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Abstract 
The manuscript reviews the history and quo of the theory of Timoshenko’s method in stability 
analysis of compressive levers first, taking an example to explain the m-simulation method and 
putting forward the 3rd-7th boundary conditions demonstrating their superiorities in improving 
the precision through examples, followed by proposing and applying the join conditions in the 
stability analysis of combined axial force compressive levers gaining success. Through a brief ex-
ample showing the effect of some related theories in a simple structural stability analysis, its ap-
plication prospect is discussed. 
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1. Introduction 
As is known, the exact static method in structural stability analysis is difficult to push the popularization for the 
huge calculation amount etc. making the energy method of approximation including several simulated deforma-
tion method ([1], pp. 88-91), gaining highly regarded for the calculation being relatively simple. Among them, 
the Timoshenko’s method [2] [3], also called the single-parameter method [4] [5], the energy method of genera-
lized single degree of freedom [6] or simply the energy method [7]-[9], becomes the most popular to improve 
the complexity and limitations of the static method, promoting the popularization of the stability analysis theory. 
Although in the recent years, the advent of a software called the matrix displacement method ([8], pp. 188-200), 
being available in almost all kinds of structures obtaining results with enough precise, the teaching material of 
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higher education involving the stability analysis, however, had no fundamental changed. The author thought that 
too much input workload may be one of the main reasons making the energy method become the most important 
content of the stability analysis in the teaching material. In order to ensure the precision, Timoshenko empha-
sized that the lever, as an issue of single degree of freedom, the deformation function in critical state should at 
least satisfy the (end) conditions pertaining to deflections and slopes ([1], p. 88), hereinafter called the first and 
second BC.s. However, in order to obtain higher precision, the energy method calculation has to go from one 
degree of freedom to multiple degrees of freedom making the calculation amount increase greatly [3]-[7]. In or-
der to improve this situation, two methods designing the deformation function with mathematical and mechani-
cal techniques were put forward in 2006 ([9], pp. 127-129). On the premise of guarantee of the accuracy, the ap-
plication range of the single degree deformation function had been widened to various types of compressive 
levers. Based on the mechanical method, the m-simulation method was put forward there ([9], pp. 141-157) too, 
not only further simplifies the calculation, but also makes the application range expanding to frame structures; a 
convenient and practical exe software had also been developed successfully ([9], pp. 280-286). 

The accuracy of the m-simulation method depends on the degree of the designed m-curve approaching to the 
critical state of the object. The author found in practice that in addition to the 2 BC.s put forward by Timoshen-
ko, some other relative values on certain specific sections in the lever could also be predetermined with qualita-
tive even quantitative; thus, they could be made use in designing the trial function ( )ny  (see next section); so 
the degree of the function approaching to the critical state could also be improved and the precision would be 
enhanced as well. In the other words, the y-designing in the energy method would expands to ( )ny -designing 
including the m-designing as ( )2m EIy= . Thus, the stability analysis would present diversity from which the 
best result could be picked according to the nature of the lower limit of the energy method—considering the true 
one as the lower limit, as narrated in ([1], p. 90): the critical load becomes larger than the true one. At the same 
time, it also makes the contradiction between accuracy and computational cost balance at a higher level. 

In order to make the text concise and clear, below agreed to use “A ≥ B” instead of “proposition B would be 
derived from proposition A” and agreed upon in the formula that “l” to be the length measurement of the lever; 
“z” to be a variable with no dimension and “x” to be the one with the dimension of length; that is x zl= ; then 
“a” to be a micro const with the dimension of moment. 

2. The Revelation of m-Simulation Method, the Boundary Condition Expansion  
and the Concept of y(n)-Simulation Method 

For the convenience in reading comprehension, it is necessary to review the basic principle of m-simulation me-
thod especially for the English readers as it is narrated in Chinese ([9], pp. 141-157). 

As is known, the theory of energy method comes from the principle of minimum potential energy, namely 
U T∆ = ∆  ([1], p. 84)                                       (1) 

In the presence of prismatic cantilever column at the top of compression, using 

( )
2

22d 1 d
2 2l l

m xU P y x
EI EI

δ∆ = = −∫ ∫  ([1], p. 90)                           (1-A) 

Or ( )
2

2d d
2 2l l

m x EIU y x
EI

′′∆ = =∫ ∫  ([1], p. 90)                            (1-B) 

And ( )2 d
2 l

PT y x′∆ = ∫  ([1], p. 93)                              (1-C) 

The formula calculating the critical load of the pressure P on the top of the lever could be driven respectively as≥

( )

( )

2

2

d

d
l

cr

l

EI y x
P

y xδ

′′
⇒ =

−

∫

∫
                                        (2-A)  
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d

d
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l

EI y x
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y x

′′
=

′

∫

∫
 ([1], p. 93)                               (2-B) 
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Although the more precision result could be calculated with formula (2-A) ( 22.4674cr
EIP
l

≈  [1], p. 89) than 

that with (2-B) ( 22.5cr
EIP
l

≈  [1], p. 89), the large amount of calculation and the restricted of application range  

(only the prismatic cantilever column with a pressure on the top), restricted (2-A) of popularization. On the con-
trary, formula (2-B) has spread around the world such as the literatures of references [2]-[9]. On the premise of 
small deformation and linear elastic, taking note of EIy m′′ =  and dEIy m x′ = ∫ , (2-B) becomes  

( )

2

2

d

d d
l

cr

l

EI m x
P

m s x
=

∫

∫ ∫
 ([9], p. 141)                          (3-A) 

Making the result be determined by the unique function m; thus the y-designing in (2-B) could be replaced by 
the m-designing in (3-A). For the function m is a simulation of the critical state, it is called the m-simulation 
method ([9], p. 141). 

