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ABSTRACT 
In this paper, a contraction-based backstepping nonlinear control technique was proposed. The proposed controller syn-
thesis technique utilizes both the recursive nature of backstepping control and of contraction analysis. This approach 
results in a contracting closed-loop dynamics, with exponential stability. The use of the hierarchical contraction form in 
the control problem formulation also results in the exponential convergence of controlled variables and can be easily 
applied to non-autonomous systems. A flight path angle controller was synthesized and simulated using the proposed 
technique to demonstrate the exponential convergence achieved by the backstepping controller design. 
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1. Introduction 
In recent years, missions performed by unmanned aerial 
vehicle (UAV) has increasingly emphasized on high 
agility and maneuverability. An example is the tailsitter 
UAV [1,2] which performs maneuver that covers a large 
pitch angle. These maneuvers typically require the UAVs 
to operate outside their linear operating regime, and results 
in nonlinear flight dynamics characteristics. Nonlinear 
control techniques, such as backstepping control, were 
developed to control and improve the performance of 
such UAVs [3-8]. 

The stability criterion for traditional backstepping 
control makes use of the Lyapunov stability theory [3-8]. 
However, the Lyapunov stability theory often result in 
complex Lyapunov control function and requires the 
knowledge of an equilibrium point or trajectory. This 
often hinders controller synthesis for trajectory tracking 
control as the equilibrium trajectory is often unknown 
and the system is often non-autonomous. 

The contraction theory [9,10] is a nonlinear stability 
theory and was applied to control formulation in several 
instances [11,12]. Stability in contraction theory is de-
scribed as the diminishing of the effects from any per-
turbation to any trajectory in the state space. The con-
traction theory can be easily applied to non-autonomous 
systems without any added mathematical complexity and 
does not require the knowledge of any equilibrium point 
or trajectory. The contraction theory also provided a 
stronger form of stability as compared to Lyapunov sta-

bility theory which can thus be applied to systems that 
require fast convergence. 

The use of contraction theory as the stability criteria in 
backstepping control was introduced by Jouffryo [13] 
with the use of standard contraction form in backstepping 
control and later by Sharma et al. [14] and Zamani et al. 
[15]. Standard contraction forms refer to the arrange-
ment/ connections of contracting subsystems to form a 
global contracting system. The contraction form used by 
[13-15] belongs to the feedback interconnection form [9]. 

In this paper, a hierarchical form [9] was used for the 
backstepping controller synthesis. This hierarchical form 
formulation, which was not commonly found in litera-
tures, provided the basis for a subsystem level control. In 
this way, the backstepping control law can be designed 
for each subsystem recursively and satisfies global sys-
tem contraction conditions with exponential convergence. 
Different from the feedback interconnection form used 
by [13-15], the hierarchical form also results in the ex-
ponential convergence of individual controlled variables. 
The proposed controller synthesis technique will be ap-
plied to a flight path angle control of a generic UAV. 

This paper is organized as follows. Section 2 will 
present the formulation of a contraction-based backstep-
ping control. Section 3 will describe the controller syn-
thesis on the UAV flight path angle control. Simulation 
results for the closed-loop control with the contrac-
tion-based backstepping controller is presented in section 
4 and conclusion of the paper will be given in section 5. 
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2. Contraction-Based Backstepping 
This section provides the formulation of the contrac-
tion-based backstepping control. 

2.1. Contraction Theory 
The contraction theory is a stability tool for examining 
the stability of trajectories in the state space. According 
to contraction theory, a trajectory is stable if it “forgets” 
the effects from perturbations to that trajectory. 

