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Abstract 
In this paper, the authors extracted and investigated the effect of relative humidity (RH) on some 
microphysical and optical properties of continental polluted aerosols from OPAC (Optical Proper-
ties of Aerosols and Clouds) at the spectral range of 0.25 μm to 2.5 μm and eight relative humidi-
ties (0%, 50%, 70%, 80%, 90%, 95%, 98%, and 99%). The microphysical properties extracted 
were radii, volume, number and mass mix ratios as functions of RH while the optical properties 
were optical depth, extinction, scattering and absorption coefficients single scattering albedo, re-
fractive indices and asymmetric parameters also at eight RHs. Using the microphysical properties, 
effective hygroscopic growth factors and effective radii of the mixtures were determined while 
using optical properties we determined the enhancement parameters, effective refractive indices 
and angstrom coefficients. Using the effective hygroscopic growth, we determined the dependence 
of the effective hygroscopicity parameter as a function of RH, while using enhancement parame-
ters; we determined the effect of humidification factor on RH and wavelengths. The effective hy-
groscopic growth and enhancement parameters were then parameterized using some models to 
determine the effective hygroscopicity parameter, bulk hygroscopicity and humidification factors. 
We observed that the data fitted the models very well. The effective radii decrease with the in-
crease in RH while the effective hygroscopic growth increases with the increase in RH, and this is 
in line with the increase in angstrom parameters, and this shows increase in mode size with the 
increase in RH. The angstrom coefficients show that the mixture has a bimodal type of distribution 
with the dominance of fine mode particles. 
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1. Introduction 
Aerosol particles in the atmosphere which comprised both soluble and insoluble aerosols, affect the earth’s radi-
ation balance in both direct and indirect ways [1]. The direct effect is influenced by the hygroscopicity of the 
aerosol particles, while the indirect is the tendency for cloud formation and resulting cloud properties all due to 
changes in Relative humidity. The direct effect causes the scattering and absorption of short-wave solar and 
long-wave thermal radiation by the aerosol particulates. These changes in relative humidity modify the mi-
cro-physical (e.g., shape and size modification), chemical compositions (e.g. heterogeneous chemical reactions) 
and optical properties of not only the hygroscopic aerosol mixtures but also mixtures containing some contribu-
tion of non-hygroscopic aerosols like for example organic carbon or black carbon [2] [3]. Atmospheric aerosols 
undergo heterogeneous chemistry as they are transported through the atmosphere. These reactions cause Chem-
ical Modification of the Atmosphere as well as Chemical Modification of the Airborne Mineral Dust Particles. 
These reactions have global implications. Changes in particle size and phase with relative humidity modify he-
terogeneous atmospheric chemistry, cloud and fog formation processes, and visibility [4]-[6]. Key factors in de-
termining whether a particular aerosol has a net positive (heating) or negative (cooling) direct radiative forcing 
influence on the Earth’s radiation budget include the spatial distribution of the aerosol, its physical state and as-
sociated optical properties Haywood and Boucher [7], which also depend on the hygroscopicity of the aerosol 
[8]. Hygroscopic properties of aerosol particles can be determined by their physical and chemical characteristics 
[9] [10]. 

Atmospheric aerosols are normally either externally or internally mixtures of particles with different chemical 
compounds such as soots, sulphates, nitrates, organic carbons and mineral dusts [4]. The ratio between their 
fractions as well as their content of soluble material determines the hygroscopic growth of the overall aerosol. 
The state of mixing of these components is crucial for understanding the role of aerosol particles in the atmos-
phere. In recent years, much attention has been paid to the mixing state of soot in aerosols [11]-[16], and this in-
fluences the optical properties and climate effects of aerosols. 

On a global basis, sulfates, nitrates and chlorides that have the largest concentrations as inorganic aerosols 
saltscontribute the largest to the mass budget of fine atmospheric particles [17]-[19]. These aerosols are hygros-
copic by nature, so as such most of their microphysical and subsequently their optical properties would be 
strongly influenced by the ambient relative humidity (RH). Based on recent studies, the effect of sulfate particles 
on the annual-average global direct radiative forcing, arising from the fluctuation of atmospheric particles be-
tween aqueous and solid state, is estimated up to as much as 24% [20]-[22]. 

In hygroscopicity modelling, the Kohler Equation is often used to describe both the hygroscopic growth and 
the activation of aerosol particles to cloud droplets, based on the aerosol’s physicochemical properties [22]. Re-
cently, several single-parameter schemes have been proposed to simplify the Kohler Equation. Hygroscopicity 
parameters such as κ and ρion have been defined as proxies of chemical composition to represent aerosol hy-
groscopic growth as well as the ability of aerosol particles to become cloud condensation nuclei (CCN) [24] [25]. 
From reviews of some observational data, Andreae and Rosenfeld [26] suggested that continental and marine 
aerosols on average tend to cluster into relatively narrow ranges of effective hygroscopicity (continental κ = 0.3 
± 0.1; marine κ = 0.7 ± 0.2). Some recent field studies also supported this view, although some show systematic 
deviations for certain regions and conditions. For example, Gunthe et al. [27] reported a characteristic value of κ 
= 0.15 for pristine tropical rainforest aerosols in central Amazonia, which are largely composed on secondary 
organic matter. Some researchers, for example Rissler et al. [5] and Tijjani et al., [28] overviewed several mod-
els which describe the aerosol hygroscopicity and the CCN activation, and discovered that the hygroscopicity 
parameter (κ) for the Kohler model is not always a constant with respect to RH, most especially for the range of 
RH above 90%. 

