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Abstract 
In this paper, the notions of integral 0φ -stability of ordinary impulsive differential equations are 
introduced. The definition of integral 0φ -stability depends significantly on the fixed time impulses. 
Sufficient conditions for integral 0φ -stability are obtained by using comparison principle and 
piecewise continuous cone valued Lyapunov functions. A new comparison lemma, connecting the 
solutions of given impulsive differential system to the solution of a vector valued impulsive diffe-
rential system is also established. 
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1. Introduction 
Impulsive differential equations have been developed in modeling impulsive problems in physics, population 
dynamics, ecology, biological systems, industrial robotics, optimal control, bio-technology and so forth. In view 
of the vast applications, the fundamental and qualitative properties i.e. stability, boundedness etc. of such equa-
tions are studied extensively in past decades. Several types of stability have been defined and established in lite-
rature by academicians for impulsive ordinary differential equations. Various techniques such as scalar valued 
piecewise continuous Lyapunov functions, vector valued piecewise continuous Lyapunov functions, Rajumikhin 
method, comparison principle etc. have been employed to establish stability results. 

To the best of our knowledge, the concept of integral stability and 0φ -stability were introduced for ordinary 
differential equations by Lakshmikantham in 1969 [1] and by Akpan in 1992 [2] respectively. Later, these sta-

http://www.scirp.org/journal/ojapps
http://dx.doi.org/10.4236/ojapps.2015.510064
http://dx.doi.org/10.4236/ojapps.2015.510064
http://www.scirp.org
mailto:anjusood36@yahoo.com
http://creativecommons.org/licenses/by/4.0/


A. Sood, S. K. Srivastava 
 

 
652 

bilities were developed in [3] and [4] by Akpan, Soliman and Abdalla but for ordinary differential equations. In 
2010, Integral stability was established for impulsive functional differential equations by Hristova. Motivated by 
these works, in this paper, we introduce and establish integral 0φ -stability for impulsive ordinary differential 
equations: 
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where, i N∈ , t R+∈ , ( ) ( ) ( )i i iI x x t x t+= −  nx R∈ , : n nf R R R+ × → , 0 1 2 30 t t t t= < < < < ∞  and 
: n n

iI R R→  are a sequence of instantaneous impulse operators and have been used to depict abrupt changes 
such as shocks, harvesting, natural disasters etc. and K is a cone defined in Section 2. 

The paper is organized as follows: 
In Section 2, some preliminaries notes and definitions are given. In Section 3, a new comparison lemma, 

connecting the solutions of given impulsive ordinary differential system to the solution of a vector valued im-
pulsive differential system is worked out. This lemma plays an important role in establishing the main results of 
the paper. Sufficient conditions for integral 0φ -stability are obtained by employing comparison principle and 
piecewise continuous cone valued Lyapunov functions. 

2. Preliminaries 
Let nR  denote the n-dimensional Euclidean space with any convenient norm .  and the scalar product 

( ),x y x y≤ , [ )0,R+ = ∞ , [ )0 ,J t= ∞ , ( ),R = −∞ ∞ . 

For any ( )1 2, , , nx x x x=  , ( )1 2, , , n
ny y y y R= ∈ , we will write x y≤  iff i ix y≤  for all 1, 2,3,i =   

Let ( ) ( )0 0; ,x t x t t x=  be the solution of system (1), having discontinuities of the first type (left continuous) 
at the moments when they meet the hyper planes it t= . 

Together with system (1), let us consider, its perturbed IDS: 
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( ) ( )

( )

*

*

0 0

, , ,

,
i

i i i

x f t x f t x t t

x I x I x t t

x t x

′ = + ≠
∆ = + = 
= 

                           (2) 

where, ( )* , : n nf t x R R R+ × → , ( )* : n n
iI x R R→ . 

Let ( ) ( )*,0 ,0 0f t f t= = , ( ) ( ) ( )*0 0 0i iI I i N= = ∈  so that the trivial solution of (1) and (2) exists.  
Let us define the following: 
Definition 1. A proper subset K of nR  is called a cone if (i) , 0λ λΚ ⊂ Κ ≥  (ii) Κ +Κ ⊂ Κ  (iii) Κ = Κ  

(iv) 0Κ ≠∅  (v) { } { }0Κ∩ −Κ = , where 0Κ  and Κ  are interior and closure of Κ  respectively. ∂Κ  
denotes the boundary of Κ . 

