Open Journal of Applied Sciences, 2015, 5, 651-660 “:‘ Scientific
Published Online October 2015 in SciRes. http://www.scirp.org/journal/ojapps ":” 53?‘&2;\‘;2
http://dx.doi.org/10.4236/0japps.2015.510064 ¢ g

Integral @o-Stability of Impulsive
Differential Equations

Anju Sood?, Sanjay K. Srivastava2

'Applied Sciences Department (Research Scholar-1113002), Punjab Technical University, Kapurthala, India
2Applied Sciences Department (Mathematics), Beant College of Engineering and Technology, Gurdaspur, India
Email: anjusood36@yahoo.com

Received 24 September 2015; accepted 27 October 2015; published 30 October 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, the notions of integral ¢ -stability of ordinary impulsive differential equations are
introduced. The definition of integral ¢ -stability depends significantly on the fixed time impulses.
Sufficient conditions for integral ¢ -stability are obtained by using comparison principle and
piecewise continuous cone valued Lyapunov functions. A new comparison lemma, connecting the

solutions of given impulsive differential system to the solution of a vector valued impulsive diffe-
rential system is also established.
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1. Introduction

Impulsive differential equations have been developed in modeling impulsive problems in physics, population
dynamics, ecology, biological systems, industrial robotics, optimal control, bio-technology and so forth. In view
of the vast applications, the fundamental and qualitative properties i.e. stability, boundedness etc. of such equa-
tions are studied extensively in past decades. Several types of stability have been defined and established in lite-
rature by academicians for impulsive ordinary differential equations. Various techniques such as scalar valued
piecewise continuous Lyapunov functions, vector valued piecewise continuous Lyapunov functions, Rajumikhin
method, comparison principle etc. have been employed to establish stability results.

To the best of our knowledge, the concept of integral stability and ¢, -stability were introduced for ordinary
differential equations by Lakshmikantham in 1969 [1] and by Akpan in 1992 [2] respectively. Later, these sta-
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bilities were developed in [3] and [4] by Akpan, Soliman and Abdalla but for ordinary differential equations. In
2010, Integral stability was established for impulsive functional differential equations by Hristova. Motivated by
these works, in this paper, we introduce and establish integral ¢, -stability for impulsive ordinary differential

equations:
x' = f(t,x), t#t,
Ax =1, (x), t=t (1)
X(ty) =X

where, ieN , teR", Ii(x):x(ti*)—x(ti) xeR", f:R'xR">R", 0=t <t <t,<t,<---00 and
I.:R" > R" are a sequence of instantaneous impulse operators and have been used to depict abrupt changes
such as shocks, harvesting, natural disasters etc. and K is a cone defined in Section 2.

The paper is organized as follows:

In Section 2, some preliminaries notes and definitions are given. In Section 3, a new comparison lemma,
connecting the solutions of given impulsive ordinary differential system to the solution of a vector valued im-
pulsive differential system is worked out. This lemma plays an important role in establishing the main results of
the paper. Sufficient conditions for integral ¢, -stability are obtained by employing comparison principle and
piecewise continuous cone valued Lyapunov functions.

2. Preliminaries

Let R" denote the n-dimensional Euclidean space with any convenient norm |||| and the scalar product
(<] R =[05), I=[t), R=(-0).
Forany X=(X, %, %), Y=Y, Yo, Y,)eR", wewillwrite x<y iff x <y, forall i=123,--

Let x(t)=x(t;t;,X,) be the solution of system (1), having discontinuities of the first type (left continuous)
at the moments when they meet the hyper planes t=t; .
Together with system (1), let us consider, its perturbed IDS:

x'=f(t,x)+f(t,x), t=t,
Ax =1, (x)+1; (%), t=t, 2
X(ty) =%,

*

where, f7(t,x):R"xR">R", 1](x):R" >R".
Let f(t,0)=f"(t,0)=0, 1,(0)=1;(0)=0(ieN) so thatthe trivial solution of (1) and (2) exists.

Let us define the following:
Definition 1. A proper subset K of R" is called acone if (i) AK =« K, 2>0 (ii) K+KcK (iii) K=K

(iv) K°#@ (v) Kn{-K}={0}, where K° and K are interior and closure of K respectively. oK
denotes the boundary of K.