The main parameter used to characterize the hygroscopicity of the aerosol particles based on some micro-
physical properties is the aerosol hygroscopic growth factor gf(RH), which is defined as the ratio of the particle 
diameter at any RH to the particle diameter at RH = 0% [4] [29]. The effects of hygroscopicity on the optical 
properties are described by the enhancement factors f(RH, λ) of the optical parameters, which are defined as the 
ratio between values of the optical parameters at a given RH, and those in dry conditions (RH = 0). 

The aim of this study is to determine the effects of RH and wavelength on the globally averaged direct aerosol 
radiative forcing, the effective hygroscopic growth and enhancement factors for continental average aerosols 
from the data extracted from OPAC. One and two variables parameterizations models will be perform to deter-
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mine the relationship of the particles’ hygroscopic growth and enhancement parameters with the RH. Angstrom 
coefficients are used to determine the particles’ type and the changes in the mode size and type distributions as a 
result of the changes in RHs. 

2. Methodology 
The models extracted from OPAC are given in Table 1. 

Where water soluble components, consist of scattering aerosols, that are hygroscopic in nature, such as sul-
fates and nitrates present in anthropogenic pollution, while water insoluble and soot are considered not soluble 
in water and therefore the particles are assumed not to grow with increasing relative humidity. 

The globally averaged direct aerosol Radiative forcing, ∆FR, for absorbing aerosols was calculated using the 
Equation derived by Chylek and Wong [31] 

( ) ( ){ }220 1 1 2 4
4R atm sca abs
SF T N A Aβτ τ∆ = − − − −                      (1) 

where S0 is a solar constant, Tatm is the transmittance of the atmosphere above the aerosol layer, N is the fraction 
of the sky covered by clouds, A is the albedo of underlying surface, β is the upscattering fraction of radiation 
scattered by aerosol into the atmosphere while τsca and τabs are the aerosol layer scattering and absorptions opti-
cal thickness respectively. The above expression gives the radiative forcing due to the change of reflectance of 
the earth-aerosol system. The upscattering fraction is calculated using an approximate relation [32] 

( )1 1
2

gβ = −                                     (2) 

where g is the asymmetric parameter. The global averaged albedo A = 0.22 over land and A = 0.06 over the 
ocean with 80% of aerosols being over the land; solar constant of 1370 Wm−2, the atmospheric transmittance is 
taken to be Tatm = 0.79 [33] and cloudness N = 0.6. 

The aerosol’s hygroscopic growth factor gf(RH), [4] [34] is defined as: 

( ) ( )
( )0
D RH

gf RH
D RH

=
=

                                (3) 

where RH is taken for seven values 50%, 70%, 80%, 90%, 95%, 98% and 99%. 
But since atmospheric aerosols consist of more and less hygroscopic sub fractions so the information on the 

hygroscopicity modes was merged into an “over-all” or “bulk” hygroscopic growth factor of the mixture, 
gfmix(RH), representative for the entire particle population as: 

( )
1 3

3
mix k k

k
gf RH x gf 

=  
 
∑                               (4) 

The effective or volume equivalent radius of the mixture was determined using the relation 

( )
1 3

3
eff k k

k
r RH x r 

=  
 
∑                                 (5) 

where the summation is performed over all compounds present in the particles and xk represent their respective 
volume fractions, using the Zdanovskii-Stokes-Robinson relation [35]-[38]. Solute-solute interactions are neglected 
 
Table 1. Compositions of aerosols types at 0% RH [30]. 

Components No. Conc.(cm−3) Rmin (µm): Rmax (µm): sigma: Rmod (µm): 

water insoluble 0.4000 0.0050 20.0000 2.5100 0.4710 

water soluble 7000.0000 0.0050 20.0000 2.2400 0.0212 

Soot 8300.0000 0.0050 20.0000 2.0000 0.0118 
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in this model and volume additivity is also assumed. The model assumes spherical particles, ideal mixing (i.e. no 
volume change upon mixing) and independent water uptake of the organic and inorganic components. 

It can also be computed using the xk as the corresponding number fractions [39]-[45] and mass fractions 
[41]-[45], but some discovered that volume fractions [41]-[46]. 

The RH dependence of gfmix(RH) can be parameterized in a good approximation by a one-parameter equation, 
proposed e.g. by Petters and Kreidenweis [24] as: 

( )
1
3

1
1

w
mix w

w

agf a
a

κ
 

= + − 
                                (6) 

Here, aw is the water activity, which can be replaced by the relative humidity RH, if the Kelvin effect is neg-
ligible, as for particles with sizes more relevant for light scattering and absorption. The coefficient κ is a simple 
measure of the particle’s hygroscopicity and captures all solute properties (Raoult effect), that is, it is for the en-
semble of the particle which can be defined in terms of the sum of its components. In an ensemble of aerosol 
particles, the hygroscopicity of each particle can be described by an “effective” hygroscopicity parameter κ [24] 
[47]. Here “effective” means that the parameter accounts not only for the reduction of water activity by the so-
lute but also for surface tension effects [27] [48] [49]. It also scales the volume of water associated with a unit 
volume of dry particle [24] and depends on the molar volume and the activity coefficients of the dissolved 
compounds [50]. The κ value derived a particle of a given composition may vary, depending upon the size molar 
mass, the activity and RH it is derived at. 