Definition 2. The set ( ){ }* : , 0nR x xφ φΚ = ∈ ≥ ∀ ∈Κ  is called the adjoint cone if it satisfies the properties 
(i)-(v) of definition 1. 

The set x∈∂Κ  iff ( ), 0xφ =  for some { }*
0 0, 0φ ∈Κ Κ = Κ − . 

Definition 3. A function : ,n ng D R D R R+→ ⊂ ×  is said to be quasi monotone relative to the cone Κ  if 

for each , ,t R u v D+∈ ∈  and v u− ∈∂Κ  imply that there exists *
0φ ∈Κ  such that ( )0 , 0v uφ − =  and 

( ) ( )( )0 , , , 0g t v g t uφ − ≥ . 

Consider the following sets: 

( ) ( ){ }is st, : 0 0 rictly increasing i, na C R R a ra r+ + = ∈ = K  
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( ) [ ){ }and for , : any fix,. ed 0,b C R R R b t t+ + + = ∈ × ∈ ∈ ∞ CK K  

( ){ }1, : : , , , 1, 2,3,n n n n n n
i iR R R f R R R f C t t R R i+ +

+   × = × → ∈ × =    PC  

( ) ( ) ( ){ }0 0, , : , , 0t x R xρ φ φ ρ ρ+= ∈ ×Κ < >S
 

( ) ( ) ( ){ }0 0, , : , , 0C t x R xρ φ φ ρ ρ+= ∈ ×Κ ≥ >S
 

( ) ( ) ( ) [ ]{ }0, , : , , , ,nt T x R t x S s t t Tρ ρ φΩ = ∈ ∈ ∈ + . 

Definition 4. A function : nV R R+ × → Κ  is said to belong to class L  if: 
1. ( ),V t x  is a continuous function in ( ) ( )1 0, , ,i i iG t t u ρ φ−= ∀ ∈S ; 
2. ( ),V t x  is Lipschitz continuous relative to cone K, in its second argument; 
3. For each i N∈ , ( ) ( ) ( )lim , 0, ,

i
i it t

V t x V t x V t x
→ −

= − =  and ( )lim ,
it t

V t x
→ +

 exist. 

And for : 1, 2,3,kt t k≠ =   we define derivative of the function ( ),V t x  along the trajectory of the system 

(1) by ( ) ( )( ) ( )(1)
0

1, limsup , , ,
h

D V t x V t h x h f t x V t x
h

+

→
 = + + −  . 

Now referring [5], let us define the following: 
Definition 5. Let *

0 0φ ∈Κ  The function ( ),V t x ∈L  is said to be 0φ -weakly decrescent, if there exists a 
0δ >  and a function C∈a K  such that the inequality ( )0 , xφ δ<  implies that ( )( ) ( )( )0 0, , , ,V t x a t xφ φ< . 

Definition 6. Let *
0 0φ ∈Κ  The function ( ),V t x ∈L is said to be 0φ -strongly decrescent, if there exists a 

0δ >  and a function ∈a K  such that the inequality ( )0 , xφ δ<  implies that ( )( ) ( )( )0 0, , ,V t x a xφ φ< .
 

Throughout in the paper it was assumed that
 0 0φ ≠ . 

Let us consider the following comparison impulsive differential systems (referring [3] for Ordinary differen-
tial systems) 
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along with its perturbed system 
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η γ
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                        (5) 

where 1
ng PC R K R+ ∈ × →   is quasi monotone non decreasing in its second argument and : Ki Kξ →  is 

quasi monotone non decreasing satisfying ( )1 ,0 0g t = , ( )0 0iξ =  2
ng PC R K R+ ∈ × →  , :i K Kη → , 

: np R R+ → , :i R Kγ + → , ( ) ( )2 ,0 0 0ig t η= = , ( )p t  and iγ  are to be chosen later such that  
( ) ( )0 0 0iq γ= = . 
Definition 7. The zero solution of (1) is said to be 0φ -stable, if for every 0α >  and for any 0t J∈  there 

exists a positive function ( )0 ,tβ β α= ∈K , which is continuous in 0t  for each α  such that the inequality 