Definition 2. The set K" = {¢ eR":(¢,x)20Vxe K} is called the adjoint cone if it satisfies the properties
(i)-(v) of definition 1.

Theset xedK iff (¢,x)=0 forsome ¢eK,, K,=K-{0}.

Definition 3. A function g:D — R",DcR"xR" is said to be quasi monotone relative to the cone K if
for each teR",uveD and v-uedK imply that there exists ¢eK, such that (g, v-u)=0 and
(¢5,9(t.v)—g(t,u))=0.

Consider the following sets:

XK= {a eC [R*, R*]: a(0)=0,a(r)is strictly increasing in r}
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CK ={beC[R"xR",R" |:b(t,.) e K and for any fixed t £[0,)|
PC[R*xR",R"]={f:R*xR" >R": f eC[ (1 ,t,,,)xR",R" |, =123,
S(p. ¢)={(t.x) R xK (¢, X) < p, p >0}

S (p. ) ={(t.X) e R*xK (¢, %) 2 p, p >0}

Qt.T,p)= {x eR":(t,x)eS(p.d), S€ [t,t+T]} .
Definition 4. A function V :R*xR" — K is said to belong to class £ if:
1. V(t,x) isacontinuous functionin G, =(t_.t ),YueS(p. ¢,);
2. V (t, x) is Lipschitz continuous relative to cone K, in its second argument;
3.Foreach ieN, lIirtirlv (t,x)=V (t -0,x)=V (t,x) and tlimv (t,x) exist.
And for t=t,:k=12,3,--- we define derivative of the function V (t, x) along the trajectory of the system

(1) by D"V, (t,x):limsup%[v (t+h, X+h f (t,x))—V (t, x)] .

h—0
Now referring [5], let us define the following:
Definition 5. Let ¢, €K, The function V (t,x)e £ is said to be ¢,-weakly decrescent, if there exists a
5>0 andafunction aeCX such that the inequality (¢,,x)<d implies that (¢0,V (t, x)) < a(t,(¢0, x))
Definition 6. Let ¢, e K; The function V (t, x) € L'is said to be ¢, -strongly decrescent, if there exists a
§>0 andafunction a <X such that the inequality (¢,,x)<& impliesthat (¢,.V (t,x))<a((d X))
Throughout in the paper it was assumed that ||| 0.

Let us consider the following comparison impulsive differential systems (referring [3] for Ordinary differen-
tial systems)

u'=g,(t,u) t=t,
Au=¢(u(t)) t=t ©))
u(ty)=up
and
w =g, (t,w) t#£t,
Aw =77, (w(t)) t=t )
w(ty)=w,
along with its perturbed system
W =g, (t,w)+p(t) t#t,
Aw =7, (w(t))+7 (t) t=t (5)
w(ty)=w,
where ¢, € PC[R* x K —>R"] is quasi monotone non decreasing in its second argument and &:K—> K is

quasi monotone non decreasing satisfying g,(t,0)=0, &(0)=0 g,¢€ PC[R*XK—>R”J , 7 K> K,
p:R">R", 5:R">K, g,(t,0)=7(0)=0, p(t) and y, areto be chosen later such that

q(0)=7,(0)=0.
Definition 7. The zero solution of (1) is said to be ¢, -stable, if for every o« >0 and for any t, eJ there

exists a positive function S = S(t,,a)e XK, which is continuous in t, for each « such that the inequality

(¢, %)< p impliesthat (¢, r(t))<a, t=t, where ¢ K, and r(t) isthe maximal solution of (1) rel-

ative to the cone K.
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Definition 8. The zero solution of (1) is said to be integrally stable, if for every « >0 and forany t, € J
there exists a positive function g =ﬂ(to,a) e X, which is continuous in t, for each « such that for any
solution X (t;t,,%,) of perturbed system (2) , the inequality |x < B hoIds provided that ||x,|<e and
forevery T >0, the perturbations f(t,x) and I;(x), i=12.3,--- of RHS of (2) satisfy

' sup ”f*(s,x*)“dw sup ”I )”Sa.