For atmospheric aerosols, the range of κ typically varies from as low as ∼0.01 for some combustion aerosol 
particles up to ∼1 for sea-salt particles [24] [26] [51] [52]. 

The following sub-divisions at 85% RH were made by Swietlicki et al., [4] and Liu et al., [53]; as: near-
ly-hydrophobic particles (NH): κ <= 0.10 (gfmix <= 1.21), less-hygroscopic particles (LH): κ = 0.10 − 0.20 (gfmix 
=1.21 − 1.37); more-hygroscopic particles (MH): κ > 0.20 (gfmix > 1.37). 

Making κ as the subject of the Equation (6), we get 

( )
( ) ( )3 1 1mix w w

w
w

gf a a
k a

a

 − − =                              (7) 

Humidograms of the ambient aerosols obtained in various atmospheric conditions showed that gfmix(RH) 
could as well be fitted well with a γ-law [54]-[58] as 

( ) ( )1mixgf RH RH γ= −                                  (8) 

Making γ as the subject of Equation (8) we get 

( ) ( )( )
( )

ln
ln 1

mixgf RH
RH

RH
γ =

−
                                (9) 

The bulk hygroscopicity factor B under subsaturation RH conditions was determined using the relation: 

( )31 lnmix wB gf a= −                                   (10) 

where aw is the water activity, which can be replaced by the RH as explained before. 
The impact of hygroscopic growth on the optical properties of aerosols is usually described by the enhance-

ment factor ( ),f RHχ λ : 

( ) ( )
( )

,
,

,ref

RH
f RH

RHχ

χ λ
λ

χ λ
=                                (11) 

where in our study RHref was 0%, and RH was taken for seven values of 50%, 70%, 80%, 90%, 95%, 98% and 
99%. 

In general, the relationship between ( ),f RHχ λ  and RH is nonlinear [59]. In this paper, we determine the 
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empirical relations between the enhancement parameter and RH [60] as: 

( ) ( )
( )

100,
,

100,
ref

ref

RHRH
f RH

RHRH

γ

χ

χ λ
λ

χ λ
− 

= =  − 
                       (12) 

The γ known as the humidification factor represents the dependence of aerosol optical properties on RH, 
which results from the changes in the particles sizes and refractive indices upon humidification. The use of γ has 
the advantage of describing the hygroscopic behavior of aerosols in a linear manner over a broad range of RH 
values; it also implies that particles are deliquesced [61], a reasonable assumption for this data set due to the 
high ambient relative humidity during the field study. The γ parameter is dimensionless, and it increases with 
increasing particle water uptake. 

Making γ as the subject of Equation (12) and 0refRH = , we get 

( )
( )( )

( )
ln ,

,
ln 1

f RH
RH

RH
χ λ

γ λ = −
−

                             (13) 

From previous studies, typical values of γ for ambient aerosol ranged between 0.1 and 1.5 [62] [63]. 
Two parameters empirical relation was also used [59] [64] as; 

( ) ( ), 1 bf RH a RHχ λ = −                                 (14) 

Equations (12) and (14) are verified at wavelengths 0.25, 0.45, 0.55, 0.70, 1.25, and 2.50 µm. 
To determine the effect of particles distributions as a result of change in RH, the angstrom exponent was de-

termined using the spectral behavior of the aerosol optical depth, with the wavelength of light (λ) was expressed 
as inverse power law [65]: 

( ) ατ λ βλ−=                                       (15) 

The angstrom exponent was obtained as a coefficient of the following regression, 

( ) ( )ln  ln lnτ λ α λ β= − +                                 (16) 

However Equation (16) was determined as non-linear (that is the angstrom exponent itself varies with wave-
length), and a more precise empirical relationship between the optical depth and wavelength was obtained with a 
2nd-order polynomial [41]-[45] [66]-[76] as: 

( ) ( )2
2 1ln ln  ln   lnt λ α λ α λ β= + +                            (17) 

and then we proposed the cubic relation to determine the type of mode distribution [41]-[45] as: 

( ) ( ) ( )2 3
1 2 3ln ln ln ln lnX λ β α λ α λ α λ= + + +                       (18) 

where β, α, α1, α2, α3 are constants that were determined using regression analysis with SPSS16.0. forwondows. 
We also determined the exponential dependence of the aerosol optical thickness on relative humidity as done 

by Jeong et al. [59] as; 

( ) ( )/100B RHRH Aeτ =                                    (19) 

where A and B are constants determined using regression analysis with SPSS 16.0 and was computed at wave-
lengths 0.25, 1.25 and 2.50 µm. 

