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Abstract—In this paper, we use the equivalence relation between K-functional and modulus of smoothness, and give the

Stechkin-Marchaud-type inequalities for linear combination of Bernstein-Durrmeyer operators .

Moreover, we obtain the

inverse result of approximation for linear combination of Bernstein-Durrmeyer operators with o’ (f;x). Meanwhile we
4

unify and extend some previous results.
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1. Introduction and Main Results
Let fel, [O,l],(lSpSoo)

Durrmeyer

The Bernstein-

operator D (f;x) (n € N =set of naturals ) is defined as
follows

! 1
D,(f3%)= Y P )+ D] p, () (),
k=0
(1.1)
P =(3)2* =0
which was first introduced and investigated by Derrieinnic[1]

in 1985. The Linear combination of Bernstein-Durrmeyer
operators given by

where

2r-1

0,,(f3)= 2 ¢;(mD, (f;x), (12)

where 7; and ¢, (n) satisfy:

2r-1
)n<n,<m<---<n, <c, ii)Zci(n)zl,
i=0

2r-1

i) Y |e,(m)| < M,

2r-1

iv) D c(n)D, (1—=x)";x)=0,m=1,2,---,2r —1.
i=0

(1.3)
Ditzian and Ivanov [2], Zhou [3], Guo and Li [4] studied
the Linear combination of Bernstein-Durrmeyer operators,
and obtained the characterization of approximation, the
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relationship of differential and modulus of smoothness for
()n,r(uf";;x)'

In this paper, we first establish Bernstein-type inequality
with parameter A for O, . (f;X). After that, we use the

equivalence relation between K-functional and modulus of
smoothness, and give the Stechkin-Marchaud type

inequalities in f €L, [0,1] for linear combination of

Bernstein-Durrmeyer operators. Moreover, we obtain the
inverse result of approximation for linear combination of

Bernstein-Durrmeyer operators with @’/ ( f; x) . Meanwhile
[
we unify and extend [2-4] results.
First, we introduce some useful definitions and notations.

Definitionl.1. Let ¢?(x) = x(1+x),0<A<1,1< p <co.

The modulus of smoothness by

2r
A

2r . _
L (f31), = sup

b
0<h<t p

where

ALS(x)= i[;j(—l)k S+ (G=kh),[x =4, x+4]<[0,1],

otherwise

Al f(x)=0.
The K-functional by
K50, =inf {[f g, + o g™

)
where
G= {g|g IS Lp [0,1],g(2r"1) IS A.C.,ac,q)z”lg(z” IS Lp [0,1]}.
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By [5,pp.10-11], there exists M > 0, such that Lemma2.2. If ¢ > 0,d >0, x > 0. Then
-1 p-2r L 42r 2r L 42r 2r .42
M K{pﬁ(f,t )pSa)w(f,t )pSMK{pl(f,t )p.

We are now in a position to state our main results.

En: Doy ) () (1= < M (1-2) . 22)
k=0

Proof. We notice [5, pp.164]
Theoreml.1. For

- I -
feG,reN,0<1<1,8,(x)=¢(x) D (X)) <Mx,leN,
k=0
+ f , one has the Steckin-Marchaud inequality

" Zn:pn,k (x)(ﬁ); <M(1-x)°,leN.
W (fn708, " (%)), <M YO, () - f||p, =0

For ¢ =0,d =0, the result of (2.2) is obvious.
Theorem1.2. Let f € G,r € N,0 < <2r .Then

-1 Q1= r a
[0..(H=1] =065, xn= o (f30), = 0.
Remark 1.3. For the inverse result, it is obvious that the
result of [2] is a special case of the Theorem 1.2 with
A =1, the result of [3] is a special case of the Theorem 1.2

n T/ n 2
< k4l —2c kel -2d
with 4 =0, p =00, and the result of [4] is a special case of [; Pk (x)( n ) j [kz;, Pk (X)(l s )
the Theorem 1.2 with p = o0, . }

For ¢ > 0,d > 0, using Holder inequality, we have

> P () (15

1

c

n [2c]+1
Throughout this paper, M denotes a positive constant < ZP (x)(L)([Zc]H)
independent of and f* which may be different in different =0 m o

places. " ap erin
.(zpn,k (x)(n—’l:-%—l) J
k=0

. To prove the theorems, we need also the following M(x’([z"]”) )W ((1_ x)~(2a1D )% < Mx(1—x).
emmas.

L AUXILIARY LEMMAS

Lemma2.1.If ¢ <3,d <1.Then For ¢>0,d =0, or c=0,d >0, the proof is similar.
Thus, this proof is complete.
1 —c —d -1 -c \d
[ PasOr =0 "dr < M (£1)° (1-52) . Lemma2.3. For f e L [0,1],reN,0<2<1,5,(x) =
@.1)
1> . . .
Proof. We notice [5, pp.164] o(x)+ =2 2r, one has the Bernstein-type inequality
1 -1 " 20N < Mu" 5P (x ) 2.3
_[0 P Odt < Mn™ (B1)", > -1, ||(P wr |, . )||f||p (2.3)
Proof. For p=1, if

[P0 dr< ™ (1-551) g5 1.

