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ABSTRACT 

In this paper we consider the stochastic systems with jumps (random impulses) generated by Erlang flow of events that 
lead to discontinuities in paths. These systems may be used in various applications such as a control of complex techni-
cal systems, financial mathematics, mathematical biology and medicine. We propose to use a spectral method formal-
ism to the probabilistic analysis problem for the stochastic systems with jumps. This method allows to get a solution of 
the analysis problem in an explicit form. 
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1. Introduction 

In this paper we consider the stochastic systems with 
jumps generated by Erlang flow of events that lead to 
discontinuities of sample paths. These systems are called 
the jump-diffusion systems or the stochastic systems with 
random quantization period. Jumps may have different 
characteristics that describe intervals between them and 
their amplitudes [1,2]. 

Stochastic systems with jumps are used in various ap- 
plications such as complex technical systems (control of 
moving objects, jam-resistant radars, radioisotope measu- 
ring systems, electrical circuits with impulse sources), 
financial mathematics (description of stock price move- 
ments and valuation of stock options), mathematical bio- 
logy and medicine (biomass control and drug delivery 
model) [2,3]. 

The goal of this paper is to develop the spectral 
method [4-6] for a problem of the probabilistic analysis 
for jump-diffusion systems. The spectral method formali- 
sm has been used previously to the stochastic systems 
with jumps generated by Poisson flow of events. Here we 
consider more complex problem which assumes that we 
have Erlang flow of jumps. This allows to investigate the 
stochastic systems with jumps in sample paths at the 
random time moments. Intervals between these moments 
can be described by not only the exponential distribution, 
but Erlang distribution [7]. 

2. Problem Statement 

We assume that the system behavior is described by a 
jump-diffusion process. This process can be represented 
as a solution of the stochastic differential equation [1]: 

           
 0 0

d , d , d d

,

,X t f t X t t t X t W t Q t

X t X

  


 (1) 

where nX R  is a state vector, , t T  0 1,T t t ;  

   , , :n nf t R t x T , :x T R ,n sR nR    W t  is  

an s-dimensional standard Wiener process independent 
of 0X . 

The component  dQ t  describes “extreme events” 
attended by jumps in sample paths of the process  X t  
(e.g., a technical failure or a stock market crash). We 
assume that 

   
 

1

.
J t

i
i

Q t Y 


   

 JHere t  is the -th order Erlang process (Erlang N
process  J t  is a “censored” Poisson process in which 

1N   consecutive points are removed from a Poisson 
process  P t  with the transition intensity  t  and 
then one point left unchanged [7]), iY    are inde- 
pendent random variables from  whose distribution nR
is given by the probability density function  ,t y , i.e., 
state vector gets random increment at time moments 

 associated with Erlang flow of events [1]: 1 2, ,  

     0 .i iX X Y i      *Corresponding author. 
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The process  may be represented as  Q t

   
 

1

,
P t

i i
i

Q t Y 


   

where the value i  is used to “censor”  Poisson 1N 
flow events in succession and to select each event which 
is a multiple of N ( i  is the periodic function: i N i   ):  

 
 

1, mod 0,

0, mod 0;
i

i N

i N


 


 

time moments 1 2, ,    conform to the events in Pois-
son flow: iN i  . 

Introduce a stochastic process  K t  with a finite 
state set . These states are replaced sequen- 
tially starting from 1 with the transition intensity 

1,2, , N 
 t : 

    1 mod .K t P t N   

when the state with number  passes into the state 
with number 1, the state vector 

N
X  gets a random in- 

crement which leads to a jump in sample paths of the 
process  X t  (see Figure 1). 

The introduction of the process  K t  allows to rep- 
resent the probability density function  of the 
state vector 

 ,t x
X  as follows: 

     
1

, ,
N

k

k

t x t x 


  ,



 

where functions  satisfy generalized Fok- 
ker-Planck equations [2,5,8]: 

   ,k t x
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Figure 1. Sample paths of processes  and  K t  X t . 
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(4) 

     
1

, , , , , 1, 2,
s
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The initial state 0X  is determined by a given prob- 
ability density function  0 x . The initial state of the 
process  K t  is fixed:  0K t 1. So, 

         1
0 0 0, , , 0, 2,kt x x t x k N     , .   (5) 

The last term on the right side of Equation (2) can be 
written in the operator form: 

       , ,
nR

t x t t x z t z z     , d       (6) 

for all admissible functions ;  is a linear op-  ,t x 
erator which is a composition of the multiplication op- 
erator and the Fredholm operator with kernel  
 ,t x z . 
The analysis problem of the stochastic systems with 

jumps described by Equation (1) is to find the probability 
density function  ,t x  of the state vector X . 