We finally determine the effect of hygroscopic growth on the effective refractive indices of the mixed aero-
sols using the following formula [77]: 

0 0

0 02 2
eff i

i
ieff i

f
ε ε ε ε
ε ε ε ε

− −
=

+ +∑                                  (20) 

The relation between dielectrics and refractive indices is 
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i im ε=                                        (21) 

We also used another mixing rule formula that has been used in the several widely employed databases of 
aerosol optical properties [30] [78]-[81] as: 

i i
i

m f m=∑                                       (22) 

where fi and εi are the volume fraction and dielectric constant of the ith component and ε0 is the dielectric con-
stant of the host material. For the case of Lorentz-Lorentz [82] [83], the host material is taken to be vacuum, ε0 = 
1. 

We then proposed the fi to be mass mix ratios and number mix ratios, to determine the advantage of one over 
the other. 

The computations of Equations (20), (21) and (22) were done using the complex functions of Microsoft Excel 
2010. 

3. Results and Discussions 
From Figure 1, it can be seen that the RF(warming) increases with the increase in wavelength but decreases 
with the increase in RH. The nature of the decrease in warming at shorter wavelengths signifies the dominance 
of fine mode particles. 

From Table 2, it can be observe that there are increases in gfmix and reff, decreases in B and κ while γ fluc-
tuates with the increase in RH. 

The results of the parameterizations by one parameter of Equations (6) and (8) using number mix ratio are: 
k = 0.0773, R2 = 0.9470 using Equation (6). 
𝛾𝛾 = −0.1459, R2 = 0.9988 using Equation (8). 
From the observations of R2, it can be seen that the data fitted the equations very well. 
From Table 3, it can be observe that there are increases in gfmix and, decreases in, reff, B and κ while γ fluc-

tuates with the increase in RH. 
The results of the parameterizations by one parameter of Equations (6) and (8) using volume mix ratio are: 
k = 0.1569, R2 = 0.9620 using Equation (6). 
𝛾𝛾 = −0.1972, R2 = 0.9997 using Equation (8). 
From the observations of R2, it can be seen that the data fitted the Equations very well. 
From Table 4, it can be observe that there are increases in gfmix, decreases in, reff B and κ while γ fluctuates 

with the increase in RH. 
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Figure 1. A graph of radiative forcing against wavelengths. 
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Table 2. The table of hygroscopic growth factors, effective radii, B (bulk hygroscopicity), κ (hygroscopicity) and γ (Humidi-
fication factor), of the aerosols using number mix ratio. 

RH (%) 0 50 70 80 90 95 98 99 

gfmix(RH) Equation (4) 1.0000 1.1203 1.1826 1.2425 1.3691 1.5316 1.7885 1.9878 

reff Equation (5) 0.0200 0.0228 0.0242 0.0256 0.0284 0.0320 0.0376 0.0418 

B Equation (10)  0.2815 0.2333 0.2049 0.1650 0.1330 0.0954 0.0689 

κ Equation (7)  0.4061 0.2803 0.2296 0.1740 0.1364 0.0963 0.0692 

γ Equation (9)  −0.1639 −0.1393 −0.1349 −0.1364 −0.1423 −0.1486 −0.1492 

 
Table 3. The table of hygroscopic growth factors, effective radii, B (bulk hygroscopicity), κ (hygroscopicity) and γ (Humidi-
fication factor), of the aerosols using volume mix ratio. 

RH (%) 0 50 70 80 90 95 98 99 

gfmix(RH) Equation (4) 1.0000 1.1645 1.2623 1.3580 1.5590 1.8095 2.1882 2.4714 

reff Equation (5) 0.3620 0.3204 0.3026 0.2873 0.2599 0.2318 0.1984 0.1791 

B Equation (10)  0.4014 0.3607 0.3357 0.2939 0.2526 0.1915 0.1417 

κ Equation (7)  0.5791 0.4334 0.3761 0.3099 0.2592 0.1934 0.1424 

γ Equation (9)  −0.2197 −0.1935 −0.1901 −0.1928 −0.1980 −0.2002 −0.1965 

 
Table 4. The table of hygroscopic growth factors, effective radii, B (bulk hygroscopicity), κ (hygroscopicity) and γ (Humidi-
fication factor), of the aerosols using mass mix ratio. 

RH (%) 0 50 70 80 90 95 98 99 

gfmix(RH) Equation (4) 1.0000 1.1492 1.2380 1.3270 1.5189 1.7663 2.1480 2.4355 

reff Equation (5) 0.3713 0.3459 0.3331 0.3213 0.2988 0.2729 0.2390 0.2176 

B Equation (10)  0.3589 0.3202 0.2983 0.2639 0.2313 0.1800 0.1352 

κ Equation (7)  0.5177 0.3847 0.3342 0.2783 0.2374 0.1819 0.1358 

γ Equation (9)  −0.2006 −0.1774 −0.1758 −0.1815 −0.1899 −0.1954 −0.1933 

 
The results of the parameterizations by one parameter of Equations (6) and (8) using mass mix ratios are: 
k = 0.1487, R2 = 0.9674 using Equation (6). 
𝛾𝛾 = −0.1910, R2 = 0.9991 using Equation (8). 
From the observations of R2, it can be seen that the data fitted the Equations very well. 
From Figure 2, it can be observed that all the gfmix have non-linear relation with RH as confirmed by our si-

mulation using Equations (6) and (8). It can also be observe that from the figure that the plots for volume is the 
highest followed by mass and the number mix ratio has the least. These observations are also confirmed from 
our simulated results with the coefficient k being highest for volume and the least for number, and the exponent 
γ being highest in magnitude in volume and values having least using number mix ratios. 