( )0 0, xφ β<  implies that ( )( )0 , r tφ α< , 0t t≥  where
 

*
0 0φ ∈Κ  and ( )r t  is the maximal solution of (1) rel-

ative to the cone K. 
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Definition 8. The zero solution of (1) is said to be integrally stable, if for every 0α ≥  and for any 0t J∈
there exists a positive function ( )0 ,tβ β α= ∈K , which is continuous in 0t  for each α  such that for any 
solution ( )*

0 0; ,x t t x  of perturbed system (2) , the inequality *x β<  holds provided that 0x α≤  and  
for every 0T > , the perturbations ( )* ,f t x  and ( )* , 1, 2,3,iI x i =   of RHS of (2) satisfy 

( )
( )

( )
0

* *
0 00

* * * *

:: :

sup , d sup
k k

t T

i
k t t t Tx x x x tt

f s x s I x
β β

α
+

< ≤ +< <

+ ≤∑∫ . 

Definition 9. The trivial solution of (1) is said to be integrally 0φ -stable, if for every 0α ≥  and for any 
0t J∈  there exists a positive function ( )0 ,tβ β α= ∈K , which is continuous in 0t  for each α  such that 

for any solution ( )*
0 0; ,x t t x  of perturbed system (2) and for *

0 0φ ∈Κ , the inequality ( )*
0 , xφ β<

 
holds pro-

vided that  
( )0 0, xφ α≤                                        (6)  

and, for every 0T > , the perturbations ( )* ,f t x and ( )* , 1, 2,3,iI x i =   of RHS of (2) satisfy 

( )
( )

( )( )
( )

0

* *
0 0 00

* * * *

:, , : ,

sup , d sup
k k

t T

i
k t t t Tx t T x x tt

f s x s I x
β φ β

α
+

< ≤ +∈Ω <

+ ≤∑∫ .                 (7) 

3. Main Results  
Lemma 1: Consider the comparison system (3) and assume that  

(i) 1
ng PC R K R+ ∈ × →   where 1g  is quasi monotone non decreasing in its second argument;  

(ii) V ∈L  such that ( )0,V PC Kρ φ ∈ × S  and satisfies  

( )( ) ( )( )( )0 0 1, , , , , : : 1, 2,kD V t x g t V t x t t kφ φ+ ≤ ≠ = 
 

(iii) kξ ∈K  such that ( )( )( ) ( )( )( )0 0, 0, , ,k kV t x I x V t xφ ξ φ+ + ≤  for : 1, 2,3,kt t k= =   

Let ( )0 0: ,r t t u  be the maximal solution of (3) existing on J. Then for any solution ( )0 0: ,x t t x  of (1) ex-

isting on J, we have ( )( )( ) ( )( )0 0 0 0, , , : ,V t x t r t t uφ φ≤  provided that ( )( ) ( )0 0 0 0 0, 0, ,V t x uφ φ+ ≤ . 
Proof: Let ( )0 0: ,x t t x  be the solution of (1) existing for 0t t≥  such that ( )( ) ( )0 0 0 0 0, 0, ,V t x uφ φ+ ≤ . 

Define ( ) ( )( )( )0 , ,m t V t x tφ=  for kt t≠  such that ( ) ( )( )0 0 0 0 0, 0,m t V t x uφ+ = + ≤ . Then for small 0h > , 
we have 

( ) ( )
( )( )( ) ( )( )( ) ( )( ) ( )( )( )
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= + + − + + + + + −
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≤ + + − + + +

( )( )t

h

         

 ( ) ( ) ( )( )
( ) ( )( )( ) ( )( )

0 0

, , ,
, ,

V t h x t h f t x t V t x t
M x t h x t h f t x t h

h
φ φ

  + + −  ≤ + − − +      
, 

where M is the Lipschitz constant in ( ]1,k kt t− . 
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Therefore we have  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )( ) ( )( )

( ) ( ) ( )( )( ) ( )( )( )

0 0

0 0

0 0 11

, , ,,
,

, , ,
, ,

, , , , ,

V t h x t h f t x t V t x tx t h x t h f t x tm t h m t
M

h h h

V t h x t h f t x t V t x tm t h m t x t h x t
M f t x t

h h h

D m t D V t x t g t V t x

φ φ

φ φ

φ φ+ +

  + + −+ − −+ −   ≤ +      
  + + −+ − + −   ≤ − +      

⇒ ≤ ≤

 

Also ( ) ( )0 0 0,m t uφ+ ≤  and ( ) ( )( )( ) ( ) ( )( )( )( ) ( )( )( )0 0 0, , , , , ,k k k k k k k km t V t x t V t x t I x t V t xφ φ φ ξ+ + + += = + ≤ . 