$
n 7

xekE, =B,1—{|, o (x)<n?,
Using Holder inequality, we have

[ o= ar

& >0, by simple computation, we have

) ) D (f3x)=(x(1-x))" ZQ (x, n)n"ﬁ Pui(¥)
(Jopora ([paoa-o>al (=) D[ puse f i

< Mn™ (k) (1_ﬁ)*d' Q2D

n
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with Q,(x,n) is a polynomial in nx(l—x) of degree

[(2r—i)/ 2] with non-constant bounded coefficients.

Therefore,

|Q(xn)n|<M x(l x)) ;nr% xeE

n*

Thus,

‘(I)ZMD,(,zr)(x)(f;x)‘ < Mnr(2—i)

2r n
D07 ()Y P (x)
i=0 k=0

(&=x) (14 D[ p, s ) f @)

Note that [5, pp.129]

J.E” §072m (x)pn,k (x) (% — x)zmdx < Mn—m—l ,

We can write

.(2.5)

H(pz AD(Z )(f)H (2 2)

I(E, )

Zn Z(p ()P, (x)
(&=x) (4D p,, ) f @)

<M O3 [ p, ()| @)
k=0

<Ma"* P 1], (2.6)

If xeEf :[O,%)u(l—%,l], then —2— ~pn*",

(n=2r)!

”(pzm ”O0 ~ n_rl,j; P, (X)dx =+ .By simple calculation,
we have

n=2r
D (f32) = G251 D Py () +1)

=0

xj-gi(—l)‘i (ir )pn’kﬁ (u)du, 2.7
||g02 iD(Zr)(f)”l(E ' M2 z J’ P2y 1 ()l
Z( ) D[ p, @) f @)l

< Mn** ”Z Z [, Puses @) @0

M2 7],

Q2.8
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For p=o00,if x € E_, by(2.5) we can now write

0 D (0| < M 1], St o)
i=1

> (=) 4D, )

<Mn"* P 1. 2.9)

If x € E;, by (2.7), the proof is similar to that (2.9),
it is enough to show
rA r . r(2-4
|0 (DS (f33)| < M V| 1] -

By (2.6), (2.8), (2.9), (2.100 applying Riesz-Thorin theorem,
we get

oD, < M 1], < ' 57 ) 1]

(2.10)

Combining (iii) of (1.3), we obtain
[0, < M8 @)A1, -
Lemma24.1f f € G,r e N,0< A <1,n>2r, Then
< M||¢2r/1f(2r) ” )
P P
Lemma 2.5.1f f € G,r € N,0< A <1, Then

||¢21ﬂ,0(2}’) (f)”

”(o @.11)

< Mn”léf’(ﬂ)(X)Zn:”Ok,r(f) —f"p.
k=1

Proof. By Lemma 2.3., Lemma2.4., note that Ol(,zrr) =0,

we have

o0l ),
0" 0 (0, (N,

oo o, 0=,

< M| 02 (f )HP

+M,8" @0, ()= 1), - (2.12)

we wite |0, (/) - f)Hp = max

1<k<n

0, (-1
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For HOW(f)—f)Hp, there exists M;,and k:1<k<n,

sueh that [0, (/) /), < M0, (/) 1)

Therefore,

M,n™"

0O (f),

<M

=

P 0(0,(N-1],
P00,
< MM, 0, (N -7],

M
+2
n

2 Q2r(A-1 2r
M |0 (),

< M1M25k2r(/1—1) ||Oq’r (f) _f”p
< MMM S0, ()11,
§kzr(/171)(x) < é‘nzr(ifl)(x) ,

by (2.12), (2.13), we have

(2.13)

Note that

”(Dzrloi,z:)(f)”,, < Mn’—‘df’(i—l)(x)zn:”Ok,,(f) - f”p.
k=1

where M = M, + M\M,M,.

2. Proofs of Theorems

Proof of Theorem 1.

Proof. For n > 2, there exists meN,

such that $<m<n, and

0,..(/) ], = min

n<p<
5<k<n

O, ()-f]

P b

|0, (H=1] <207 Y |0, (H-1] -

L %Skén L

Therefore, using the definition of K;: (1) ,»and
Lemma 2.5., note that 5“7V (x) < 52" (x) , we have

K2 (fin 20 (),
<|0,.,.(N=1| +nr8r P e 0w ()
: P : P
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M5S0, ()~ 1]
k=1

<Y [0, (H-1],

By relationship of K-functional and modulus of smoothness,
we get

o (fin 88, <M Y0, (1) 1].
k=1

This completes the proof of Theorem !.

Proof of Theorem?2.
Proof. By ”On’r (f)—f”p < M(I’f%é‘nl*’1 (x)),Acording

to the definition of K;f (f1°"), we have

K2 (S, £/ =0, +¢

001,

< M[(n 28" ()" 4+ (

|(p2r10r(12r)(f . g)”p
oo (@), )

<M[(n 87 (x)" +17 (n"sj"“*”(x)” /-,
N

Lo 2r _ _
<M (70 () + s KA (307070, )

2ri _(2r)
g

tle

By Berens-Lorens theorem, and relationship of K-functional
and modulus of smoothness, we have

2r . a
W (f51), < Mi“.

This completes the proof of Theorem?2.
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