From Figure 3, the plots of reff against RH show non-linear relation. It can also be observed that the plot for 
number mix ratio has the least reff but the problem with it is that it is increasing with RH, and this is contrary to 
the behavior of our radiative forcing which shows the dominance of fine mode particles. However, the plots 
for volume and mass decrease with the increase in RH and these reflect the behavior of the radiative forcing in 
Figure 1. 

From Figure 4, it can be seen that all the plots have non-linear relation with RH. From the figure it can be 
observe that the plot for number has the least value but because of the size and hygroscopic nature of water so-
luble compared to that of soot, it can be concluded that number mix ratio cannot be useful. For the figure it can 
be seen that volume has the highest B followed by the mass and this shows that volume representation can be 
the best. 
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Figure 2. A graph of gfmix against RH using number, volume and mass 
mix ratios using the data from Tables 2-4. 

 

 
Figure 3. A graph of effective radii against RH using number, volume and 
mass mix ratios using the data from Tables 2-4. 

 
Figure 5 is almost similar to Figure 4, though the maximum of hygroscopicity is higher than that of Bulk. As 

stated in Figure 4, and also compare with the results of our simulations of Equation (6), it can be stated that vo-
lume mix ratio can be a better parameter for the analysis of the hygroscopic nature of the aerosols. 

From Figure 6, it can be seen that all the plots have non-linear relation with the increase in RH. It can also be 
observe that γ for number mix ratio has the least value in magnitude while it has the highest magnitude using 
volume mix ratio. 

From Figure 7, it can be observe that the optical depth follows a relatively smooth decrease with wavelength 
for all RHs and can be approximated with power law wavelength dependence. It is evident from the figures that 
there is relatively strong wavelength dependence of optical depth at shorter wavelengths that gradually decreases 
towards longer wavelengths irrespective of the RH, attributing to the dominance of fine over coarse particles.  

0 10 20 30 40 50 60 70 80 90 100
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Hy
gr

os
co

pi
c 

G
ro

wt
h 

Fa
ct

or

Relative Humidity(%)

 Number
 Volume
 Mass

0 10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ef
fe

ct
ive

 R
ad

ii(
m

)

Relative Humidity(%)

 Number
 Volume
 Mass



B. I. Tijjani et al. 
 

 
407 

 
Figure 4. A graph of B (bulk hygroscopicity) against RH using number, 
volume and mass mix ratiosusing the data from Tables 2-4. 

 

 
Figure 5. A graph of κ (hygroscopicity) against RH using number, vo-
lume and mass mix ratios using the data from Tables 2-4. 

 
The presence of a higher concentration of the fine-mode particles which are selective scatters enhance the irra-
diance scattering in shorter wavelength only while the coarse-mode particles provide similar contributions to the 
optical depth at both wavelengths [84]. It also shows that hygroscopic growth has more effect on fine particles 
than coarse particles. 

The data that were used in plotting Figure 7 were applied to Equation (18), at the wavelengths of 0.25, 1.25 
and 2.50 μm. The results obtained are as follows: 

At λ = 0.25, A = 0.1408, B = 1.5013, R2 = 0.7070. 
At λ = 1.25 μ, A = 0.0170, B = 1.7296, R2 = 0.6127. 
At λ = 2.50 μ, A = 0.0063, B = 1.1916, R2 = 0.5085. 
The relation between optical depth and RH shows decrease in R2 but the exponent B fluctuates with the 
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Figure 6. A graph of γ against RH using number, volume and mass mix 
ratios using the data from Tables 2-4. 
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Figure 7. A graph of optical depth against wavelengths. 

 
increase in wavelength. This signifies the dominance of fine mode particles that are more related at smaller wa-
velengths. 

From Table 5, it can be observed that from the linear part α increases with the increase in RH, though at the 
delinquent points (95% to 99%) it decreases with the increase in RH, and this signifies the increase in the do-
minance of fine particles over coarse particles. The sign of α2 (which signifies the curvature) together with the 
increase as the RH increases reflects the increase in the dominance of small particles as a result of the sedimen-
tation of coarse mode particles with the increase in RH. The cubic part signifies mode distributions as bi-modal 
with the dominance of fine mode particles. 

Figure 8 show that the enhancement factors increase with the increase in RH and wavelengths in almost non- 
linear form. The most interesting phenomena is the visible range window (0.4 - 0.7 µm) and the near-infrared 
(0.7 - 1.0) where the enhancement is higher with the increase in RH. This shows that at this spectral range, most 
of the solar radiation passes through to the surface and enables solar radiation to “deliver” the bulk of its energy 
to the surface (for use in climate processes). 
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Table 5. The results of the angstrom coefficients for optical depth using Equations (16), (17) and (18) at the respective rela-
tive humidities using regression analysis with SPSS16 for windows. 