We assume that the unique solutions of Equation (1) 
and Equations (2)-(5) exist for given functions  ,f t x , 
     , , , ,t x t t y   , and  0 x . 

3. Proposed Method: Overview of Spectral 
Method Formalism 

Reduce the analysis problem to the finding of Fourier 
coefficients  for the function 

0 1 ni i i   ,t x . Let  

  
0

0 0
,

i
q i t




 be an orthonormal basis of  and let  2L T

  
1 , , 0

,
ni i

x


1, , np i i


  be an orthonormal basis of  

 2
nL R , then  is the ortho-   

0 1, , ,
, , , , ,

n
n i i i

i i t x



 

00 1e i

normal basis of  2L T R n , where  

  , , ,i i t x   0 1 0 1, , , , , , ,n ne i q i t p i i x     

0 1, , , 0,1,2,ni i i   . So, 
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We apply the spectral method formalism [5,8] to Equa- 
tion (2) and Equation (3) subject to the conditions (5), 
therefore 
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       (8) 

In these equations  is the spectral cha- 
racteristic of the differential operator 

 1, 1P n n  
t   subject to a 

function value at the initial time moment t0;  1, 1A n n   
1  are l characteristics of 

operators   and   defined by (4) 
and 

 
 1,H n n  the spectra

and (6), respectively, i.e., ,  
0 1 0 1

1, 1
n ni i i j j jP n n P      

 
0 1 0 1

1, 1
n ni i i j j jA n n A       , 

and  

 
0 1 0 1

1, 1
n ni i i j j jH n n H        

are -dimensional matrices [9] (see Appendix) 
with elements 

2 1n  
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 1, 1n n    is the spectral characteristic of the mul- 
tiplication operator with multiplier :  t
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   1,0k n 
   , ,k t x

 are the spectral characteristics of func- 
tions . All these spectral charac- 
teristics are defined relative to  

1,2, ,k N 

  
0 1

0 1 , , , 0
, , , , ,

n
n i i i
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 . Further, the  01,0;q t
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the column matrix with values of functions   
0

0 0
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i
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at the initial time moment : 0t

        T

0 0 0 01,0; 0, 1, 2, ;q t q t q t q t     

 0 ,0n  is the spectral characteristic for the prob- 
ability density function  0 x  of the initial state 0X .  

It is defined relative to , i.e.,   
1
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The spectral characteristic  of the prob- 
ability density function 

 1,0n  
 ,t x , also called a generali- 

zed characteristic function [5,6], may be expressed as 
follows (  1,0n   is the -multidimensional 
matrix formed by Fourier coefficients 

 1n 

0 1i i ni
  ): 
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kk
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     (9) 

The properties of the spectral characteristics for func- 
tions and linear operators in Equations (7)-(9) are de- 
scribed in [5,8]. 

As a rule [5,6], the spectral characteristic  1, 1A n n   
is expressed in terms of the spectral characteristics for 
differential operators and multiplication operators: 
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1 1
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1, 1 1, 1

1
1, 1 1, 1 ,

2

n

i i
i

n n

ij ij
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where  1, 1i n n   and  are the spec-  1, 1ij n n  
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tral characteristics of first-order and second-order differ- 
ential operators ix   and 2

i jx x   , respectively; 
 and  are the spectral 

characteristics of multiplication operators with multipli- 
ers 

 1, 1iF n n 

 ,i

 1, 1ijG n n  

f t x  and ij  ,g t x , respectively. These spectral 
characteristics are defined like a  1, 1n 

  , , ,ni t x


A n

0 1, ,e i i
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to the orthonormal basis 
0 1, , , 0ni i i 
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.  

Such definition of  is more preferred 
since there are analytical expressions of the spectral 
characteristics relative to various orthonormal functions 
for differential operators and multiplication operators 
(see [4,5]). 

