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Abstract 
The generalized Zakharov equation is a coupled equation which is a classic nonlinear mathematic 
model in plasma. A series of new exact explicit solutions of the system are obtained, by means of 
the first integral method, in the form of trigonometric and exponential functions. The results show 
the first integral method is an efficient way to solve the coupled nonlinear equations and get rich 
explicit analytical solutions. 
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1. Introduction 
The generalized Zakharov equation have been the focus of many researchers due to two facts: the system is a 
classic nonlinear mathematic model in plasma physics; the exact solutions to the system are widely applied in 
many scientific and engineering fields. The generalized Zakharov equation is a coupled equation written as [1] 
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                              (1) 

where ( ),x tΨ  is the envelope of the high-frequency electric field, ( ),n x t  is the plasma density measured 
from its equilibrium value, α  is a real coefficient, x and t are 1-dimensional space and time coordinate, respec- 
tively. Up to now, many methods have been used to solve the exact solution of the system (1) such as rational 
auxiliary equation method [2], F-expansion method [3], and Li et al. obtained the generalized solitary solutions 
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by exp-function method [4] [5], Hong got the doubly periodic solutions by the generalized Jacobi elliptic func- 
tion expansion method [6], M. Javidi constructed dark and bright solitary wave solutions by a variational itera- 
tion method [7]. Besides, Guo discussed the existence and uniqueness of smooth solution [8], Gambo investi- 
gates the dynamical behavior [9], S. Abbasbandy solved the numerical solutions [10] of the system (1). 

The first integral method is based on the ring theory of commutative algebra, the pioneer work can be traced 
to Feng, he first proposed the first integral method for solving Burgers-KdV equation [11] and then further de- 
veloped it. Recently, Bin Lu applied this method to construct travelling wave solutions of the (2 + 1)-dimen- 
sional BKK system and (3 + 1)-dimensional Burgers equation [12], Hodsein et al. also reported new solutions of 
the Davey-Stewartson equation by using this method [13], the method has also been successfully adopted for 
solving some important complex partial differential equations in [14]-[23]. 

In order to explore new analysis solutions to the system (1), we attempted to use the first integral method to 
solve the generalized Zakharov equation for the first time. The rest of the paper proceeds as follows: In Section 
2, we briefly introduce the first integral method. In Section 3, we apply the method to the generalized Zakharov 
equation, and give the exact explicit solutions under two different cases. Finally, some conclusions are given in 
Section 4. 

2. The First Integral Method  
Consider the nonlinear partial differential equation (NLPDE) in the form: 

( ), , , , , , 0x t xx xt ttF u u u u u u =                                 (2) 

where ( ),u x t  is the solution of Equation (2). 
First, we use the travelling wave transformation 

( ) ( ), ,u x t u x ctξ ξ= = −                                  (3) 

where c is a constant to be determined later, then the NLPDE is reduced to a nonlinear ordinary differential sys- 
tem 

( ), , , 0F u u u′ ′′ =                                     (4) 

where the prime denotes the differential with respect to ξ . 
Next, we introduce new independent variables 

( ) ( ) ( ) ( ),X u Y uξ ξ ξ ξ′= =                                (5) 

then (4) can be converted to a system of the nonlinear ordinary differential system as follows 

( ) ( )
( ) ( ) ( )( ),

X Y

Y f X Y
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ξ ξ ξ

′ =

′ =





                               (6) 

According to the qualitative theory of ordinary differential equations, the general solutions to (6) can be 
solved directly if we can find two integrals to (6) under the same conditions. However, it is really difficult to 
realize this even for one first integral, because for a given autonomous system, there is no systematic theory 
about how to find its first integral, nor is there a logical way could tell what these first integrals are. A key idea 
of our approach here is to apply the Division Theorem to obtain one first integral to (6) which reduces (4) to a 
first-order integrable ODE, then the exact solutions for (2) will be obtained by solving this equation. Now, let’s 
recall the Division Theorem. 