ty X HX*H<,B Kitp<ty <tg+T  x: H H B

Definition 9. The trivial solution of (1) is said to be integrally ¢, -stable, if for every o >0 and for any
t, € J there exists a positive function S = (t), )€ XK, which is continuous in t, for each « such that
for any solution X" (t;to,xo) of perturbed system (2) and for ¢, € K, the inequality (¢0, X )<ﬂ holds pro-

vided that
(%)< (6)
and, for every T >0, the perturbations " (t,x)and I;(x), i=12,3,--- of RHS of (2) satisfy
to+T
sup Hf )“ds+ D sup ”I )”ga. )
to ertTﬁ' k1<lk<t+Tx(¢0x

3. Main Results

Lemma 1: Consider the comparison system (3) and assume that
(i g,€ PC[R* xK—> R”] where g, is quasi monotone non decreasing in its second argument;

(i) Ve suchthat V ePC[S(p, ¢,)xK] and satisfies
(4, D7V (t, X)) < (g, 0, (LV (1, X))) it t, k=12,
(ili) & e X suchthat (g,V (t+0,x+1,(x)))<& (4 V (t.x))) for t=t k=123

Let r(t:ty,u,) be the maximal solution of (3) existing on J. Then for any solution X(t 1, XO) of (1) ex-
isting on J, we have (¢0 V(t, x(t))) <(¢.r(t:t,,u,)) provided that (40,V (t,+0.% )) < (¢ylp) -

Proof: Let x(t:t),%,) be the solution of (1) existing for t>t, suchthat (¢,.V (t,+0,%,))<(d.U,)-.
Define m(t)=(g,V (t,x(t))) for t=t  such that m(ty ) = (Vv (t +0,% )) < U, Then for small h>0,

we have
m(t+h)-m(t)
= (¢ (t+hx(t+h)))=(¢.V (t.X(1))) = (d,V (t+hx(t+h)) =V (t.x(1)))
:(¢0V(t+hxt+h)) V(t+hx(t)+h f(tx(1)))+V (t+h, x()+hf(t,x(t)))—v(t,x(t)))
= (v (t+hx(t+1))- v(t+hxt+hf(txt)))
+(¢0 (t+hx(t)+hf(tx(1)))-V (tx(1))

s||¢0||V\/ (t+hx(t+h))=V (t+h,x(t)+h f (t,x(t H+h(¢0 { (t+hx(t)+ht (;,x(t)))—v(t,x(t))H

£M||¢0||“x(t+h)— (t)-hf(tx(t H*h[%,{ (t+h,X(t)+hf(tt;x(t)))_v(tyx(t))}}l

where M is the Lipschitz constantin (t, ;,t,].
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Therefore we have

(t+h3 "¢ M (t+h)—x(tr)1—h f(t, X(t))HJ{%’{V (t+hx(t)+hf (;, x(1)))-V (t, x(t))”
m(t+h)-m(t) ST x(t+h3—x(t)_f(t,x(t)) +(¢0'{v (t+hx(t)+hf (;,x(t)))_v (t,x(t))H

= D'm(t) (¢ Dy V (6.X(1))) < (6 (LV (%))
Also m(t; ) < (4y.U,) and m(tk*):(%, (tk,x( ))) (qﬁo, (tk*,x(tk)+I(x(tk))))s(¢0,§k(V(tk,x))).

Then by theorem (1.4.3) in [6], we observe the desired inequality

(¢0,V (t.X(1))) < (T (t:15,u,)) forall t>t.
Theorem 1: Let us assume the following:
1.Let fePC[R'xR">R"| and I, eC[R">R"[k=123,

2. There exist V, (t,x)e £ V,(t,0)=0 such that
(i) V, is ¢,-weakly decrescent
(if) For t=t :k=12.3,..- the inequality

(45D Vi (t, X)) < (60, (1V, (1, x))) holds forall (t,x)e S(p, ¢), t %,

where g, monotone non decreasing in its second argument

(iii) (¢0, (X + 1 (X )))S(gﬁo,é‘k (Vi (t, x))) for all(t,x)eS(p, 4,) t=t, :k=123... where &
is monotone non decreasing, satisfying & (X)>x

