDIs with Time 
The statistical trends of VHDIs in VHHD, HHD, MHD, and LHD are shown in 
 

 
Figure 14. The statistical measures of the clusters (i.e., VHHD, HHD, MHD, 
and LHD) in 2014. 
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Figures 15(a)-(d), respectively. The magnitudes of the median values of VHDIs 
show that the separation between the clusters or groups is distinguishable. 
Moreover, in VHHD, HHD, and LHD, the magnitudes of the median values 
have not changed significantly beyond 2012. However, in these clusters, the 
magnitudes of the medians are elevated compared to the previous years (i.e., 
2010 and 2011). In MHD, the median value of VHDI is influenced by the addi-
tion of some of the nations from LHD and the elimination of some of the top- 
ranking nations from MHD to VHD. Moreover, the minimum value of VHDI in 
HHD is decreasing with time. In 2010, the minimum value of VHDI in HHD is 
0.524. However, this value has decreased to 0.492. This implies that more op-
portunity arises for the nations in MHD to get elevated into HHD. In other 
words, as mentioned previously, the possibility of having more percentile of the 
member states of the UN in HHD is becoming more imminent. 

As per Figure 15(d), with recent data, the range between the maximum and 
the median values of VHDIs is narrowing. In other words, the range between the 
maximum and the median indicates that around 50% of the member states of 
the UN in LHD are close to reaching the minimum value of VHDI in MHD. 
Therefore, the possibility of elevating these nations that fall within this range in 
LHD to MHD is fast becoming feasible with proper attention. In other words, 
the possibility of cutting the % of the member states of the UN in LHD into 50% 
 

 
Figure 15. The statistical trends of VHDIs in (a) VHHD; (b) HHD; (c) MHD; and (d) 
LHD with Time. 
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is around the corner. However, the range between the minimum and the median 
value of VHDI in LHD indicates that there is a variation between the countries 
in this range in LHD. To worsen the matter further, as per the human develop-
ment report published in 2015 [2], more than 55% of the population (i.e., 
around 372 million out of 683 million) in LHD falls under this range. Therefore, 
the marginal difference among these nations in this region alarms the necessity 
of the attention from a global perspective. 

5. Conclusions and Recommendations 

In this manuscript, based on principal component analysis and K-means 
clustering algorithm, the data that reflect the measures of life expectancy index 
(LEI), education index (EI), and income index (II) are used to analyze, 
categorize, and rank the member states of the UN to reflect the development 
status. Based on this study, the following points are highlighted: 

1) The proportion of total eigen value (i.e., proportion of total variance) ex-
plained by PCA-1 (i.e., first principal component) accounts for more than 85% 
of the total variation. Moreover, the proportion of total eigen value explained by 
PCA-1 increases with time (i.e., yearly) though the amount of increase with time 
is not significant. However, the proportions of total eigen value explained by 
PCA-2 and PCA-3 decrease with time. Therefore, the loss of information in 
choosing PCA-1 to represent the chosen explanatory variables (i.e., LEI, EI, and 
II) may diminish with time if the trend of increasing pattern of proportion of 
total eigen value explained by PCA-1 with time continues in the future as well. 

2) As per the computed correlation matrix, PCA-1 is positively and very 
strongly correlated (correlation coefficient>0.89) with all the considered expla-
natory variables. Moreover, among all the considered explanatory variables, II 
which measures the standard of living has the highest correlation (correlation 
coefficient ≈ 0.95) with PCA-1 followed by EI which measures the level of edu-
cation and the access to knowledge, and LEI which measures the population 
health and the longevity. 

3) The correlation between PCA-1 and EI increases with time although the 
magnitude of increase is not that significant. This same trend is observed in II as 
well. However, in contrast to these observations, LEI shows a negative trend. In 
other words, the correlation between PCA-1 and LEI decreases with time. These 
findings imply that the contributions of EI and II to PCA-1 increase with time, 
but the contribution of LEI to PCA-1 decreases with time. 

4) The Hopkins statistic using the PCA scores (i.e., PCA-1, PCA-2, and 
PCA-3) is higher than the Hopkins statistic using the explanatory variables. In 
other words, the clusterability of the information conveyed by the PCA scores is 
better than clusterability of the information conveyed by the explanatory va-
riables. However, the clusterability of the information conveyed by PCA-1 alone, 
specifically using the recent data (i.e., 2013 and 2014), is far better than the clus-
terability of the information conveyed by the PCA scores. Therefore, choosing 
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PCA-1 to represent the chosen explanatory variables is becoming more concrete. 
5) The magnitudes of the median values of Virtual Human Development In-

dices (VHDIs) indicate that there exists a distinguishable separation between the 
groups or clusters. Moreover, the possibility of elevating the member states of 
the UN in LHD (i.e., Low Human Development) to MHD (i.e., Medium Human 
Development) is easier than the possibility of elevating the member states of the 
UN in MHD to HHD (i.e., High Human Development) and HHD to VHHD 
(i.e., Very High Human Development). Moreover, the possibility of having more 
percentile of the member states of the UN in HHD is becoming more imminent. 

6) In this manuscript, the development of VHDI is based on the reported val-
ues of LEI, EI, and II. However, it is also worth to research to fit the composite 
index (i.e., VHDI) based on the values (i.e., life expectancy at birth in years, 
mean years of schooling in years, expected years of schooling in years, gross do-
mestic product per capita) that form these indices (i.e., LEI, EI, and II). This will 
eliminate any errors which may arise in using LEI, EI, and II in the development 
of VHDI. 

7) The VHDI is developed based on the weighted values of the principal 
component scores bounded between 0 and 1. The weights are based on the pro-
portions of total variation of the principal components, considering all the 
member states of the UN. Therefore, it is also worth to research the impact of 
determining the weights, considering only the member states of the UN that fall 
within a cluster of interest. 