Division Theorem Suppose that ( ),P zω  are polynomials in complex domain [ ],C zω , and ( ),P zω  is ir- 
reducible in [ ],C zω . If ( ),Q zω  vanishes at all zero points of ( ),P zω , then there exists a polynomial 
( ),G zω  in [ ],C zω  such that ( ) ( ) ( ), , ,Q z P z G zω ω ω=  

3. New Exact Explicit Solutions of the Generalized Zakharov Equation  
In order to seek the exact solutions of system (1), we assume 

( ) ( ) ( ), , exp ix t u x t kx t lλΨ = + +                               (7) 
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Substituting (7) into (1) and yields: 

( ) ( )
( )

2 3

2

i 2 2 2 0

0

t x xx

tt xx xx

u ku u k u u nu

n n u

λ α+ + − + − + =

− + =





                      (8) 

Using the transformations 

( ) ( ) ( ), , 2u u n n x ktξ ξ ξ ω= = = −                              (9) 

where ω  is a nonzero constant, then (8) further reduced to 
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                           (10) 

where “ ′ ” denotes ( )d
dξ

⋅ . 

Integrating Equation (10b) with respect to ξ , and taking the integration constant as zero yields 
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                                  (11) 

Substituting (11) into (10a) and yields: 

( )2 2 3
2
22 0

4 1
u k u u

k
ω λ α ′′ − + − + = − 

                          (12) 

Now, we introduce new independent variables ( ) ( ) ( ) ( ),X u Y uξ ξ ξ ξ′= =  which change Equation (12) to a 
dynamical system given by 
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                          (13) 

Applying the Division Theorem to seek the first integral to (13). Suppose that ( )X X ξ= , ( )Y Y ξ=  are 

nontrivial solutions to (13), and ( ) ( )
0
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m

i
i
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= ∑  is an irreducible polynomial such that 
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= =∑                         (14) 

where ( )( )0,1, ,ia X i m=   are polynomials of X and all relatively primes, ( ) 0ma x ≠ . Equation (14) is called 

the first integral to (13). Note that d
d
Q
ξ

 is a polynomial of X and Y, and ( ), 0Q X Y =  implies d 0
d
Q
ξ
= . Due 

to the Division Theorem, there exists a polynomial ( ) ( )g X h X Y+  such that 
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We will take two different cases into consideration in the following, assuming that 1, 2m =  in Equation (15). 
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Case A: 
Suppose that 1m = , by equating the coefficients of ( )0,1, 2iY i =  on both sides of (15), we have 

( ) ( ) ( )1 1a X a X h X′ =                                  (16a) 

( ) ( ) ( ) ( ) ( )0 0 1a X a X h X a X g X′ = +                          (16b) 

( ) ( ) ( )
2 2 3

1 02 2

22
4 1k ka X X X a X g X

αλ
ω ω

 
 
 
 


=



++ −+                  (16c) 

Since ( )( )0,1ia X i =  are polynomials in X , then from (16a) we deduce that ( )1a X  is a constant and 
( ) 0h X = . For simplicity, we take ( )1 1a X = . Balancing the degrees of ( )g X  and ( )0a X  in (16b), we con- 

clude that ( )( )deg 1g X =  only. Suppose that ( ) , 0,g X AX B A= + ≠  then from Equation (16b) we find 

( ) 2
0

1
2

a X AX BX C= + +                               (17) 

where C is an arbitrary integration constant. 
Substituting ( )g X , ( )0a X  and ( )1a X  into Equation (16c) and setting all the coefficients of powers x to 

be zero, we obtain a system of nonlinear algebraic equations 

22
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By solving it, we obtain 
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Using the conditions (19a), (19b) in (14) respectively, we obtain 
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Combining (20a) with (13), we obtain the exact solutions to (13) as follows 
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where 0ξ  is an arbitrary constant. 
Then the exact solutions to the system (1) can be written as 
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Similarly, in the case of (20b), we obtain 
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where 1ξ  is an arbitrary constant. 
Then the exact solutions to the system (1) are given by 
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  (24) 

We can get distinctive solutions by giving different values to ,k λ . 
Case B: 
Suppose that 2m = , by equating the coefficients of ( )0,1,2,3iY i =  on both sides of (15), we have 

( ) ( ) ( )2 2a X a X h X′ =                                  (25a) 

( ) ( ) ( ) ( ) ( )1 1 2a X a X h X a X g X′ = +                            (25b) 

( ) ( ) ( ) ( ) ( ) ( )
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0 2 1 02 2
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+          (25c) 