In case of several axial loads or ladder cross-section levers, (3-A) becomes 

( )

2

1

2
2

1 1

d

d d

i

n

i
i l

cr
n i

k
i

i l

EISEIS m x
EI

P
P EIS m x x
P EI

 
  
 =

                

∑ ∫

∑ ∑ ∫ ∫

 ([9], p. 145)              (3-B) 

(EIS is a representative value selected from iEI  arbitrary, the bending stiffness of any paragraphs) 
Besides can easily satisfy the 2 BC.s suggested by Timoshenko ensuring an accuracy of certain degree, the 

application of m-simulation method also simplifies the calculation and reveals the direction for the boundary 
theory developing as well, see the example below. 

Example 1 
A pressure lever as Figure 1(a), calculate the critical load crP  with the m-simulation method. (The origin of 

coordinates is fixed on the top, the same below) 
Method 1: Choose the simulation m-curve as Figure 1(b),  

That is 
axm EIy az
l

′′= = =  ⇒  ( )2d d d
2
alEIy l m z EIl y z al z z z C′ ′′= = = = +∫ ∫ ∫  

BC.2 on A (see Table 1 in the next section): ( )1 0y′ =  ⇒  1C = −  ⇒  

( )2d 1
2
alEIy l m z z′ = = −∫  ⇒  ( ) ( )

2 22 4 2d 2 1
4

a ll m z z z= − +∫  

Taking (3-A) gives 
( )

2 2

1
1 2 2 222

1

d
2.5

1 d
4

cr

EIl a z z
EIP

a l lz z
= =

−

∫

∫
 

The error is about 1.3% comparing with the exact solution 
2

2 2

π 2.4674
4cr

EI EIP
l l

= ≈  ([1], p. 49). There is such  

a good precision, in addition to the method satisfies the 2 BC.s put forward by Timoshenko, it satisfies the vo-
lume of 0, the moment at the top, as well, hereinafter referred to as the 3rd BC.: See Table 1 in the next section. 

Method 2: Choose the m curve as Figure 1(c), that is ( ) 2m z EIy az′′= =  ⇒   

( )3 1
3
alEIy z′ = −  ⇒  

( )

2 4

1
2 2 2 2

6 3
2

1

d
2.8

2 1 d
3

cr

a EI z z
EIP

a l lz z z
= =

− +

∫

∫
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The error is about 13.5%. Obviously the main reason is that ( ) ( )3 21 A
ay S
l

= =  being far cry from the actual  

of 0, the 4th BC. on the bottom (see Table 1), although the 3 ones mentioned in method 1 are all satisfied. 
 

 
Figure 1. Several figures of schemes for the m-simulation method in example 1.                          

 
Method 3: Take the simulation m curve as Figure 1(d) that 

( ) ( )2 2EIy m z a z z′′ = = −  ⇒  ( )3 23 2
3
alEIy z z′ = − +  ensuring ( )1 0EIy′ =  

⇒  
( )

( )

2 2

1
3 2 22 3 2

1

3 2 d
2.470588

3 2 d
cr

EI z z z
EIP
ll z z z

−
= ≈

− +

∫

∫
 

The error is about 0.13%; the precision is about 10 times higher than that of method 1. Obviously, in addition 
to the main reason satisfying the 3 BC.s mentioned in method 1, it satisfies BC. 4 also, see Table 1 in the next 
section and verify it please. 

Method 4: Choose 
πsin
2
zm a  =  

 
 as Figure 1(d) ⇒  

2

4 2 2

π 2.4674011
4cr

EI EIP
l l

= ≈  

Due to the chosen m-curve is exactly the same with that of the lever in critical state; the results are the same 
also. 

Discussion: Although the m-simulation method has certain guarantee of accuracy, the above methods of 1 and 
2 satisfying all the first 3 BC.s mentioned, made different errors, some one even larger than 10%, such as me-
thod 2. However, the accuracy of method 3 and 4 are very high, this is because they not only satisfy the first 3 
BC.s, but also satisfy the shear at the bottom section, the 4th BC. on A being 0 as well, see Table 1. More so, 
method 4 got the exact result with energy method; the reason is that the designed m-curve is perfectly the same 
with the lever in critical state. Although no exact solution of specific case, the probability of the basic is zero, we 
can still find some clues from the existing results, such as the m-curve in method 3 and 4 are very similar, the 
difference of the results comes from the difference of the 5th-6th BC.s, see Table 1. If these BC.s would be sa-  

tisfied, a more accuracy of energy method with the trial function different from 
πsin
2
zm a  =  

 
 would appear. 

Method 5: Choose ( )3 3m a z z= −  ⇒  ( )4 26 5
4
alEIy z z′ = − +   

⇒  
( )

( )

22 3

1
2 2 2 224 2

2
1

3 d
2.4677419

6 5 d
4

cr

EIa z z z
EIP

a l lz z z

−
= ≈

− +

∫

∫
 

The error is about 0.014% and the accuracy increased significantly about 10 times as that of method 3. Ob-
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viously, the main reason is that the designed trial function satisfies all the fist 5 BC.s mentioned; verify it please. 
Method 6: In order to satisfy all the first 6 BC.s in Table 1,  

Suppose ( ) ( )5 2
3

360 1c
aq EIy z

l
′ = = −  as Figure 1(e) being satisfying BC.6: 

( )
( )
0 0
1 0

c

c

q
q
′ ≠

 ′ =
 

⇒  ( ) ( ) ( )4 2 3
2 2

360 1201 d 3c
a aq EIy z z z z C

l l
= = − = − +∫  

BC.5: 
( )
( )
0 0
1 0

q
q

 =
 ≠

 ⇒  ( ) ( )4 3
2

120 3c
aq EIy z z

l
= = −   

⇒  ( ) ( ) ( )3 3 4 2

1

120 303 d 6a aS EIy z z z z z D
l l

= = − = − +∫  

BC.4: 
( )
( )
0 0
1 0

S
S

 ≠
 =

 ⇒  ( ) ( )3 4 230 6 5aS EIy z z
l

= = − +   

⇒  ( ) ( )4 2 5 330 66 5 d 10 25a am z z z z z z E
l l

= − + = − + +∫  

BC.3: 
( )
( )
0 0
1 0

m
m

 =
 ≠

 ⇒  ( )5 36 10 25am z z z
l

= − +   

⇒  ( ) ( )5 3 6 4 26 10 25 d 15 75a aEIy z z z z z z z F
l l

′ = − + = − + +∫  

BC.2: 
( )
( )
0 0
1 0

y
y
′ ≠

 ′ =
 ⇒  ( )6 4 215 75 61aEIy z z z

l
′ = − + −  ⇒  

( )