RH (%) 
Linear Quadratic Cubic 

R2 Α R2 α1 α2 R2 α1 α2 α3 

0 0.9931 1.3763 0.9991 −1.4492 −0.1587 0.9996 −1.5019 −0.0986 0.0788 

50 0.9885 1.4569 0.9995 −1.5616 −0.2279 0.9998 −1.6013 −0.1827 0.0593 

70 0.9855 1.4826 0.9997 −1.6038 −0.2638 0.9998 −1.6343 −0.2289 0.0457 

80 0.9823 1.4986 0.9998 −1.6345 −0.2959 0.9998 −1.6550 −0.2726 0.0306 

90 0.9753 1.5099 0.9999 −1.6731 −0.3553 0.9999 −1.6717 −0.3568 −0.0020 

95 0.9662 1.4924 0.9997 −1.6819 −0.4124 0.9999 −1.6559 −0.4419 −0.0388 

98 0.9526 1.4264 0.9992 −1.6412 −0.4676 0.9997 −1.5872 −0.5293 −0.0808 

99 0.9428 1.3616 0.9987 −1.5874 −0.4914 0.9996 −1.5196 −0.5688 −0.1014 
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Figure 8. A graph of enhancement parameter for optical depth against 
wavelengths. 

 
The data that were used in plotting Figure 8 were applied for the parametrisations of Equations (12) and (14), 

at the wavelengths of 0.25, 0.45, 0.55, 0.70, 1.25 and 2.50 μm. The results obtained are as follows: 
For a single parameter using Equation (12): 
At λ = 0.25 μ, γ = 0.3817, R2 = 0.9994. 
At λ = 0.45 μ, γ = 0.4199, R2 = 0.9988. 
At λ = 0.55 μ, γ = 0.4315, R2 = 0.9983. 
At λ = 0.70 μ, γ = 0.4429, R2 = 0.9976. 
At λ = 1.25 μ, γ = 0.4287, R2 = 0.9914. 
At λ = 2.50 μ, γ = 0.2897, R2 = 0.9592. 
For two parameters using Equation (14): 
At λ = 0.25 μ, a = 0.9369, b = −0.3740, R2 = 0.9980. 
At λ = 0.45 μ, a = 1.0922, b = −0.4318, R2 = 0.9960. 
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At λ = 0.55 μ, a = 1.1449, b = −0.4506, R2 = 0.9954. 
At λ = 0.70 μ, a = 1.2028, b = −0.4701, R2 = 0.9947. 
At λ = 1.25 μ, a = 1.4716, b = −0.4878, R2 = 0.9891. 
At λ = 2.50 μ, a = 2.1339, b = −0.3798, R2 = 0.9642. 
For one parameter, the exponent γ increases as the wavelength is increased from ultra violet to solar spectral 

window and has maximum value at 0.7 µm but at the near infrared it decreases with the increase in wavelengths. 
For two parameters, the exponent b increases as the wavelength is increased from uv to near infrared region and 
attained maximum at 1.25 µm. 

From Figure 9 it can be observe that γ is dependent on the spectral interval. For example, at the spectral in-
terval of near ultra-violet and visible region (0.25 to 0.70 µ) γ increases with the increase in wavelength as the 
RH increases. But at the near infrared (0.70 to 2.50 µ) it decreases with wavelength but fluctuates with the in-
crease in RH. This shows the dominance of fine mode particles that absorbed more water at the spectral interval 
of 0.25 to 0.70 µm, while coarse mode particles at the spectral interval of 0.7 to 2.50 their absorption of water 
decreases with the increase in wavelengths. 

From Figure 10, it can be observe that the plots are similar to those of Figure 7. The only difference is that 
the plots for optical depths are higher than the plots of extinction coefficients. 

The data that were used in plotting Figure 10 were applied to Equation (19), at the wavelengths of 0.25, 1.25 
and 2.50 μm. The results obtained are as follows: 

At λ = 0.25, A = 0.0614, B = 1.6963, R2 = 0.7347. 
At λ = 1.25 μ, A = 0.0077, B = 1.9007, R2 = 0.6340. 
At λ = 2.50 μ, A = 0.0032, B = 1.2592, R2 = 0.5151. 
The relation between extinction coefficients and RH shows decrease in R2 but the exponent B fluctuates with 

the increase in wavelength. This signifies the dominance of fine mode particles that are more active at shorter 
wavelengths. 

From Table 6, it can be observed that the behaviors of the coefficients with RH are almost similar to those of 
Table 5. 

From the plots of Figure 11, it can be observe that they are similar to those of Figure 8. The main difference 
between the plots of the two figures is that the enhancements for the extinction coefficients are higher than those 
of optical depths. 

The data that were used in plotting Figure 11 were applied for the parametrisations of Equations (12) and 
(14), at the wavelengths of 0.25, 0.45, 0.55, 0.70, 1.25 and 2.50 μm. The results obtained are as follows: 

For a single parameter using Equation (12). 
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Figure 9. A graph of γ against wavelength using Equation (13). 
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Wavelength (μm) 

Figure 10. A graph of extinction coefficients against wavelengths. 
 
Table 6. The results of the angstrom coefficients for extinction coefficient using Equations (16), (17) and (18) at the respec-
tive relative humidities using regression analysis with SPSS16 for windows. 