Then by theorem (1.4.3) in [6], we observe the desired inequality  

( )( )( ) ( )( )0 0 0 0, , , : ,V t x t r t t uφ φ≤  for all 0t t≥ . 

Theorem 1: Let us assume the following: 
1. Let n nf PC R R R+ ∈ × →   and : 1, 2,3,n n

kI C R R k ∈ → =    

2. There exist ( ) ( )1 1, ,0 0V t x V t∈ =L,   such that 
(i) 1V  is 0φ -weakly decrescent  
(ii) For : 1, 2,3,kt t k≠ =   the inequality  

( )( ) ( )( )( )0 (1) 1 0 1 1, , , , ,D V t x g t V t xφ φ+ ≤  holds for all ( ) ( )0, , , kt x t tρ φ∈ ≠S   

where 1g  monotone non decreasing in its second argument 
(iii) ( )( )( ) ( )( )( )0 1 0 1, , , ,k kV t x I x V t xφ φ ξ+ ≤  for all ( ) ( )0, , , : 1,2,3.......kt x t t kρ φ∈ = =S  where kξ  

is monotone non decreasing, satisfying ( )k x xξ ≥  

3. For any number
 

0µ >  there exists
 

( ) ( ) ( )2 2, , ,0 0V t x V tµ ∈ =L   such that  

(iv) ( )( ) ( ) ( )( ) ( )( )0 0 2 0, , , ,b x V t x a xµφ φ φ≤ ≤  for ( ) ( ) ( )0 0, , ,Ct x ρ φ µ φ∈ ∩S S  where ,a b∈K  

(v) For : 1, 2,3,kt t k≠ =   the inequality 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )0 (1) 1 (1) 2 0 2 1 2, , , , , , ,D V t x D V t x g t V t x V t xµ µφ φ+ ++ ≤ +   

holds for any 

( ) ( ) ( )0 0, , ,Ct x ρ φ µ φ∈ ∩S S  

where 2
ng PC R K R+ ∈ × →   is monotone non decreasing in its second argument. 

(vi) ( )( ) ( ) ( )( )( ) ( )( ) ( ) ( )( )( )( )0 1 2 0 1 2, , , , , ,k k k k k k k k kV t x I x V t x I x V t x t V t x tµ µφ φ η+ ++ + + ≤ +  for 

( ) ( ) ( )0 0, , , , 1, 2,3,C
kt x kρ φ µ φ∈ ∩ = S S  

where : k Kη ∈ , ( )k x xη ≥  
4. The system (3) and (4) have solutions, for any initial point 0 0t ≥ . 
5. For any initial point ( )0 0, nt x R R+∈ × , the system (1) has solution. 
Let the zero solution of (3) be 0φ -stable, and scalar IDE (4) is integrally 0φ -stable, then the system (1) will 

be integrally 0φ -stable. 
Proof: Since ( )1 ,V t x ∈L  is 0φ -weakly decrescent, therefore there exists a ( )1 10ρ ρ ρ> <  and a func-

tion 1 Cψ ∈ K  such that the inequality ( )0 1, xφ ρ<  implies that  

( )( ) ( )( )0 1 1 0, , , ,V t x t xφ ψ φ<                                  (8) 

where *
0 0φ ∈Κ . 
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Let 0 0t ≥  be a fixed time. Choose a number 0α >  such that 1α ρ< . 
As ( ) ( ) ( )1 2, , ,V t x V t xµ ∈L , there exist Lipschitz constants 1M  and 2M  of ( )1 ,V t x  and ( ) ( )2 ,V t xµ  re-

spectively. Let ( )1 2 0 1M M φ α α+ = . 
As the zero solution of (3) is 0φ -stable, therefore for every 1 0α >  and for any 0t J∈  there exists a posi-

tive function ( )1 1 0 1,tδ δ α=  for each 1α  such that the inequality ( )0 0 1,uφ δ<  implies that 