( )
( )( )

( ) ( ) ( )( )

22 5 3

1
2 2 26 4 2

1

10 8 6 4 2

1
212 10 8 6 2 4 2 2

1

6 10 25 d

15 75 61 d

36 20 100 50 500 625 d

30 150 225 30 75 122 1830 75 150 61 61 d

1 20 150 62536 100
11 9 7 3

1 30 375 30 75 122
13 11 9 7

cr

z z z z
EIP
lz z z z

z z z z z z
EI
lz z z z z z z

− +
=

− + −

− + + − +
=

− + + − × + + + − × +

 − + − + 
 =

× +
− + −

∫

∫

∫

∫

( )

( )

( )

22
2

2

75 1830 50 61 61
5

36 63 20 77 150 99 69300 144375
11 9 7

1 3465 122850 1876875 15263820 67162095 30225195
13 11 9 7 5

65 36 63 20 77 150 99 69300 144375
3465 122850 1876875 15263820 67162095

EI
l

EI
l

 +
+ − × + 

 

− × + ⋅ − +
× ×=

− + − + +
× × × ×

⋅ − × + × − +
=

− + − +( ) 2

2 2

30225195
65 36 88448 2.4674052

83880960

EI
l

EI EI
l l

+

× ×
= ≈  
The error is about 0.00017%, more than 80 times as accurate comparing with method 5.  
Brief summary: 
Despite of method 4 gives the exact solution; the trigonometric trial function would not be discussed below 

(see the section under). In all the others except method 4, the most accurate result belongs to method 6, for all 
the BC.s for Lever 1 in Table 1 are satisfied. You may have also found that about this example, the same designed 
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deformation function of ( )
2

3
2
xy l x
l

δ
= −  ([1], p. 88) were applied in the reference with 2 different formulas 

of (2-A) and (2-B) gaining different results and the one with (2-A) getting more accurate. The reason is that dif-
ferent methods were applied in calculating the function of m: the former add the load on the assumed curve cal-
culating the m-function with static method; whereas the latter obtained the m-function applying the differential 
relationship of m EIy′′≈  according to the designed deformation function y causing the difference in accuracy 
(0.129% and 1.321%). Despite the accuracy of the former is obviously higher, from the literature publishing s 
opinion, the former had been marginalized, and the large amount of calculation should be the main reason. The 
good news is that the accuracy of method 3 has caught up with the former; method 5 and 6 are even more accu-
rate. It shows that through careful designing the trial function ( )ny , high precision results may be obtained with 
simpler calculation, indicating the energy method of the broad prospects. 

The method 6 in the above example would not be called the m-simulation method being not begins from sup-
posing the function m; as it makes more convenience, it is recommended here and would be called the ( )ny - 
simulation method. Of course, it includes the m-simulation method as well. 

3. A Collection and Introduction of 7 BC.s and Their Primary Application to Lever  
2—y(n)-Simulation Method 

We can see from example 1 that the ( )ny -simulation method is more flexible and varied and therefore more 
convenient and practical than of the m-simulation method. Of course, the perfect state of function ( )ny -simula- 
tion is similar to that in m-simulation method, the designed trial function ( )ny  is exactly the same with the crit-
ical state of the object, but in the case of a complex object with no exact solution, the basic probability is 0. Of-
ten there are several functions satisfying the same BC.s and the best one should be selected by testing, so they 
would be called the trail function below. Also, the application range of the trigonometric functions is very nar-
row for the mathematical deducing being too complicated other than to the prismatic cantilever compressive 
bars with a pressure on the top. So the following discussion will focus on the polynomial functions with natural 
number power and will begin from the prismatic ones. If the designed trail function of ( )ny  satisfies the more 
of the BC.s in Table 1, the accuracy will also be improved more and be convenience for both hand counting and 
programming. 

3.1. The Introduction and Application of All the 7 BC.s in Stability Analysis for  
L2—y(n)-Simulation Method 

As mentioned earlier, there are many BC.s at some specific sections in a prismatic compressive cantilever; they 
will be introduced in Table 1. 

3.2. The Application of All the 7 BC.s in the Stability Analysis to Lever 2 
The stability analysis for Lever 2 is taken as one of the most classic example in the course of energy method for 
stability analysis in multiple versions of textbook [1]-[8]. Example 2 below would show you the advantage of 
making full use of the 7 BC.s in the analysis. 

Example 2  
A prismatic cantilever as in Figure 2(a), with uniform distribution dead load of q, analyze the critical value of 

it (the difference between q and cq  appearing below should be noted). 
Analysis 
As the gravity q is the only factor considered in the stability analysis, formula (2-A) or (2-B) could not be ap-

plied directly. The result should be gained by formula (1). 

Method 1 Take the deflection curve as π1 cos
2
xy
l

δ  = − 
 

 as in Figure 2(a). (The origin of coordinates is 

fixed on the top, the same below) ⇒  ( ) 21 7.89cr

EIql
l

≈  ([1], p. 105) 

Comparing with the exact result 3

7.837
cr

EIq
l

=  ([1], p. 103), the error is about 0.68%. 
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Table 1. The introduction for all the 7 BC.s in a prismatic cantilever (Lever 1 considers the top load P only, yet 
Lever 2 considers the own weight q only; the corresponding physical quantities are also indicated by ( )ny  at 
the same time in order to be convenient reading comprehension; subscript “U” indicates the up top section, yet 
“D” indicates the down bottom one).                                                                           

Serial number Judgment and instruction The situation of BC. satisfied in examples 

BC.1 
(for y) 

For both Lever 1 and Lever 2, there is displacement on 
the free top, but there is not on the fixed bottom. 