RH (%) 
Linear Quadratic Cubic 

R2 Α R2 α1 α2 R2 α1 α2 α3 

0 0.9962 1.3165 0.9987 −1.3611 −0.0971 0.9994 −1.4192 −0.0308 0.0869 

50 0.9912 1.4243 0.9993 −1.5121 −0.1911 0.9997 −1.5578 −0.1389 0.0684 

70 0.9878 1.4577 0.9996 −1.5663 −0.2363 0.9998 −1.6018 −0.1958 0.0532 

80 0.9842 1.4787 0.9997 −1.6053 −0.2757 0.9998 −1.6298 −0.2477 0.0366 

90 0.9762 1.4955 0.9999 −1.6541 −0.3452 0.9999 −1.6548 −0.3443 0.0011 

95 0.9662 1.4811 0.9997 −1.6690 −0.4089 0.9998 −1.6433 −0.4383 −0.0385 

98 0.9519 1.4169 0.9992 −1.6319 −0.4680 0.9997 −1.5773 −0.5302 −0.0815 

99 0.9418 1.3531 0.9987 −1.5795 −0.4929 0.9996 −1.5112 −0.5709 −0.1022 

 
At λ = 0.25 μ, γ = 0.4342, R2 = 0.9988. 
At λ = 0.45 μ, γ = 0.4765, R2 = 0.9994. 
At λ = 0.55 μ, γ = 0.4885, R2 = 0.9994. 
At λ = 0.70 μ, γ = 0.5013, R2 = 0.9991. 
At λ = 1.25 μ, γ = 0.4739, R2 = 0.9949. 
At λ = 2.50 μ, γ = 0.3069, R2 = 0.9629. 
For two parameters using Equation (14). 
At λ = 0.25 μ, a = 0.8219, b = −0.4090, R2 = 0.9989. 
At λ = 0.45 μ, a = 0.9556, b = −0.4698, R2 = 0.9977. 
At λ = 0.55 μ, a = 0.9956, b = −0.4879, R2 = 0.9974. 
At λ = 0.70 μ, a = 1.0606, b = −0.5108, R2 = 0.9966. 
At λ = 1.25 μ, a = 1.3389, b = −0.5216, R2 = 0.9922. 
At λ = 2.50 μ, a = 2.0788, b = −0.3982, R2 = 0.9671. 
For one parameter, the exponent γ increases as the wavelength is increased J from ultra violet to solar spectral  
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Wavelength (μm) 

Figure 11. A graph of enhancement parameter for extinction coefficients 
against wavelengths. 

 
window and has maximum value at 0.7 µm but at the near infrared it decreases with the increase in wavelengths. 
For two parameters, the exponent b increases as the wavelength is increased from uv to near infrared region and 
attained maximum at 1.25 µm. 

From Figure 12, by comparing the plots in Figure 9, with those of Figure 12, it can be observe that they are 
similar. The main difference between them is that the γ for the extinctions with RH are higher than those of opt-
ical depth. 

From Figure 13, by comparing the nature of the plots in Figure 13, with those of Figure 7 and Figure 10, it 
can be observe that they are similar. The main difference between them and Figure 13 is that the plots in Figure 
13 have lower values compared with the other two. 

From Figure 14, it can be observe that the plots are similar to those in Figure 8 and Figure 11. The main 
difference between them is that, the plots in Figure 14 have higher values than the other two. 

Figure 15 shows that absorption is barely dependent of hygroscopic growth at smaller wavelengths but in-
creases very slightly as the wavelengths increase. This shows that the absorptions of coarse particles are more 
dependent in RH than the fine particles. The plots can be approximated by power law. 

Figure 16 shows that the enhancement parameter increases with the increase in wavelengths and this implies 
increase with the increases of the particle size as observed in Figure 15. Enhancement factor as a function of RH 
shows a nonlinear relation. 

From Figure 17 it can be observe that increase in RH cause smaller particles to scatter more in the forward 
but decreasesthe forward scattering for bigger particles. 

From Figure 18, it can be seen that hygroscopic growth enhances more scattering than absorption, and that is 
why the single scattering albedo is increasing with the increase in RH. Its relation with wavelengths shows that 
at the near ultraviolet region it increases with the increase in wavelength but at visible to near infrared regions it 
decreases with the increase in wavelengths. This is in line with our observation in Figure 16 that larger particles 
absorb light more at larger wavelengths. 

Figure 19 shows that effective refractive indices decrease with the increase in RH. 
With respect to wavelengths, at 0% RH at the visible spectral wavelength, the plots are constant with the in-

crease in wavelengths. This shows the dominance of fine spherical particles, but as the RH increases, the plots at 
this spectral range became dependent with wavelengths and this shows that hygroscopic growth can cause the 
spherical particle to become non-spherical. This shows that increase in RH causes the particles to be more 
non-spherical with wavelengths. 
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Wavelength (μm) 

Figure 12. A graph of γ for extinction against wavelengths. 
 

 
Wavelength (μm) 

Figure 13. A graph of scattering coefficients against wavelengths. 
 

From Figure 20, the behavior of the effective imaginary refractive indices with wavelengths shows the do-
minance of non-spherical particles. It also shows decrease in refractive indices as a result of the increase in hy-
groscopic growth. As the RH increases the relation between the imaginary effective refractive indices and wa-
velength become more linear. 

From Figure 21, by comparison, it can be observed that Figure 21 and Figure 19 are similar, but the values 
of the plots for Figure 19 are a bit higher than those of Figure 21. 

From Figure 22, by comparison, it can be observed that Figure 20 and Figure 22 are similar, but the plots in 
Figure 22 are a bit higher than those of Figure 20. 