( )( ) 1
0 0 0, : ,

2
r t t u α

φ < , 0t t≥                                (9) 

where ( )0 0: ,r t t u  is the maximal solution of (3) 
As 1 Cψ ∈ K , there exists ( )2 2 1 0δ δ δ= >  and hence ( )2 2 0 1,tδ δ α=  such that 

( ) ( )( )0 2 1 0 1, , ,u t uφ δ ψ φ δ< ⇒ < .                           (10) 

Again in view of the fact that the perturbations in (5), depend only on t and system (4) is 0φ -integrally stable, 
there exists a function ( )1 1 0 1,tβ β α= ∈K , continuous in 0t  for each 1α  (take in particular ( )1 1bα α≤ ) 

such that for every solution ( )*
0 0; ,w t t w  of perturbed system (5), the inequality  

( )( )*
0 0 0 1, ; ,w t t wφ β<                                      (11) 

holds provided that ( )0 0 1, wφ α≤  and for every 0T > , the perturbation terms ( )p t  and kγ  satisfy 

( ) ( )
0

0 00

1
:

d
k

t T

k k
k t t t Tt

p s s tγ α
+

< ≤ +

+ ≤∑∫ .                             (12) 

Since b∈K , ( )lim
s

b s
→∞

= ∞

 
let us choose ( )1 0β β β= >  such that ( ) 1b β β≥  and ( )2β ψ α>  where

 
2ψ ∈K  is a function satisfying ( )2 1ψ α ρ< .

 
 

Select ( )3 3 1,δ δ α β= , { }3 2 1min ,α δ δ ρ< <  such that the inequalities  

( ) 1
3 2

a α
δ <  and ( )2 3ψ δ β<  hold                          (13) 

Let ( )*
0 0; ,x t t x  be the solution of (2). Now we will prove that if the inequalities (6) and (7) are satisfied then  

( )*
0 0, ,x t tφ β< ≥                                    (14) 

If possible let this be false. Therefore there exists a point *
0t t>  such that  

( )( ) ( )( ) )* * * *
0 0 0, and , , ,x t x t t t tφ β φ β ≥ < ∈                          (15) 

Case 1: Let *
kt t≠  for any 1,2,3,k =  . Then the solution ( )*

0 0; ,x t t x  is continuous at *t . Therefore  
( )( )* *

0 , x tφ β=  
In this case first we note that ( )( )* *

0 3, x tφ δ> . 

For if
 ( )( )* *

0 3, x tφ δ≤ , then by the choice of 3δ  we get ( )( )* *
2 0 , x tψ φ β<  which is a contradiction to 

(15). 
Now let us consider the interval ( )*

0 ,t t  

Subcase 1.1: Let there exists ( )* * *
0 0 0, , : 1, 2,3,kt t t t t k∈ ≠ =   such that ( )( )* *

3 0 0, x tδ φ=  and 

( )( ) ( ) ( ) )* * *
0 0 0, , , : ,Ct x t t t tβ φ ρ φ ∈ ∩ ∈ S S  

If ( )*
1 0 0: ,r t t u  is the maximal solution of (3) with ( )( )* * *

0 1 0 0,u V t x t= , then in view of the assumptions (ii) 

and (iii) of theorem, using lemma 1, we obtain  

( )( )( ) ( )( )* * * *
0 1 0 0 0 1 0 0 0, , : , , : , : ,V t x t t x r t t u t t tφ φ  ≤ ∈                       (16) 
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where ( )*
0 0: ,x t t x  is a solution of (1), starting at *

0t . 

As ( )( )* *
3 0 0, x tδ φ=  is chosen therefore we have ( )( )* *

0 0 3 2, x tφ δ δ= <  and ( ) ( )( )( )* * *
0 0 0 1 0 0, , ,u V t x tφ φ=  

by using (8) and then (10), we get 

( ) ( )( )( ) ( )( )( )* * * * * *
0 0 0 1 0 0 1 0 0 0 1, , , , ,u V t x t t x tφ φ ψ φ δ= ≤ <

 

Now ( )( )( ) ( )( )* * * *
0 1 0 0 0 1 0 0 0, , : , , : , : ,V t x t t x r t t u t t tφ φ  ≤ ∈    by virtue of (9) gives: 

( )( )( ) ( )( )* * * *1
0 1 0 0 0 1 0 0 0, , : , , : , for ,

2
V t x t t x r t t u t t tα

φ φ  ≤ < ∈                    (17) 