0Uy ≠  

0Dy =  
It is satisfied in all the methods of 

example 1 and 2. 

BC.2 (for y′  or 
θ ) 

For both Lever 1 and Lever 2, there is angular rotation 
on the free top, yet there is not on the fixed bottom. 

0Uθ ≠  

0Dy′ =  
It is satisfied in all the methods of 

example 1 and 2 

BC.3 (for y′′  or 
m) 

For both Lever 1 and Lever 2, there is no moment at 
the top but there is on the bottom. 

0Um =  

0Dy′′ ≠  
It is satisfied in all the methods in 

example 1 and 2 

BC.4 (for ( )3y  or 
S); S exists on the 
sections where the 
load direction isn’t 
parallel to the shaft 

only 

For Lever 1, there is 0S ≠  for the direction of the 
load is not parallel to the shaft on the top; yet 0S =  

on the bottom as they are parallel to each other. 

0US ≠  
( )3 0Dy =  

For this BC. is only satisfied part-
ly in method 1 and 2, the accuracy 
is not so good; yet in method 3 - 

6, the BC.s is satisfied completely, 
making the accuracy very high. 

For Lever 2, as there is no load on the top, there  
is no shear there; yet on the bottom section,  

there is no shear either for the shaft is  
parallel to the direction of the loads. 

0US =  
( )3 0Dy =  

For methods 3 - 10 in example 2,  
as the fist 4 BC.s are all satisfied 

completely, the accuracies  
are very high. 

BC.5 (for ( )4y  or 

cq : the simulation 
distributed load 

being different from 
the own weight of q) 

For Lever 1, as ( )0 0m =  ⇒  ( ) ( )0 0 0cm q′′ = = ; 

As ( )1 0m ≠  ⇒  ( ) ( )1 1 0cm q′′ = ≠  then. 

0cUq =  
( )4 0Dy ≠  

In example 1, method 5, 6  
satisfies all the first 5 BC: s  
the accuracies are very high. 

For Lever 2, there ( )0 0cq ≠  as the load direction 

being not parallel to the shaft; ( ) ( )1 1 0cDq m′′= ≠  
either as function of m is changing with the shaft not 

to scale of z. 

4 0Uy ≠  
( )4 0Dy ≠  

All the first 5 BC.s have been 
satisfied in method 5 - 10 in  

example 2:, they all have  
a good precision. 

BC.6  
(for ( )5y  or cq′ ) 

For Lever 1, this condition comes from method 4 in 
example 1. 

0cUq′ ≠  
( )5 0cDy =  

Method 6 in example 1 satisfied 
all the first 6 BC.s, the precision is 

the highest 

For Lever 2, it is difficult to determine the exact value 
of cUq , yet 0cDq′ =  is easy to be determined for the 

situation similar to the uniformly distributed load  
acting on the free end of a beam. So function m is 
very complicated, it means ( ) ( )3 1 constcDm q′= ≠ ,  

then verified by example 2. 

0cUq′ =  
( )5 0cDy ≠  

As all the 7 BC.s are satisfied in 
method 5 - 10 in example 2, the 

accuracy is very high. 

BC.7 (for Lever 2 
only) 

Pre-judging 
.cD cUq q>  

For ( ) ( ) ( ) ( )0 0 0 0cq qy M qy′ ′′ ′= + =  and 

( ) ( )1 1cq m′′= ; as ( )0y′  is very small, then 

.cD cUq q>  is prejudged in example 2 

Actually 
:cD cUq y  is 

about 2.4 

As the accuracy of method 9 in 
example 2 is the highest, 

2.4cD cUq q≈  is clear. 

Supplement (for 
Lever 1 only) 

If n is an uneven integer 
( ) 0n
cUy ≠  
( ) 0n
cDy =  

All the methods in example 1 are 
satisfied 

If n is an even integer 
( ) 0n
cUy =  
( ) 0n
cDy ≠  

Brief summary: The above table providing 6 and 7 BC.s for Lever 1 and Lever 2 respectively. For the application to Lever 1 has been introduced in 
section 1, below will introduce their application to Lever 2 only. 
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Method 2 Take the deflection curve as 
πsin
2

a xy
l l

=  [2]-[8]. 

Then ( )
4 1 32 2 2 4

2 2
2 2 5

π π π π π πd sin d
2 2 2 2 2 42 2 64l l

EI a EI x x a EI a EIU y x
l l l ll l l

−
     ′′∆ = = = =     
     ∫ ∫  

and ( )
( )2 22 2 2

2 2
4 2 2

π 4π πd cos d 0.183426
2 28 32l l

aqx a q x a qT y x x x q
ll l l

−
′∆ = = = = ≈∫ ∫   

Equaling U∆  and T∆  gives 
( )

4

2 32 3

π 8.297756
2 π 4cr

EI EIq
ll

≈ ≈
−

 (This result validate the calculation in li-  

terature [4]-[6], but the result given in literature [3] [7] is 38.27 EI
l

 may be too rough, it looks the precision of 

slide rule era). Comparing with the exact result 3

7.837
cr

EIq
l

=  ([1], p. 103), the error is about 5.88%. As only  

the first 3 BC.s are satisfied, the accuracy is poor. Yet, the calculation is much simpler than that in method 1.  
 

 
Figure 2. Several figures of schemes for y(n)-simulation method in example 2.                                             

 
Method 3 Due to the load uniformly distributed along the stem, it is not difficult to find in critical situation, 

that the shear at the top and bottom sections are all 0 (being called BC.4, see Table 1). So take the m-curve as 
Figure 2(b), the superposition of Figure 2(b1) and Figure 2(b2); Figure 2(b1) is a straight line with the func-
tion ( )1m x az= , and that of b2 is ( ) ( )( ) ( )3 2

2 0.5 1 1.5 0.5m x kaz z z ka z z z= − − = − + , a 3 times curve with the 
midpoint as a center of symmetry. Constant k could be confirmed by the derivatives of the curve at the top and  

bottom sections being all 0. For the corresponding slope in Figure 2(b1) is 
a
l

, the one in Figure 2(b2) must be 

a
l
−

. 