4. Conclusions 
Comparing the three types of gfmix obtained, it can be seen that using volume and mass mix ratios gave better  
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Wavelength (μm) 

Figure 14. A graph of scattering enhancement against wavelengths. 
 

 
Wavelength (μm) 

Figure 15. A graph of absorption coefficients against wavelengths. 
 
representations of the mixture. These also imply that optical effects of atmospheric aerosols are also more 
closely related to their volume than their number [85] [86]. The modeling shows that increase in RH causes de-
crease in the effective radii, and this is what caused the optical depth and extinction, and scattering coefficients 
to have higher values at smaller wavelengths with the increase in RH [3]. The relations of these optical proper-
ties with RH are such that at the deliquescence point (95% to 99%) this growth with higher humidities increases 
substantially, making this process strongly nonlinear with relative humidity [3] [87] [88]. This shows that hy-
groscopic growth in smaller particles reveals an immense potential of light scattering enhancement in the for-
ward scattering [89] while in larger particles it causes increase in the backward scattering at high humidities and 
the potential for being highly effective cloud condensation nuclei. It also shows that the mixture is internally 
mixed for smaller particles because of the increase in forward scattering as a result of the hygroscopic growth 
[79] and the increase in absorption despite decrease in effective imaginary refractive indices. 

Despite the excellent relation shown for k and γ using Equations (6) and (8), but by observing their values  
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Figure 16. A graph of absorption enhancement against wavelengths. 
 

 
Wavelength (μm) 

Figure 17. A graph of Asymmetric parameter against wavelengths. 
 

using Equations (7) and (9) in Tables 2-4, it can be observed that the values of these parameters in Equation (6) 
and (8) could seriously underestimate those of Equation (7) and (8) most especially at lower RHs. We discov-
ered that the exponents of the Equations (7) and (9) can be dependent on RH as shown in Tables 2-4 and also as 
determined by Rissler et al. [5], but because of the excellent relation between gfmix and RH using Equations (6) 
and (8), the coefficient and the exponent can be constant, because it shows that the overestimation and overesti-
mation can be negligible. The modeling of gfmix with Equations (6) and (8) show excellent relation because of 
the values of R2, and all converge to 1 as the RH or aw approach 0. The values of R2 for Equation (6) is always 
less than that of Equation (8), and this may be attributed to the kelvin effect of Equation (6) which was neg-
lected. 

From the modeling of the enhancement parameters using Equations (12) and (14), it can be observe that there 
is a very excellent relation. However, based on convergence the convergence behavior of the two models as RH  
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Wavelength (μm) 

Figure 18. A graph of single scattering albedo against wavelengths. 
 

 
Wavelength (μm) 

Figure 19. A plot of real effective refractive indices against wavelength 
using Equation (20). 

 
approaches 0, it can be seen that Equation (12) is better, because at this limit it approaches 1, which is what it is 
supposed to be. 

Jeong et al. [59] demonstrated an exponential dependence of the aerosol optical thickness on relative humidi-
ty. The behavior of exponential relation between optical depth and extinction coefficients with RH shows that it 
is sensitive to the change in the effective radii. This is because it shows that for smaller particles, the relation is 
better at shorter wavelengths. 

The increase in the angstrom constant and curvature with RH is in line with the decrease in the effective radii 
with the increase in RH. As the RH increases the value of α also continue to increase until at 95% RH when it 
started decreasing and continued to decrease, which implies that as from 95% RH the particles are becoming 
quite large in size, because of swelling of water vapor and aging processes. As a consequence of such a 
non-uniform increase, the Ångström coefficient also becomes a function of RH. The observed variations in  
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Wavelength (μm) 

Figure 20. A plot of imaginary effective refractive indices against wave-
length using Equation (20). 

 

 
Wavelength (μm) 

Figure 21. A plot of real effective refractive indices against wavelength 
using Equation (22). 

 
angstrom coefficients can be explained by changes in the effective radii of the mixture resulting from changes in 
RH: the larger the number of small aerosol particles, the smaller the effective radius and the larger the angstrom 
coefficient. A greater content of small aerosol particles causes the effective radius to decrease and the angstrom 
coefficient to increase. An increase in RH influences the size of hygroscopic particles and, consequently, the ef-
fective radius of an aerosol mixture. Therefore, it can be concluded that, increase in hygroscopic growth as a re-
sult in the increase in RH in continental average aerosols causes decrease in the effective radii and this caused 
increase in optical depth, scattering and extinction coefficients more at lower wavelengths and this finally 
caused increase in the mode size distributions in the form of increasing angstrom coefficients. 

Finally, the data fitted our models very well and can be used to extrapolate the hygroscopic growth at any RH  
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Wavelength (μm) 

Figure 22. A plot of imaginary effective refractive indices against wave-
length using Equation (22). 

 
and enhancement parameters at any RH and wavelengths. The importance of determining gfmix(RH) as a function 
of RH and volume fractions, mass fractions and number fractions, and enhancement parameters as a function of 
RH and wavelengths can be potentially important because it can be used for efficiently representing aero-
sols-water interactions in global models. 

About the two formulas used for the computations of the effective refractive indices, it can be concluded that 
they are the same, because they gave almost similar plots at the same computational platform, that is, they dis-
play the same information. 
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