Now from inequality (13) and condition (iv) of theorem, we get 

( ) ( )( )( ) ( )( )( ) ( )* * * * * 1
0 2 0 0 0 0 1, , ,

2
V t x t a x t aα α

φ φ δ≤ < <                      (18) 

Let us define the function : nV R R+ × → Κ , V ∈L  by ( ) ( ) ( ) ( )1 2, , ,V t x V t x V t xα= +   

Now, for * *
0 ,t t t ∈    and kt t≠ , ( ) ( ) ( )0 0, , ,Ct x β φ α φ∈ ∩S S , in view of (v) of theorem and lipschitz 

condition on 1V  and ( )
2V α , we have 

( ) ( )( ) ( ) ( ) ( )
( ) ( )( )

( ) ( )( ) ( ){ }
( ) ( ) ( )( ) ( ) ( ){ }

( ) ( )( ) ( )( ){
( )( ) ( )})

0 0 1 22 2 2

*
0 1 1

0

*
2 2

0

*
0 1 1

0

1 1

, , , , ,

1, limsup , , , ,

1limsup , , , ,

1, limsup , , , , ,

, , ,

h

k

h

D V t x D V t x D V t x

V t h x h f t x f t x V t x
h

V t k x k f t x f t x V t x
k

V t h x h f t x f t x V t h x hf t x
h

V t h x hf t x V t x

α

α α

φ φ

φ

φ

+ + +
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β

φ φ
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= + + = −

(19) 

Again for ( )* *
0 ,kt t t∈  such that ( ) ( ) ( )0 0, , ,C

kt x β φ α φ∈ ∩S S , by using condition (vi) of theorem and 

Lipschitz conditions on 1V  and ( )
2V α , we get  
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k
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k
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x x tk t t t T
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V t x t M I x M I x V t x t
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φ
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≤ + + =

+ + ≤ + + ∑

 (20) 

For the impulsive differential system (5) which is the perturbed system of (4), set the perturbations on RHS of 
(5) as 

( ) ( )
( )

( ) ( ) ( )
( )( )

( )
* * 00

* *
1 2 0 1 2 0

: ,, ,

sup , and sup
k

k k i
x x tx t T

p t M M f t x t M M I x
φ ββ

φ γ φ
<∈Ω

= + = +  

Therefore (19) and (20) can be written as  

( ) ( )( ) ( )( )( ) ( )0 0 22, , , , ,D V t x g t V t x p tφ φ+ ≤ +  

and 

( ) ( )( )( ) ( )( )( )( ) ( )*
0 0, 0, , ,k k k k k k k kV t I x I x V t x t tφ φ η γ+ + ≤ + . 

If we consider the comparison system (5) with maximal solution ( )* * *
0 0: ,r t t w , through the point ( )* *

0 0,t w  

where ( )( )* * * *
0 0 0,w V t x t= , using (19), (20) and lemma 1, we get 

( )( )( ) ( )( )* * * * * *
0 0 0 0 0 0 0, , ; , , ; , , ,V t x t t x r t t w t H t tφ φ  ≤ ∈  

  

where H is the interval of existence of maximal solution  

( )* * *
0 0; ,r t t w                                     (21) 

Now by using the inequality (7) for * *
0T t t= −  in the interval * *

0 ,t t t ∈    and from the choice of 1α , 

( )

( )
( )

( ) ( )
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( )( )
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d

sup , d sup
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k
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t

k
k t t tt

t

i
x x tx t T k t t tt

t

i
x x tx t T k t t tt

p s s

M M f s x s M M I x

M M f s x s I x M M

φ ββ

φ ββ

γ

φ φ

φ α φ α

< ≤

<∈Ω < ≤

<∈Ω < ≤

+

= + + +

  = + + < + < 
  

∑∫

∑∫

∑∫

   (22) 

Let us choose a point * *T t>  such that ( ) ( ) ( )
*

*
0

* * *
1

1d
2

t

t
p s s T t p t α+ − <∫ . 
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Now let us define a continuous function ( ) )* *
0: ,p t t R ∞ →  given by 

( )

( )

( ) ( ) (

* *
0

*
* * * *

* *

*
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: ,

0 :

p t t t t

p t
p t t T t t T

t T
t T

  ∈  
 = − ∈ −
 ≥


 

and the sequence of numbers.  