Making ( ) ( ) ( )2
02 2
1

0 1 3 3 0.5
2z

z

ka ka am m z z
l l l=

=
′ ′= = − + = = −  ⇒  2k = −  

That is ( ) ( )3 2 3 2
1 2 2 1.5 0.5 2 3EIy m m m az a z z z a z z′′ = = + = − − + = − −   

⇒  ( ) ( )3 2 4 32 3 d 2
2
alEIy al z z z z z D′ = − = − +∫  

BC. on A: ( )1 0EIy′ =  ⇒  ( )4 32 1
2
alEIy z z′ = − +  

⇒  ( )
2

2 13d
2 70l

EI a lU y x
EI

′′∆ = =∫  And ( )
( )

( )
( )

2 2 2 2 2 422 4 3
2 2

17d 2 1 d
2 42 720l l

qzl a ql l a qlT y z z z z z
EI EI

′∆ = = − + =∫ ∫  
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Equaling U∆  and T∆  gives 2 3 3

13 72 7.86555
17 7cr

EI EIq
l l

⋅
≈ ≈

⋅
; comparing with the exact one 3

7.837
cr

EIq
l

= ,  

the error is about 0.36%. Not only improved the precision greatly and simplify the calculation comparing with 
the one in method 1 and 2. We can see that BC.4 has a great impact to the result. 

Method 4 According BC.4, we can also suppose ( ) ( ) ( )3 2
4

6aEIy S z z z
l

= = −  (as Figure 2(c)) 

⇒  ( ) ( ) ( )3 26 1 d 2 3EIy m z a z z z a z z C′′ = = − = − +∫   

BC. on B: ( )0 0m =  ⇒  ( ) ( )3 22 3m z a z z= −  

As the m- function has the same variable factor of ( )3 22 3z z−  with method 3; the situation of satisfying the 
BC.s and the result must be the same as well; yet, the calculation is much simpler. 

Method 5 Suppose ( ) ( )3
2

30 4 1aq z z
l

= − ; ( ( ) ( )1 : 0 3c cq q = , satisfying BC.7) 

⇒  ( ) ( ) ( )3 430 304 1 da aS z z z z z C
l l

= − = − +∫  

BC. on A: ( )1 0S =  ⇒  ( ) ( )4
5

30aS z z z
l

= −  ⇒  ( ) ( ) ( )4 5 230 d 3 2 5EIy m z a z z z a z z C′′ = = − = − +∫  

BC. on B: ( )0 0m =  ⇒  ( ) ( )5 23 2 5m z a z z= −  ⇒  ( ) ( )5 2 6 3

1

3 2 5 d 5EIy al z z z al z z D′ = − = − +∫  

BC. on A: ( )1 0EIy′ =  ⇒  ( )6 35 4EIy al z z′ = − +  

Then ( ) ( )
2 2 222 5 2

1 1

3 9 63d 2 5 d
2 2 44

EI a l a lU y z z z z
EI EI

×′′∆ = = − =∫ ∫  

And ( )
( )

( )
( )

2 2 4 2 422 6 3
2 2

1 1

2025d 5 4 d
2 2 2 14 11 4

qzl a ql a qlT y z z z z z
EI EI

′∆ = = − + =
× ×

∫ ∫  

Equaling U∆  and T∆  gives 3 3

9 63 28 7.84
2025cr

EI EIq
l l

× ×
= ≈  

Comparing with exact one 3

7.837
cr

EIq
l

= , the error is about 0.038%. It is 10 times higher than that in me-  

thod 3 (4). So there is good effect, satisfy all the 7 BC.s is the main reason. It also provides the scope of the  
rough of ( ) ( )1 : 0c cq q , distance 3 not far away. 

Method 6 Suppose ( ) 3

360
cq z z

l
′ =  (satisfying ( )0 0cq′ = ) ⇒  

2

2 2

3360 60( ) dc
za aq z z z

l l C
 

= =  
+ 

∫  

In order to meet : 2cA cBq q =  being different form method 5, take 1C = −  ⇒  ( ) ( )2
2

60 3 1c
aq z z

l
= −  ⇒  

( ) ( ) ( )2 360 603 1 da aS z z z z z D
l l

= − = − +∫  

BC.4: ( ) ( )1 0 0S S= =  ⇒  ( ) ( )3
6 60S z a z z= −  ⇒  ( ) ( )3 4 2( ) 60 d 15 2EIy m z a z z z a z z E′′ = = − = − +∫  

BC. on B: ( )0 0m =  ⇒  ( ) ( )4 215 2m z a z z= −  ⇒  ( ) ( )4 2 5 3

1

15 2 d 3 10EIy al z z z al z z F′ = − = − +∫  

BC. on A: ( )1 0EIy′ =  ⇒  ( )5 33 10 7EIy al z z′ = − +  

Then ( ) ( )
2 2 222 4 2

1 1

15 5 107d 2 d
2 2 14

EI a l a lU y z z z z
EI EI

×′′∆ = = −∫ ∫  

And ( )
( )

( )
( )

2 2 4 2 422 5 3
2 2

1 1

39d 3 10 7 d
2 2 4

qzl a ql a qlT y z z z z z
EI EI

′∆ = = − + =∫ ∫  
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Equaling U∆  and T∆  gives 37.8388278388cr
EIq
l

≈ . 

Comparing with exact one 3

7.837
cr

EIq
l

= , the error is about 0.023%. The accuracy improved more than 30%  

comparing with that of method 5. Visible, : 2cA cBq q =  may be the smallest integer of convergent index of 
the trial functions satisfying BC.7; in other words, the corresponding trial function ( ) ( )4 22m z a z z= −  is the 
best optional of integer power exponential function. To further improve the accuracy, the only way is taking non 
integer power trial function. 