Consider a nonlinear system, ( ), t=x f x , where 
n∈x   is the state of the system and t is the time. By 

using the concept of virtual displacement on trajectories, 
the virtual dynamics can be written as 

( ), t
δ δ

∂
=

∂
f x

x x
x

                (1) 

where δx is the virtual displacement of the trajectory. 
We can further describe the time variation of δxTδx as 

( ) ( ),
.T T td

dt
δ δ δ δ

∂
=

∂
f x

x x x x
x

         (2) 

Here, δxTδx represents the squared distance between infi-
nitesimally close trajectories. If the Jacobian, ( ), / ,t∂ ∂f x x  is 
uniformly negative definite, then the squared distance 
between trajectories reduces exponentially to zero. Hence, 
a trajectory is stable as neighboring trajectories con-
verges into each other. The state space region where the 
Jacobian is uniformly negative definite is known as the 
contraction region. 

2.2. Hierarchical Connection Structure 
Contraction results can also be extended to different sys-
tem connections. Contracting subsystems can be con-
nected in different ways to obtain a globally contracting 
system. In this way, we can prove global contraction by 
examining the contraction behavior of smaller subsys-
tems. The system that will be used in this paper is the 
hierarchical combination, which resemblances the series 
connection.  

A system with a virtual dynamics of the form 

1 11 1

2 21 22 2

0d
dt

δ δ
δ δ
    

=    
    

x F x
x F F x

         (3) 

is known as the hierarchical combination. The system 
will be converging if the submatrices F11 and F22 are un-
iformly negative definite and F21 is bounded. 

This is because subsystems 

1 11 1δ δ=x F x                   (4) 

and 
2 21 1 22 2δ δ δ= +x F x F x               (5) 

are converging since x1 is converging and the term F21δx1 

in equation (5) is bounded and decreases exponentially to 
zero due to the convergence of x1. Therefore the trajecto-
ries in the entire state space in equation (3) are converg-
ing [9]. 

This implies that we can analyze or design a larger 
system by considering the contraction property of smaller 
subsystems and extending the results to the original sys-
tem. We will use this principle in the control algorithm 
design. 

2.3. Control Algorithm 
Consider a strict feedback system in the form of 

( )
( )

( )

1 1 1 2

2 2 1 2 3

1 2

,

, ,

, , , ,n n n

x f x x

x f x x x

x f x x x u

=

=

=










         (6) 

where x1,x2,…,xn are the states of the system, for the re-
cursive backstepping control formulation. 

A coordinate transformation will be carried out to 
transform the system into the hierarchical contraction 
form.  

Define the transformation 
( )

1 1 1
rz x x= −              (7) 

where ( )
1

rx  is the reference trajectory for x1. The z1-dy- 
namics becomes 

( ) ( )
1 1 1 2 1, rz f x x x= −              (8) 

where ( )2 1 1x g x=  is defined as the virtual control such 
that the virtual dynamics is in the form of equation (9) 
with ( )

1
rx as a particular solution. 

( ) ( )1 11 1 1 12 1 2 2,z h z z h z z zδ δ δ= +    (9) 

where ( )2 2 1 1z x g x= −  with h11 uniformly negative 
definite and h12 bounded. 

It is clear that if δz2 reduces to zero, then ( )
1 1

rx x→ . A 
similar transformation procedure is applied to the z2- 
dynamics. 

( ) ( )2 2 1 2 3 1, , dz f x x x g x
dt

= −        (10) 

where ( )3 2 1 2,x g x x=  is defined as the virtual control 
such that the virtual dynamics is in the form of equation 
(11) with ( )2 1 1x g x=  as a particular solution. 

( ) ( )2 22 2 2 23 2 3 3,z h z z h z z zδ δ δ= +      (11) 

where ( )3 3 2 1 2,z x g x x= − with h22 is uniformly nega-
tive definite and h23 bounded. 

The recursive transformation procedure is performed 
until the control input is obtained. The virtual dynamics 
for the global feedback in equation (6) can be expressed 
in the following form. 
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   (12) 

This is in the hierarchical contraction form that pro-
vides the global feedback system with exponential stabil-
ity. 

In addition, the hierarchical contraction form provides 
exponential convergence for each individual state, zi 
where 1,2, ,i n=  . This is because the virtual dynamics 
for each state is 

, 1 1i ii i i i iz h z h zδ δ δ+ += +            (13) 

where the second term can be regarded as a bounded 
disturbance term that diminishes to zero. In particular, 
the controlled variable, z1, converges to the reference 
value exponentially which can be used for fast conver-
gence control of a particular variable. 