( * *
0*

*

: ,

0 :

k k
k

k

t t t

t t

γ
γ

 ∈ = 
>

 

We see that if (7) holds then from (22), for every 0T >  

( )
*
0

* 0 00

* *
1

:
d

k

t T

k
k t t t Tt

p s s γ α
+

< ≤ +

+ <∑∫                              (23) 

let ( )** * *
0 0: ,r t t w  be the maximal solution of (5), through the point ( )* *

0 0,t w  where the perturbations terms are 

defined by ( )*p s  and *
kγ . Note that here we have

 ( ) ( )** * * * * * * *
0 0 0 0 0: , : , ; ,r t t w r t t w t t t = ∈   . 

From inequalities (17) and (18) we see, ( )( )( ) ( )( ) ( ) ( )( )( )* * * * * * * * *
0 0 0 0 1 0 0 2 0 0 1, , , , ,V t x t V t x t V t x tαφ φ α= + <  i.e. 

( )*
0 0 1, wφ α≤                                      (24) 

and hence from (11), we get 

( )( )** * *
0 0 0 1, : ,r t t wφ β<  for *

0t t≥ .                              (25) 

Now from the choice of 1β , inequalities (21), (25) and condition (iv) of statement of theorem, we get 

( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( ) ( )( )( ) ( ) ( )( )( )

( )( )( ) ( )

** * * * * * * * * * *
1 0 0 0 0 0 0 0 0 0

* * * * * * * * * * * * * * *
0 1 0 0 2 0 0 0 2 0 0

* * * *
0 0 0

, : , , : , , , ; ,

, , ; , , ; , , , ; ,

, ; ,

b r t t w r t t w V t x t t w

V t x t t w V t x t t w V t x t t w

b x t t w b

α α

β β φ φ φ

φ φ

φ β

≥ > = ≥

= + ≥

≥ =

 

which yields ( ) ( )b bβ β> , a contradiction and therefore the inequality (14) is valid for 0t t≥ . 
Subcase 1.2: Let there exist a point ( )*

0 ,kt t t∈  for some 1,2,3,k = 
 such that ( )( )*

3 0 , kx tδ φ=  and 

( )( ) ( ) ( ) )* *
0 0, , , : ,C

kt x t t t tβ φ ρ φ ∈ ∩ ∈ S S . 

Choose 3δ  satisfying 3 3δ δ β< <  with ( )( ) ( ) ( )* * * *
3 0 0 0 0 0 0, ; , : ,kx t t x t t t tδ φ= ≠ ∈  Now if we take 3δ  in 

place of 3δ  and repeat the proof of subcase 1.1 we arrive at contradiction that assures the validity of (14). 
Case 2: If *

kt t=  for some k N∈  then from (15),  

( )( )*
0 , kx tφ β≥  and ( )( ) [ )*

0 0, , , kx t t t tφ β< ∈  

( )( ) ( ) ( ) ( )( )( )* * * *
0 0 0 0, ; , ,k k k k kx t t x x t I I x tφ φ+ = + + .

 

Let us select ( )1 0β β β= >  such that ( ) ( )( )( )** *
0 0 0sup , ; ,k k

k
b r t t wβ φ η≥  

Now by adopting the procedure as in case 1, we get the inequalities (21) and (25). Then by using these in-
equalities along with the conditions (iv) and (vi) of the statement of theorem, we have 
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( ) ( )( )( ) ( )( )( ) ( )( )( )( )
( )( )( ) ( )( )( ) ( )( ) ( )

** * * * *
0 0 0 0 0 0 0

* ( ) * *
0 0 2 0

sup , ; , , ; , , ,

, , , , ,

k k k k k k k
k

k k k k k

b r t t w r t t w V t x t

V t x t V t x t b x t bα

β φ η φ η φ η

φ φ φ β

≥ > ≥

≥ ≥ ≥ ≥
 

and that again is a contradiction .Therefore inequality (14) is valid. 
Thus in all the cases, validity of (14) proves that system (1) is integrally 0φ -stable. 

4. Conclusion 
Results in [1] [4] [7] have been exploited and extended to establish the new type of stability i.e. integral 0φ -stability 
for the impulsive differential systems. Sufficient conditions are obtained by employing comparison principle and 
piecewise continuous cone valued Lyapunov functions. 
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