In order to simplifying the narrative, the follow methods would omit some steps in calculation, only the key 
dates would be provided in Table 2 adding method 5 and 6 in order for facilitate in comparison. 

 
Table 2. The related values of 6 methods in example 2, satisfying all the 7 boundary conditions.                                 

The number of 
method The m-simulation function 

Value of 
:A Bq q  crq  Relative 

error 

Method 5 ( ) ( )5 23 2 5m z a z z= −  3.0 3
7.84 EI

l
 0.038% 

Method 6 
( ) ( )4 215 2m z z z= −  

The highest accuracy of trial function  
with integer power 

2.0 3
7.8388278 EI

l
 0.023% 

Method 7 ( )4 2 2( ) 3 5.2 2 4.2m z a z z= × −。  2.2 3
7.8377274 EI

l
 0.0093% 

Method 8 ( )4 3 2( ) 3 5.3 2 4.3m z a z z= × −。  2.3 3
7.8374928 EI

l
 0.0063% 

Method 9 
( )4 4 2( ) 3 5.4 2 4.4m z a z z= × −。  

The highest accuracy in all the  
methods offered in this example 

2.4 3
7.8374397 EI

l
 0.0056% 

Method 10 ( )4 5 2( ) 3 5.5 2 4.5m z a z z= × −。  2.5 
3

7.8374397 EI
l

 0.0070% 

 

Method 11 Suppose axm EIy az
l

′′= = =  ⇒  ( )2

7 3 3

48 8
6cr

EI EIq
EIl l

= = . 

Comparing with the exact solution, the error is about 2.08%. When compare with the traditional method 2 
having been incorporated into many versions of textbooks, it improves in both the precision and the amount of 
calculation greatly. 

Brief summary 
1) The analysis for 2 kinds of cantilever pressure levers considering only the top load or the own weight are in-

troduced in the above 2 sections. If only considering the precision requirement, it seems to reinvent the 
wheel, for the exact results had been given by P. Timoshenko in ([1], p. 88) more than 50 years ago. The in-
troducing of the 7 BC.s here is to draw some regularity, in order to deal with more complex stability analysis. 
Generally speaking, the larger number of n (the series number of BC.s satisfied) the higher accuracy will be 
got; the smaller of the value of n the greater impact of the corresponding BC. will make. 

2) There are 11 kinds of methods in example 2 and method 5 - 10 satisfied all the 7 BC.s; the related dada are 
provided in Table 2. From the calculation results, it seems that the error of the most accuracy should be 
0.0056% provided in method 9. Visible, for the precision of energy method, there may be no best, just better 
(as the exact one may be an irrational). 

4. The Application of JC.s and BC.s in Stability Analysis for Combination of Axial  
Force 

The combined axial force compressive lever refers to that with uniform or ladder sections supported loads on 
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multi sections or only on the top being one of the common structure components. In this case, there are certain 
relationships between some physical quantities on the up and down of the sections loaded, hereinafter called 
Join Conditions, simply JC.; the precision can be improved in applying them. 

In order to simplify the narrative, save for “ 1l ”on behalf of the unit of lever length, that is 1l nl= , the “n” for 
the positive integers as shown in Figure 2. 

4.1. The Stability Analysis for the Prismatic Compressive Levers under the Acting of  
Combined Axial Forces 

The analysis for a lever under the action of 2 loads would be introduced first. 
Example 3 
Calculate the critical load crP  acting on section B and C of the lever as in Figure 3(a) 
Method 1 Suppose the simulative loads as Figure 3(b), then we have:  

Upper segment: 1 1EIy m az′′ = =  ( )21
1 1 1d d 1

2
alEIy m s al z z z C′ = = = +∫ ∫  

Lower segment:
 ( )2 2 2 1EIy m a z′′ = = −  ( )2

2 1 2 1d 2EIy al m z al z z C′ = = − +∫  

BC. on A: ( ) ( )2 12 4 2 2 0EIy al C′ = − + =  ⇒  ( )2
2 1 2EIy al z z′ = − −   

JC. on C: ( ) ( ) ( ) ( )1
1 2 1 11 1 1 1 1 1 2 2

2
alEIy C EIy al al′ ′= + = = − − = −  ⇒  1 5C = −  

⇒ ( )21
1 1d 5

2
alEIy m s z′ = = −∫  and ( )2

2 1 2 1d 2EIy al m z al z z′ = = − −∫  

By taking formula (3-B), we have 

( )

( ) ( )

1 2
22

0 1
21 22 22 2 2

1
0 1

d 2 1 d
2.10526316

1 5 d 2 2 d
4

cr

EI z z z z
EIP
l

l z z z z z

 
+ − 

 = ≈
 

− + − − 
 

∫ ∫

∫ ∫
 

Comparing with the exact solution (calculated with static method [3], p. 132) 22.067233cr
EIP
l

≈ , the error is  

about 1.84%. 
 

 
Figure 3. Several figures of schemes for y(n)-simulation method in example 3.                                         
 

The results of method 2 and 3 are finished by computer and the results of 3 methods are shown in Table 3 
below. 

4.2. The Stability Analysis for the Ladder Cross-Section Compressive Levers 
For the stability analysis of levers with ladder cross-section, many references analyzed with static method  
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Table 3. The computers results of example 3 (The exact solution: 
22.067233cr

EIP
l

≈  ([3], p. 132).                                    