3. UAV Flight Path Control 
3.1. Dynamical Model 
This section provides a description of the contrac-
tion-based backstepping controller synthesis with a sim-
plified UAV model for flight path angle control. 

Figure 1 shows the forces acting on the longitudinal 
axis of the UAV, the dynamical model is given by equa-
tion (14) [16]. 

( )1 sin cosgL T
mV V
q

q M u

γ α γ

θ

= + −

=
= =







      (14) 

where γ is the flight path angle, θ is the pitch angle, q is 
the pitch rate, m is the aircraft mass, V is the air speed, T 
is the thrust, α is the angle of attack, g is the gravitational 
acceleration, L is the aerodynamic lift and M is the aero-
dynamic pitch moment which is defined as the control 
input u. 

The lift force, L, is expressed in the following form. 

( )21
2 LL V SCρ α=              (15) 

  

  
Figure 1. UAV dynamical model. 

where ρ is the air density, S is the wing area and CL is the 
lift coefficient and is a function of α. 

The following assumptions were made to simplify the 
model and the control formulation. 
• The control surfaces only produce aerodynamic 

moments. The aerodynamic forces produced were as-
sumed to be small and neglected. 
• The speed of the aircraft was maintained at a con-

stant value independently. 
• The control actuator dynamics were sufficiently fast, 

thus neglected.  
Therefore, equation (14) was reduced to the form 

shown in equation (16). 

( ), cosgf t
V

q
q u

γ α γ

θ

= −

=
=







         (16) 

where ( ) ( ) ( )( )1, sinf t L T t
mV

α α α= + . 

Equation (16) is a simplified dynamical model for the 
purpose of key concept demonstration and forms the ba-
sis for the control formulation which will be presented in 
the next section. 

 
3.2. Flight Path Angle Tracking 
The above control algorithm was applied to a flight path 
tracking problem of an UAV. 

Figure 2 shows a block diagram of the closed-loop 
system, highlighting the subsystem nature of the algo-
rithm. 

Step 1: 
Define the transformation 

*
1z γ γ= −                  (17) 

where γ* is a reference flight path angle defined in equa-
tion (28). The z1-dynamics becomes 

( ) ( )* *
1 1, cosgz f t z

V
α γ γ= − + −         (18) 

To define a suitable virtual control, we assume that 
( )2 1z Kzα= − − , where 0K > , and consider the virtual 

dynamics of equation (18). 
 

 
Figure 2. Block diagram of the closed-loop system for the 
flight path angle control problem. 
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( ) ( )
( )

*
1 2 1 1 1

2 1 2

, sin

,

gz Kf z Kz t z z
V

f z Kz t z

δ γ δ

δ

 ′= − − + +  
′+ −



  (19) 

For the subsystem in equation (19) to be in the con-
traction region, the operation region is limited so that  

1
min

1 gK K
f V

 = + ′  
 where 1 0K >  , then the subsystem  

given by equation (19) will be in the contraction region. 
Step 2: 
Hence the z2-dynamics becomes 

2 1

1.
z Kz

q Kz
α

γ
= +
= − +


 




              (20) 

If we define ( )
3

dz q q= −  where 
( )

2 2 1
dq K z Kzδ γ= − + −            (21) 

and 2 0K > , then the virtual dynamics will become 

2 2 2 3z K z zδ δ δ= − +              (22) 

which implies a contraction region. 
Step 3: 
Now, consider z3-dynamics 

( )
3

dz u q= −                   (23) 

If we let the control input u be 
( )

3 3
du q K z= −                 (24) 

and 3 0K > , then the virtual dynamics will become 

3 3 3z K zδ δ= −                 (25) 

which implies a contraction region. 
Hence the virtual dynamics for the entire system will 

be 

1 11 12 1

2 2 2

3 3 3

0
0 1
0 0

z h h z
d z K z
dt

z K z

δ δ
δ δ
δ δ

    
    = −    
    −    

        (26) 

where     ( ) ( )*
11 2 1 1, singh Kf z Kz t z

V
γ′= − − + +  

and ( )12 2 1,h f z Kz t′= − , is in the hierarchical contrac-
tion form. 