3. For any number 4 >0 there exists V\*)(t,x)e £,V,(t,0)=0 such that

(V) b((d,x)) < (V1" (1 X)) <a(( %)) Tor (tx)eS(p.dy) NS (uidy) where abex

(v) For t=t, :k=12,3,--- the inequality

(¢ Dy Vi (t, )+ D VI (8, X)) < (¢0 0, (6 Vs (6 X)+ V9 x)))
holds for any
(tx)eS(p ) NS (1, by)

where g, € PC [R* xK—> R”] is monotone non decreasing in its second argument.
(vi) (¢0, (8 e+ 1 () V2 (8 x+ 1, (x))) < (¢0 e (vl (te, x(t)) V5 (8, x(t, )))) for

(t.X) € S(p, d) NS (11, ) k=1,2,3,--

where 7, e K, 7,(X)=x

4. The system (3) and (4) have solutions, for any initial point t, >0.

5. For any initial point (ty,x,) e R"xR", the system (1) has solution.

Let the zero solution of (3) be ¢, -stable, and scalar IDE (4) is integrally ¢, -stable, then the system (1) will
be integrally ¢, -stable.

Proof: Since V, (t,x) e /L is ¢,-weakly decrescent, therefore there exists a p, >0 (,o1 < ,o) and a func-
tion y, e CK such that the inequality (¢, Xx)< p, implies that

(601 (t.%)) <wy (t. (4, %)) ®)

where ¢, eKj.
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Let t, >0 be afixed time. Choose a number o >0 suchthat a<p.
As V, (t,x),V,* (t,x) € £, there exist Lipschitz constants M, and M, of V,(t,x) and V,*)(t,x) re-
spectively. Let (M, +M,)|¢|a =« .
As the zero solution of (3) is ¢, -stable, therefore for every o, >0 and for any t, € J there exists a posi-
tive function &, =&, (t,, ;) foreach o, such that the inequality (¢,,u,)<d, implies that
(¢0,r(t:t0,u0))<%, t>t, (9)

where r(t:ty,u,) is the maximal solution of (3)
As y, e CK , there exists &, =5,(5,)>0 andhence &, =6, (t;, ) such that
(dy,u) <8, = wy(t.(dyu)) <5, (10)
Again in view of the fact that the perturbations in (5), depend only on t and system (4) is ¢, -integrally stable,
there exists a function S, = f,(t,,,)e K , continuous in t, for each o, (take in particular o, <b(c,))

such that for every solution w’ (t ;to,wo) of perturbed system (5), the inequality

(W (Lt W) < B, (11)
holds provided that (¢, W,)<a, and forevery T >0, the perturbation terms p(t) and y, satisfy
to+T
[Ip(s)|ds+ > |n(t)|<a. (12)
t kg <ty <tg+T

Since be X, limb(s)=o let us choose B=p(f)>0 such that b(B)> /4 and B>y,(a) where

w, € K isafunction satisfying vy, (o)< p, .
Select &, =6,(e,8), a<d,<min{s,,p} such that the inequalities

a(d,)< % and y,(5,)< A hold (13)
Let x (t;to, xO) be the solution of (2). Now we will prove that if the inequalities (6) and (7) are satisfied then
(¢, X" )< B, t21, (14)

If possible let this be false. Therefore there exists a point t* >t, such that
(¢0, X (t)) > Band (4, X (1)) < B, te[t,t") (15)

Case 1: Let t" =t forany k=123, Thenthesolution X (t;t,,X,) iscontinuousat t". Therefore
(¢o’ X (t*)) =p

In this case first we note that (¢0, X (t)) > 5,

For if (¢0,x* (t*))s($3, then by the choice of &, we get w, (¢0,x* (t*))<,8 which is a contradiction to
(15).

Now let us consider the interval (to,t*)

Subcase 1.1: Let there exists t, e (to,t*), t; #t, :k =1,2,3,--- suchthat &, =(¢0,x* (tg)) and

(X (1)) e S(B, )N S (o dh):te[ 1)

*

If rl(t :t;,uo) is the maximal solution of (3) with u, =V, (t;,x*(to)) , then in view of the assumptions (ii)

and (iii) of theorem, using lemma 1, we obtain

(do o V(L X(t:6% ) ) < (d 5 (58 06) ) s[5, ] (16)
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where x(t 1, xo) is a solution of (1), starting at t, .