Method Segment Trial function ( )ny  JC.s and BC.s Results and errors 

1 
(Figure 3(b)) 

Upper 1 1EIy m az′′= =  
( )2 2 0EIy′ =  

( ) ( )1 21 1EIy EIy′ ′=  
2

2.10526316 EI
l  

1.84% 
Lower ( )2 2 2 1EIy m a z′′ = = −  

2 
(Figure 3(c)) 

Upper ( ) ( )3
1 1

1

2aEIy S z
l

= = −  ( )1 0 0EIy′′ =  

( ) ( )1 21 1EIy EIy′′ ′′=  

( )2 2 0EIy′ =  

( ) ( )1 21 1EIy EIy′ ′=  

2
2.077764 EI

l  
0.51% 

Lower ( ) ( )3
2 2

1

2 2aEIy S z
l

= = −  

3 
(Figure 3(d)) 

Upper ( ) ( )3 2
1 1

1

4aEIy S z
l

= = −  ( )1 0 0EIy′′ =  

( ) ( )1 21 1EIy EIy′′ ′′=  

( )2 2 0EIy′ =  

( ) ( )1 21 1EIy EIy′ ′=  

2
2.091022 EI

l  
1.02% 

Lower ( ) ( )3 2
2 2

1

2 4aEIy S z
l

= = −  

Brief summary: The precision of method 2 is the highest being with a linear S-simulation function. 
 

[3]-[8], below will show you the energy method; as long as pay attention to the use of the all kinds of BC.s and 
JC.s introduced above, the energy method could be used to calculate precision fairly good results. 

Example 4  
Calculate the critical load crP  acting on 2 sections of a lever with ladder sections as in Figure 4(a). 
There will show you 3 methods with the trial function of S-simulation function as Figures 4(b)-(d). All the 

results are calculated by computer (Table 4).  
 

 
Figure 4. Several figures of schemes for y(n)-simulation method in example 4.                                          

 
Example 5  
Calculate the critical load crP  acting on 2 sections of a lever with ladder sections as in Figure 5(a). All the 

results are calculated by computer (Table 5).  

5. A Primary Application of the Boundary-Theories in Structure Stable Analysis 
Admittedly, how the theory could (directly or indirectly) apply to actual can reflect its value. A brief example  
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Table 4. The computers results of example 4 (The exact solution: 
23.6505192cr

EIP
l

=  ([5], p. 116).                                           

Method Segment Trial function ( )ny  BC.s and JC.s Results and errors 

1 
Figure 4(b) 

Upper ( )3
1 1 1

1

aEI y S
l

= =  ( )1 1 0 0EI y′′ =  
( ) ( ) ( ) ( )3 3

1 1 2 22 1 1EI y EI y=  

( ) ( )1 1 2 21 1EI y EI y′′ ′′=  

( ) ( )1 1 2 21 1EI y EI y′ ′=  

( )2 2 2 0EI y′ =  

2
3.773585 EI

l
 

3.37% 
Lower ( )3

2 2
1

22 aEIy S
l

= =  

2 
Figure (4c) 

Upper ( ) ( )3
1 1

1

6 2aEIy S z
l

= = −  ( )1 1 0 0EI y′′ =  
( ) ( ) ( ) ( )3 3

1 1 2 22 1 1EI y EI y=  

( ) ( )2 1 21 1EI y EIy′′ ′′=  

( )2 2 2 0EI y′ =  

( ) ( )1 2 21 1EIy EI y′ ′=  

2
3.652176 EI

l
 

0.05% 
Lower ( ) ( )3

2 2
1

122 4aEIy S z
l

= = −  

3 
Figure 4(d) 

Upper ( ) ( )3 2
1 1

1

4aEIy S z
l

= = −  ( )1 1 0 0EI y′′ =  
( ) ( ) ( ) ( )3 3

1 1 2 22 1 1EI y EI y=  

( ) ( )2 1 21 1EI y EIy′′ ′′=  

( )2 2 2 0EI y′ =  

( ) ( )1 2 21 1EIy EI y′ ′=  

2
3.738151 EI

l
 

12.26% 
Lower ( ) ( )3 2

2 2
1

22 4aEIy S z
l

= = −  

Brief summary: Obviously the precision of method 2 with linear S-simulation function is the best. 
 

 
Figure 5. Several figures of schemes for y(n)-simulation method in example 5.                                             
 
preliminary applying the Boundary theory on a simple structural analysis will be showed below. 

Example 6 
Calculate the critical loads crP  acting on a single-store frame as in Figure 6(a) ([7], pp. 251-254).  
Analysis:  
In practical engineering, in mechanical analysis, in addition to the precision requirement the simplified calcu-

lation is very important to the promotion. Therefore, the first selection algorithm is the most simple m-simula- 
tion method. As the structure is symmetry, the antisymmetry critical load is lesser; Figure 6(b) would be taken 
as the calculating diagram. (The origin of coordinates is fixed on the bottom) 

Method 1  
Suppose the simulation load as Figure 6(c), the m-diagram would be calculated by the method of non-shear  
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Table 5. The computers results of example 5 (The exact solution: 
27.5014498cr

EIP
l

=  ([5], p. 116).                                           

Method Segment Trial function ( )ny  BC.s and JC.s Results and errors 

1 
Figure 5(b) 

Upper ( )3
1 1 1

1

aEI y S
l

= =  ( )1 1 0 0EI y′′ =  
( ) ( ) ( ) ( )3 3

1 1 2 22 1 1EI y EI y=  

( ) ( )1 1 2 21 1EI y EI y′′ ′′=  

( ) ( )1 1 2 21 1EI y EI y′ ′=  

( )2 2 2 0EI y′ =  

2
8.421052 EI

l
 

12.59% 
Lower ( )3

2 2 2
1

2aEI y S
l

= =  

2 
Figure 5(c) 

Upper ( ) ( )3
1 1 1

1

6 2aEI y S z
l

= = −  ( )1 1 0 0EI y′′ =  
( ) ( ) ( ) ( )3 3

1 1 2 22 1 1EI y EI y=  

( ) ( )1 1 2 21 1EI y EI y′′ ′′=  

( ) ( )1 1 2 21 1EI y EI y′ ′=  

( )2 2 2 0EI y′ =  

2
7.609003 EI

l
 

1.433% 
Lower ( ) ( )3

2 2 2
1

12 2aEI y S z
l

= = −  

3 
Figure 5(d) 

Upper ( ) ( )3 2
1 1 1 6 4EI y S z= = −  ( )1 1 0 0EI y′′ =  

( ) ( ) ( ) ( )3 3
1 1 2 22 1 1EI y EI y=  

( ) ( )1 1 2 21 1EI y EI y′′ ′′=  

( ) ( )1 1 2 21 1EI y EI y′ ′=  

( )2 2 2 0EI y′ =  

2
7.783019 EI

l
 

3.75% Lower ( ) ( )3 2
2 1 2 12 4EI y S z= = −  

Brief summary: The above 3 examples show the precision guarantee of applying BC.s and JC.s in the stability analysis for combination of axial force. 
We can also see that the highest accuracy belongs to the one with linear ( )3y -simulation function being difference from the one with the only load on 
the top of a prismatic ones in example 1. 
 