( ) ( ) ( )
2 2 3

1 02 2
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4 1k ka X X X a X g X

αλ
ω ω

 + + −+ = 
 
 

                    (25d) 

Since ( )( )0,1,2ia X i =  are polynomials, then from (25a) we deduce that ( )2a X  is a constant and ( ) 0h X = . 
For simplicity, we take ( )2 1a X = . Balancing the degrees of ( )g X , ( )0a X  and ( )1a X , we conclude that 

( )( )deg 1g X =  or ( )( )deg 0g X = . Actually, if ( )( )deg 1g X > , suppose that ( )( ) ( )deg 1g X k k= > , then 
from (25b)-(25c), we know ( )( )1deg 1a X k= + , ( )( )0deg 2 2a X k= + , and from (25d), we have 4 3 2k k+ = + , 
and then 1k =  which is contrary to 1k > . 

Case 1 
When ( )( )deg 0g X = , we take ( )g X A= , then from (25b)-(25c), we find 
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( )1a X AX B= +  

( )
2 22 4 2
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1
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A kka X X X ABX C

α λ
ω ω

+ +−= − + −  +





+



 

where B, C0 is arbitrary integration constant. 
Substituting ( )g X , ( )0a X  and ( )1a X  into (25d) and setting all the coefficients of powers of X to be 

zero, we obtain a system of nonlinear algebraic equations 
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By solving it, we obtain 

00, 0,A B C c= = =                                    (27) 

where c  is an arbitrary constant. 
Using the conditions (27) in (14), we obtain 

2 22 2 4
2 2

1
4 1 0k kY X X

αλ
ω ω

++ −− − =                              (28) 

Combining (28) with (13), we obtain the exact solutions to (13) as follows 
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Then the exact solutions to the generalized Zakharov equation can be written as 
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−
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−
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             (31) 

Comparing the results with the works studied before, it can be seen these are new results for the system (1). 
Case 2 
When ( )( )deg 1g X = , take ( ) , 0g X AX B A= + ≠ , then from (25b)-(25c), we find 

( ) 2
1 0

1
2

a X AX Bx D= + +  

( )
2 2 222 4 4 3 2

0 02 2

1
4 1

8 2 2
k A AB AD Bka X X X X X X BDX C

αλ
ω ω

 
 
 
 
 

++ +−= − + + + + + +  

Substituting ( )g X , ( )0a X  and ( )1a X  into (25d), and setting all the coefficients of powers of X to be 
zero, we obtain a system of nonlinear algebraic equation 

2 2 2
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2 22 2
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2 2 2
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2
2

2

0
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1 22
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2
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2
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A A Bk kB B
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ω ω
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ω ω

λ
ω

+ +
− −− =

 + + − −− + = 
 
 

+ + + + −− + = + 
 

  
 

 + + +
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               (32) 

By solving it, we obtain 

222
0

0 02
2

2

1
4 14 , 0, ,

41
4 1

DkkA B D C

k

α λ
ω

ω α

+ +−= = = =
 + − 

                   (33a) 

222
0

0 02
2

2

1
4 14 , 0, ,

41
4 1

DkkA B D C

k

α λ
ω

ω α

+ +−= − = = − =
 + − 

                 (33b) 



Y. H. Sun et al. 
 

 
256 

Using the conditions (33a), (33b) in (14) respectively, we obtain 
2 2

4 2 2 2 0
16 4 4 2
A AD D AX X X D Y Y + + + + + = 

 
                       (34) 

i.e. 
2

22 2
2

2
2

1
4 1 0

12
4 1

kkY X

k

α λ
ω

ω α

 
 
 
 


+ +−± ± =
 + − 




                     (35) 

Combining (35) with (13), we obtain the exact solutions to (13) which were same with the case m = 1. 

4. Conclusion 
In this paper, we discussed how to construct the exact solutions for the generalized Zakharov equation by using 
the first integral method. Many new exact explicit solutions with arbitrary constant, peaked wave solutions are 
obtained, they may be important for the explanation of some practical physical problems. The performance of 
the method shows it is reliable and effective to give more exact solutions, we deduce that the method can be ex- 
tended to solve many systems of nonlinear PDE which are arising in the theory of soliton and other fields. 
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