 1, 1A n n 
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Equation (7) and Equation (8) are linear matrix equa- 
tions for the spectral characteristics  or li-  



near algebraic equations for Fourier coefficients   
0 1 n

k
i i i

(for functions ). Let us consider the solution of 
these equations.  
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It follows from Equation (8) that 
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i.e., 
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We rewrite Equation (7) subject to Equation (11): 
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We express the spectral characteristic  1,0n   
subject to Equation (9): 
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where  1, 1E n n   is the -dimensional iden- 
tity matrix. The expression in parentheses is multiplied on 
the right by the difference : 

2 1n 
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A similar result can be obtained by multiplying on the 
left by :    1, 1 1, 1E n n W n n    
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Equations (12) and (13), obviously, are analogues of 
geometric series sum. Thus, 
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are the problem solutions by the spectral method formal- 
ism. 

It is easy to see that if  (order of Erlang process) 
the problem reduces to the analysis of the stochastic sys- 
tems with Poisson flow of jumps and 
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when jump part is missed: 

   1, 1 1, 1 ,H n n n n       

we obtain the known solution of analysis problem for the 
stochastic systems with continuous trajectories [5,6]: 
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It is required to apply the inversion formula for finding 
the solution of the analysis problem [5]: 

 

 

 

0 1
0 1

0 1
0 0 0

,

, , , , , ,

, ,

n
n

i i i n
i i i

n

t x

e i i i t x

t x T R




  

  

 

 

      

but a finite number of coefficients 
0 1 ni i i  is usually de- 

fined approximately since the problem of finding all 
Fourier coefficients is not trivial. In this case, the infinite 
matrices in Equations (7)-(9) are replaced by truncated 
matrices. Then 
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where natural numbers 0 1  are the selected 
orders of the truncation for the spectral characteristics. 

, , , nL L L

Remarks 

1) The solution of the analysis problem is possible to 
find in another way. To do this we express 

 in terms of  from Equa-
tion (10), then we express  in terms of  

   1,0k n 

   1 1,0 ,n k 

  1 1,0k n 
   1,0k n 

N2, , 
   1 1,0n 

, that makes it possible to ex- 

press  from the Equation (7). The next step  

is to develop the final formula for  subject to 
Equation (9) and the similar transformations carried out 
to express Equations (14) and (15): 
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These expressions are equivalent to Equations (14) and 
(15), but Equations (14) and (15) are preferable since 
finding the inverse spectral characteristic  
can be avoided in this case by defining  
as the spectral characteristic of the multiplication opera- 
tor with multiplier 

1 1, 1n n  
1 1, 1n n  




 1 t . In particular, when the tran- 
sition intensity is constant   t    we have 

   1 1
1, 1 1, 1 .n n E n n


        

2) A generalization of the discussed problem is to con- 
sider the transition intensity which depends on the state 
vector. The jump size may be described by the condi- 
tional probability density function  ,t x z   that char- 
acterizes the distribution of the state vector  iX   after 
the jump. This distribution depends on the previous 
value  0iX z  

 
; jumps in sample paths of the proc- 

ess X t  occur at time moment i . 
In this case Equations (2) and (3) are represented as  
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, , , , , ,

2, , ,
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t x

t

t x t x t x

t z t x z t z z

t x

t
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and the operator  (see Equation (6)) must be rede- 
fined as  



       , , , ,
nR

t x t z t x z t z z     d .






 

Equations (7) and (8) will not change (but  
 is the spectral characteristic of the multi- 

plication operator with multiplier , the spectral 
characteristic  is calculated according to 
a new definition of the operator ). Therefore methods 
for the problem solution will not change as well as Equa- 
tions (14) and (15). 

 1, 1n n  
 ,t x

 1, 1H n n 


4. Conclusions 

We examine using of the spectral method formalism to 
the probabilistic analysis problem for the stochastic sys- 
tems with jumps generated by Erlang flow of events. 
Finding of the probability density function for the state 
vector by the spectral method formalism are developed. 

Using of Erlang flow of events allows to consider a 
more complex behavior for sample paths of the process 

 X t . The occurrence of jumps in sample paths can be 
controlled by appropriate selection of parameters such as 

the transition intensity  t

1N

 and an order  (for Er- 
lang process). This option makes it quite flexible tool for 
modeling. Thus, for 

N

  time intervals between 
jumps are described by exponential distribution law, for 

 time intervals between jumps are described by 
Erlang distribution, which is a special case of the gamma 
distribution. Erlang distribution converges to the normal 
distribution as  increases. 

1N 

N
The application of the spectral method formalism al- 

lows to reduce integro-differential equations to linear 
algebraic equations for Fourier coefficients of the prob- 
ability density function. It essentially simplifies the solu- 
tion. 
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