distribution as is shown in Figure 6(c), a linear m-curve would be obtained; that is: 

2
F F
AC CA

hm m= =  ⇒  C
4
7A
hm = −

 
⇒  ( ) 4

7
m z z h = − 

 
  

⇒  ( ) ( ) ( ) ( )
2 2

22 2 2 2 2 24 1 7 4 49 56 16 1.143 0.3265
7 49 49

hm z z h z h z z h z z = − = − = − + = − + 
 

 

BC. on C: ( ) ( )
2 2

2 2

0

40 d 14 7 8 0
2 7 14
z z hEIy m z h C z z C

 
′ = = − + = − + = 

 
∫  ⇒  ( )

2
2d 7 8

14
hm z z z= −∫

 
 

⇒  ( ) ( ) ( ) ( )
4 42 22 4 3 2 4 3 2 4
2 27 8 49 112 64 0.25 0.5714 0.3265

14 14
h hmdz z z z z z z z z h= − = − + ≈ − +∫  

And function m of the beam: 
6
7bm y=  ⇒  2 236

49bm y=  ⇒   

(Adding deformation energy of the beam to the molecular of following formula) 

( )

( )

( )

2 2 2 2

1 0.5 1 0.5
0 2 2 2

4 3 2
2

1 1

1 36d d 49 56 16 d d
49 49

7.446811d d 49 112 64 d
14

b

cr

EI m z M y z z z y z
EI EIP
h hM z z z z z z

   
+ − + +   

   = = ≈
− +

∫ ∫ ∫ ∫

∫ ∫ ∫
 

This is the result with straight line simulation m-curve, the error is about 0.94% comparing with the exact so-  

lution 27.377 EI
h

. 
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Figure 6. The stability for a single-store frame by m-simulation method in example 6.                                  

 
Method 2 
Based on the result of method 1, the m diagram would be adding a cubic parabola as in Figure 6(d), 

That is ( )( ) ( ) ( )( )3 24 1 0.5 7 4 7 1.5 0.5
7 7

hm h z kz z z z k z z z  = − + − − = − + − +  
  

; the constant k is to be con-  

firmed ([9], p. 282). 

BC. on C: 
( ) ( )( )

( ) ( )( )

2
3 2

2

2
2 4 3

2 0

d 7 4 7 1.5 0.5 d
7

6 7 8 7 3 6 3 0
7 12

hm z z k z z z z

h z z k z z z D

= − + − +

= − + − + + =
×

∫ ∫
 ⇒  0D =  ⇒  

( ) ( )( )
2

2 4 3
2d 6 7 8 7 3 6 3

7 12
hm z z z k z z z= − + − +
×∫  and  

( ) ( ) ( )( )
4 22 2 4 3

4 2d 6 7 8 7 3 6 3
7 12

hm z z z k z z z= − + − +
×∫ , 

Then 
( )

( ) ( )( )( )

( ) ( )( )

( ) ( )( )( )

( ) ( )( )

22 2 2
2

1 0.5 1 0.5
2 4 222 4 3

4 2
1 1

22 2 2

1 0.5
2 24 2 4 3

1

1 36d d 7 4 1 0.5 d d
497

d d 6 7 8 7 3 6 3 d
7 12

7 12 7 4 1 0.5 d 36 d
7.413

6 7 8 7 3 6 3 d

b

cr

EI M z M y z h k z z z y z
EIP

h hM z z z z k z z z z

z h k z z z y z
EI EI
hh z z k z z z z

   
+ − + − − +   

   = =
− + − +

×

 
× − + − − + 

 = ≈
− + − +

∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫
2h

 

This is the result of a straight line adding a cubic parabola. In the above equation, constant 1.08k = −  is se-  

lected automatically by the software designed. Comparing with the exact result 27.377 EI
h

, the error is about.  

0.49%. Such a simple dealing with (only make the analyzing satisfy the BC. 4, the 0 shear on the bottom section 
C of the column approximately), that brings the effect of error in half of that in method 1. It indicates the boun-
dary theory of broad application prospects. In addition, the programming is simple, and can be used in the sta-
bility analysis of high-rise frame structures and the application of the software is very convenient, especially in 
input ([9], pp. 280-286). 

6. Summary 
Since 1961, when the Energy Method was put forward by Timoshenko [1], it got gradually into practical appli-
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cation phase. The 3rd-7th BC.s and JC.s put forward here would improve the precision obviously. The related 
theory and the high precision trial functions would add some advantage factors for the stability theory to further 
develop. 

In spite of wide application of the matrix displacement method [8], its input trouble faults are also obvious. 
Energy method, however, can make up for the shortcomings, and has realized the practical application in [9]. 
For the software is made out in Chinese identity, the application scope is limited in a certain degree. As the de-
veloper of the software, we are trying to translate the software into English as soon as possible and strive for 
some breakthroughs, in order to provide better service for readers.  

In addition, due to the result of author’s subjective and objective limitations, the errors are inevitable; the 
software also has some defects; so, we sincerely hope readers to give us more criticism and help, especially in 
such as variety of software development and application of all-round cooperation. We certainly hope this article 
can cause the reader’s interest, for energy method to expand the application scope, simplify the calculation, im-
prove the precision and so on, and put forward some new more effective method. 
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