8) In the definition of LEI, the maximum and minimum values (i.e., goal-
posts) of life expectancy (LE) are set to 85 years and 20 years, respectively. The 
justification for setting the minimum LE at 20 years is based on historical evi-
dence that no country in the 20th century had a life expectancy of less than 20 
years [1] [2]. However, to consider the indices (i.e., LEI, EI, and II) from a global 
perspective, these threshold values (i.e., goalposts) should be based on the data-
set used in the computation for the year of interest. For example, in 2015, if a 
maximum of 87 is observed for LE among all the member state countries, then 
this value should be considered as the maximum in the equation of LEI. Similar-
ly, in 2015, if a minimum of 40 is observed for LE among all the member state 
countries, then this value should be considered as the minimum. This will en-
sure that the member state of the UN that registers the maximum value for LE is 
given a value of 1 for LEI. Similarly, the member state of the UN that registers 
the minimum value for LE is given a value of 0 for LEI. Furthermore, based on 
these two member states of the UN, the other member states of the UN should 
be evaluated on LEI. In the longer run, even if all the member states of the UN 
register LEs of 85 and above, the above outlined approach will sustain. 

9) Though K-means clustering algorithm is the most widely used clustering 
algorithm, it is also worth to research on other clustering algorithms. 
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Appendix A 
#Snippet-1 
DataFile = "D:/Simulation_Results/HI_EI_II.xlsx" 
NPCA =3 
numberCluster =4 
library(readxl) 
pDataAll <-read_excel(DataFile) 
pData <-pDataAll[, 4:ncol(pDataAll)] 
pData 

 
#Snippet-2 
HDI.PCA <-prcomp(pData) 
eigs <-HDI.PCA$sdev ^2 
eigs /sum(eigs) 

cumsum(eigs) /sum(eigs) 

HDI.PCA$rotation 

HDI.PCA$x 

 
#Snippet-3 
plot(eigs/sum(eigs), xlab ="Principal Component", 
ylab ="Proportion of Total Variance Explained", 
type ="b", xaxp  =c(1, 3, 2), cex.lab=0.7) 

plot(cumsum(eigs)/sum(eigs), xlab ="Principal Component", 
ylab ="Cumulative Proportion of Total Variance Explained", 
type ="b", xaxp  =c(1, 3, 2), cex.lab=0.7) 
 

#Snippet-4 
pDataCluster <-cbind(HDI.PCA$x[, 1:NPCA]) 
pDataCluster 

library(factoextra) 

library(NbClust) 
fviz_nbclust(pDataCluster, kmeans, method ="wss") + 
geom_vline(xintercept =4, linetype =2) + 
labs(subtitle ="Elbow method") 

fviz_nbclust(pDataCluster, kmeans, method ="silhouette") + 
labs(subtitle ="Silhouette method") 

set.seed(123) 
fviz_nbclust( 
  pDataCluster, 
  kmeans, 
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nstart =25, 
method ="gap_stat", 
nboot =50 
) + 
labs(subtitle ="Gap statistic method") 

 
#Snippet-5 
set.seed(7) 
optimumCluster =kmeans(pDataCluster, 
                        numberCluster, 
nstart =100, 
algorithm ="Hartigan-Wong") 
optimumCluster$size 

optimumCluster$centers 

optimumCluster$withinss 

sum(optimumCluster$withinss) 

optimumCluster$cluster 

optimumCluster$totss 

optimumCluster$tot.withinss 

optimumCluster$betweenss 

 
#Snippet-6 
pDataClus-
ter<-cbind(PCA1=(HDI.PCA$x[,1]-min(HDI.PCA$x[,1]))/(max(HDI.PCA$x[,
1])-min(HDI.PCA$x[,1])), 
PCA2=(HDI.PCA$x[,2]-min(HDI.PCA$x[,2]))/(max(HDI.PCA$x[,2])-min(H
DI.PCA$x[,2])), 
PCA3=(HDI.PCA$x[,3]-min(HDI.PCA$x[,3]))/(max(HDI.PCA$x[,3])-min(H
DI.PCA$x[,3]))) 
pDataCluster 

combinedData =cbind(pDataCluster[, 1:NPCA], 
Cluster.No = optimumCluster$cluster, 
VHDI =0, 
VHDIR=0, 
                     pDataAll[, 1:ncol(pDataAll)]) 
combinedData 

combinedDataSubAll=c() 
 
for (j in 1:numberCluster) { 
  combinedDataSub =subset(combinedData, combinedData[, NPCA +1] ==j) 
  for (i in 1:nrow(combinedDataSub)) { 
    combinedDataSub[i, NPCA +2] =sum((combinedDataSub[i, 1:NPCA]) 
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*as.vector(eigs)[1:NPCA]/sum(eigs)) 
 
  } 

 
#Snippet-7 
combinedDataSub =combinedDataSub[order(combinedDataSub[, NPCA +2], 
decreasing =TRUE),] 
  combinedDataSub 
  for (i in 1:nrow(combinedDataSub)) { 
    combinedDataSub[i, NPCA +3] =i 
  } 
combinedDataSub 
combinedDataSubAll=rbind(combinedDataSubAll,combinedDataSub) 
 
 
#Snippet-8 
fileName =paste("ClusteredData", j, ".xlsx") 
library(xlsx) 
write.xlsx( 
x =data.frame(combinedDataSub), 
file = fileName, 
sheetName ="Sheet1", 
row.names =FALSE 
  ) 
} 
fileName =paste("ClusteredDataAll", ".xlsx") 
library(xlsx) 
write.xlsx( 
x =data.frame(combinedDataSubAll), 
file = fileName, 
sheetName ="Sheet1", 
row.names =FALSE 
) 
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