As &, :(¢0,x*(t;)) is chosen therefore we have (¢0,x*(t§))=53 <6, and (¢0,u0)=(¢0,vl(t;,x*(t;)))
by using (8) and then (10), we get

(4.U0) = (0Va (65X (8))) < v (5. (4. () <&,

Now (¢0 (t x(tt X ))) (¢0 (t t, uo)):te[tg,t*J by virtue of (9) gives:

(¢O,vl (t,x(t :t;,xo))) < (qﬁo,rl(t :t;,uo)) <%f0rt e[tt] (17)
Now from inequality (13) and condition (iv) of theorem, we get
(022 (85, % () <af (s x () <a(e) < (18)

Let us define the function V:R*xR" >K, Ve by V(t,x)=V,(t,x)+Vi(t,x)
Now, for te[té,t*] and t=t,, (t,x)eS(B, 4)nS(a, ¢), in view of (v) of theorem and lipschitz

conditionon V, and V(") , we have

(D) V (8:%)) = (s Dy Va (t,X)+ Dy, V. “(tx))

+limsup— { t+k, x+k f tx +f7

k—0

)-vt? 1. ]

(
[qﬁo limsup— {Vl(t+h x+h f(t,x)+f" J) V, (t }
{ tx)]
(;150 limsup= {1(t+h x+h f(t,x)+f" tx]) V, (t+h,x+hf (t,x))
1

h—0

h—0

+V, (t+h, x+hf (t,x))—Vl(t,x)}) [qbo Ilmsupk{ (t+k x+k[f(t,x)+ f*(t,x)])

VIt k, K (£)) + VA (kx4 (6%)) =V (6%}
(qﬁo Ilmsup { (t+h x+h[f(t,x)+ f*(t,x)])—vl(t+h,x+hf (tx))}j
[(ﬁo limsup= { (t+k x+k[f (t,x)+ f*(t,x)])—vz(“)(wk, X + kf (tx))}]

h—0

[qﬁo Ilmsup { (t+h,x+hf (t,x))- V(t,x)}j (qﬁo Ilmsup { J(t+k, x+Kf (t, ))—Vz(”)(t,x)}j
s||¢o||M1X€QF9';T)*' ||f t,x)||+||¢0||M (sup ||f tx)" dy Dy Vi (1, X)) + (¢0 oV (t, x))

< (4092 (1 V(0 X)+V”('X)))+||¢o|| MioM:) st )Ilf (t9)] 19)
xeQlty, T .8
= (9,9, (tV (%)) o (M, +M,) ?Ejp* )||f*(t,x)||,whereT*:t*_t;
xeQ(ty, T .8

Again for t, e(tg,t*) such that (t,,x)e S(B, ¢,)nS (. ), by using condition (vi) of theorem and

Lipschitz conditions on V, and Vz(") , We get
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=V (£ %+ 1, 00) +V (6 x5 1 () + 15 (0) =V (1 x+ 1, ()}
= (oo (x4 1, () (dosV (57 1 () + 15 () =V (17, x+ 1, (%))
= (b (1, 1, (1))

+(¢0,V1(t* X+ (x)+ 15 (%)) + V4 (t+ X+ 1 ()15 (%)) =Va (£, x+ 1, (x ))—Vz(“)(tk*,x+lk(x))) (20)
= ¢V (t+ Xt 1 () (B0 Va (8 1 ()4 1 () Vi (8 x+1, ()

+(do.V (t x+1, (x)+1 ()) (7 x+ 1, ()

< (d0. (v (1 (1)) + M 1 (x |+M ool G0l = (#o (v (s, x(1)))

+(My+M, ||¢o||||I (< (@0 (V (1 x(8))))+ (Ms + M, ) g I Z e, ||I |

0 <t <t +T X:(do X(t

For the impulsive differential system (5) which is the perturbed system of (4), set the perturbations on RHS of
(5) as

p(t)=(M, +M,)|a| Q(styg*ﬂ)"f*(t,x)" and 7, (t.)=(M,+M, ||¢0|| ||| X)|

Therefore (19) and (20) can be written as
(¢0, DV (&, x)) <(¢. 9, (tLV (t.x)))+ p(t)
and

(¢0,V(tk +0,1, (x)+ |;(x)))s(¢o,;7k (V (5. x(t, ))))m (t).