Step 4: 
For the tracked angle, γ(r), to be a particular solution so 

that all trajectories contract onto it, the reference angle, γ*, 
is defined as follows. Consider the resultant dynamics, 

( ) ( )* *
1 1

2 2 2 3

3 3 3

, cosgz f t z
V

z K z z
z K z

α γ γ= − + −

= − +
= −








     (27) 

It can be seen that 2 3 0z z= =  is a particular solution. 

Putting the actual tracked flight path angle, γ(r), as a par-
ticular solution into the z1-dynamics, 

( ) ( )( )( ) ( )

( )( ) ( )( )( )
( ) ( )

* * *

*

*

cos

1

r r r

r r

r r

gf K
V

f f K

K

γ γ γ γ γ γ

α γ γ

γ α γ

− = − − − −

= − −

= +

  

  (28) 

where we had used the fact that 

( ) ( )( ) ( )cosr r rgf
V

γ α γ= − , 2 0z =  

and the symbol t is omitted in equation (28) for neatness. 
Note that the difference between γ* and γ(r) is due to the 
nonzero angle of attack, α, at equilibrium so a nonzero γ* 
is required to account for this difference. 

Hence the above formulated control law and reference 
flight path angle, γ*, tracks the flight path angle, γ(r). 

4. Simulation Results 
The synthesized control law was implemented and tested 
in Matlab for flight path angle stabilization and tracking 
problem.  

To study the convergence of the implemented control-
ler, an initial perturbation (away from equilibrium) was 
applied to the system and the system closed-loop re-
sponse was examined. 

4.1. Flight Path Angle Regulation 
The flight path angle regulation problem is the stabiliza-
tion of the flight path angle to a reference value. It dem-
onstrated the ability for the controller to reject perturba-
tion exponentially fast. Figure 2 to 5 are obtained from 
the flight path stabilization simulation. 
 

 
Figure 3. Flight path angle response for the stabilization 
problem. 



T. C. KIAT  ET  AL. 

Copyright © 2013 SciRes.                                                                               OJAppS 

69 

 
Figure 4. Pitch angle response for stabilization the problem. 
 

 
Figure 5. Control input for the stabilization problem. 

4.2. Flight Path Tracking 
In the flight path tracking problem, the ability for the 
controller to track time-varying reference flight path an-
gle was demonstrated. A sinusoidal reference was chosen 
as an example of time-varying signal. Figure 6 to 9 
shows the results for the flight path angle tracking simu-
lation. 

In both examples, it was shown that exponential sta-
bility was achieved by the control algorithm. This is due 
to the presence of a contraction region. 

Furthermore, the controlled variable was made to be 
exponentially stable subjected to bounded disturbances 
due to the errors in virtual controls. 

Although simplified, this example demonstrated the 
potential of the contraction-based backstepping technique 
as an alternative to the Lyapunov backstepping technique 
in the formulation of a control algorithm that achieves 
exponential stability in a system. 

 
Figure 6. Flight path angle error for the stabilization prob-
lem. 
 

 
Figure 7. Flight path angle for the tracking problem. 

 

 
Figure 8. Pitch angle for the tracking problem. 
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Figure 9. Control input for the tracking problem. 

 

 
Figure 10. Flight path angle error for the tracking problem. 

5. Conclusions 
In this paper, a contraction-based backstepping technique 
using the hierarchical contraction structure was demon-
strated. The unique hierarchical contraction structure 
with backstepping control formulation provides recursive 
control law that was formulated systematically. Expo-
nential stability of the closed-loop system and individual 
controlled variable was achieved. The control algorithm 
was demonstrated on a flight path angle stabilization and 
tracking problem. 
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