If we consider the comparison system (5) with maximal solution r’ (t:t;,wg), through the point (towo)
where w, =V (t;, X" (to)) using (19), (20) and lemma 1, we get
(v (6X (t,%))) < (07" (66, w5) ), teH N[t
where H is the interval of existence of maximal solution
r(ttg,wp) (21)

Now by using the inequality (7) for T =t"—t; inthe interval te [tg,t*] and from the choice of ¢,

Ip s)ds + Z 2

k: 10 <t <t

e om) | sup |6 (s s+l M) T

w il
g X €QLT.B) kit <t <t* x:(do.x(%))
:||¢0||(M1+M2){J' ) sup ||f (s,X) ||ds+ sup ||I ||}<a||¢0||(M1+M2)<al
X QT ket <ty <t™ X:(do, X(t

Let us choose a point T*>t" such that J': p(s)ds+E(T*—t*)p(t*)<a1.
0
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Now let us define a continuous function p’(t) :[tg ,oo) — R given by

p(t) teftyt]
p'(t)= g(t—T*) e (7]
0 t>T

and the sequence of numbers.
Ve =
We see that if (7) holds then from (22), forevery T >0

ta+T

| |p (s)|ds+ > |;/k|<a1 (23)
té K:tg <ty <tg+T

let r~ (t :t;,wg) be the maximal solution of (5), through the point (towo) where the perturbations terms are

defined by p*(s) and . Note that here we have 1™ (t:t;,w;) =r (t:tg,wg) te [to t*].

From inequalities (17) and (18) we see, (¢0,V (to X (t;)))=(¢0,v1 (to X (t;))+V2(“) (t0 X (tg)))«z1 ie.

(¢0’W;) So (24)
and hence from (11), we get
(4 ™ (t:t5.95)) < B, for t=t5. (25)

Now from the choice of /£, , inequalities (21), (25) and condition (iv) of statement of theorem, we get

* Lk

b(B)= B, >(¢0, r”(t:t;,wg)):(%, r*(t:t;,wg))z(gﬁo,v(t*,x*(t ;to,wg)))
= (0 Va (67 (555 ) )4 (£ (£365,w5)) ) 2 (0, VA2 (£ (1585, w5))
2b((¢0,x*(t*;t;,w;))):b(/i’)

which yields b(3)>b(£), a contradiction and therefore the inequality (14) is valid for t>t,.
Subcase 1.2: Let there exist a point t, e(to,t*) for some k=1,2,3,--- such that &, :(¢0,x*(tk)) and

(X (1) e S(B. 8,)N S (. ) te[tt7).
Choose &, satisfying &, <&, <4 with E=(¢O,x*(tg;to,xo)):t;(;ttk)e(to,t*) Now if we take &, in

place of &, and repeat the proof of subcase 1.1 we arrive at contradiction that assures the validity of (14).
Case2: If t" =t forsome ke N thenfrom (15),

(X" (8))2 8 and (¢, X (1)< B, teltyt,)
(¢0,x*(t;;to,xo))=(¢0,x*(tk)+(|k+|;)(x*(tk))).

Letusselect S=/(4,)>0 suchthat b(p)> sup(¢0,77k (r** (tk ;to,w;)))

Now by adopting the procedure as in case 1, we get the inequalities (21) and (25). Then by using these in-
equalities along with the conditions (iv) and (vi) of the statement of theorem, we have
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b(ﬁ)ZSldp(géo,f]k(r**(tk;to,wg)))>(¢o,77k(r*(tk;to,w )) (¢0l77k( tk’x t, ))
2(¢0,V(tk,x*(tk)))z(qﬁo,vz(a)(tk’X*( )))>b(¢0, “(t,))2b(B)

and that again is a contradiction .Therefore inequality (14) is valid.
Thus in all the cases, validity of (14) proves that system (1) is integrally ¢, -stable.

4. Conclusion

Results in [1] [4] [7] have been exploited and extended to establish the new type of stability i.e. integral ¢, -stability
for the impulsive differential systems. Sufficient conditions are obtained by employing comparison principle and
piecewise continuous cone valued Lyapunov functions.
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