Stechkin-Marchaud Type Inequalities in \mathbf{L}_{p} for Linear Combination of Bernstein-Durrmeyer Operators

Guo Feng ${ }^{1}$
1.School of Mathematics and Information Engineering, Taizhou University, Zhejiang,Taizhou 317000, China e-mail : gfeng@tzc.edu.cn

Meiqin Ke^{2}
2.Library, Taizhou University,
Zhejiang,Taizhou 317000, China
e-mail :mqke@tzc.edu.cn

Abstract

In this paper, we use the equivalence relation between K-functional and modulus of smoothness, and give the Stechkin-Marchaud-type inequalities for linear combination of Bernstein-Durrmeyer operators. Moreover, we obtain the inverse result of approximation for linear combination of Bernstein-Durrmeyer operators with $\omega_{\varphi^{2}}^{2 r}(f ; x)$. Meanwhile we unify and extend some previous results.

Keywords- Bernstein-Durrmeyer operators; linear combination; K-functional;Stechkin-Marchaud-type inequalities; modulus of smoothness

1. Introduction and Main Results

Let $f \in L_{p}[0,1],(1 \leq p \leq \infty)$. The BernsteinDurrmeyer
operator $D_{n}(f ; x)(n \in \mathbb{N}:=$ set of naturals $)$ is defined as follows

$$
\begin{equation*}
D_{n}(f ; x)=\sum_{k=0}^{n} p_{n, k}(x)(n+1) \int_{0}^{1} p_{n, k}(t) f(t) d t \tag{1.1}
\end{equation*}
$$

where

$$
p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}
$$

which was first introduced and investigated by Derrieinnic[1] in 1985. The Linear combination of Bernstein-Durrmeyer operators given by

$$
\begin{equation*}
O_{n, r}(f ; x)=\sum_{i=0}^{2 r-1} c_{i}(n) D_{n_{i}}(f ; x) \tag{1.2}
\end{equation*}
$$

where n_{i} and $c_{i}(n)$ satisfy:
i) $n \leq n_{0} \leq n_{1} \leq \cdots \leq n_{2 r-1} \leq c_{n}, \quad$ ii) $\sum_{i=0}^{2 r-1} c_{i}(n)=1$,
iii) $\sum_{i=0}^{2 r-1}\left|c_{i}(n)\right| \leq M$,
iv) $\sum_{i=0}^{2 r-1} c_{i}(n) D_{n_{i}}\left((t-x)^{m} ; x\right)=0, m=1,2, \cdots, 2 r-1$.

Ditzian and Ivanov [2], Zhou [3], Guo and Li [4] studied the Linear combination of Bernstein-Durrmeyer operators, and obtained the characterization of approximation, the
relationship of differential and modulus of smoothness for $O_{n, r}(f ; x)$.

In this paper, we first establish Bernstein-type inequality with parameter λ for $O_{n, r}(f ; x)$. After that, we use the equivalence relation between K -functional and modulus of smoothness, and give the Stechkin-Marchaud type inequalities in $f \in L_{p}[0,1]$ for linear combination of Bernstein-Durrmeyer operators. Moreover, we obtain the inverse result of approximation for linear combination of Bernstein-Durrmeyer operators with $\omega_{\varphi^{\lambda}}^{2 r}(f ; x)$. Meanwhile we unify and extend [2-4] results.

First, we introduce some useful definitions and notations.
Definition1.1. Let $\varphi^{2}(x)=x(1+x), 0 \leq \lambda \leq 1,1 \leq p \leq \infty$.
The modulus of smoothness by

$$
\omega_{\varphi^{\lambda}}^{2 r}(f ; t)_{p}=\sup _{0 \leq h<t}\left\|\Delta_{h \varphi^{\lambda}}^{2 r} f\right\|_{p}
$$

where

$$
\Delta_{h}^{r} f(x)=\sum_{k=0}^{r}\binom{r}{k}(-1)^{k} f\left(x+\left(\frac{r}{2}-k\right) h\right),\left[x-\frac{r h}{2}, x+\frac{r h}{2}\right] \subseteq[0,1],
$$

otherwise $\quad \Delta_{h}^{r} f(x)=0$.
The K-functional by

$$
K_{\varphi^{\lambda}}^{2 r}\left(f ; t^{2 r}\right)_{p}=\inf _{g \in G}\left\{\|f-g\|_{p}+t^{2 r}\left\|\varphi^{2 r \lambda} g^{(2 r)}\right\|_{p}\right\}
$$

where
$G=\left\{g \mid g \in L_{p}[0,1], g^{(2 r-1)} \in A . C_{\cdot l o c}, \varphi^{2 r \lambda} g^{(2 r)} \in L_{p}[0,1]\right\}$.

By [5,pp.10-11], there exists $M>0$, such that

$$
M^{-1} K_{\varphi^{\lambda}}^{2 r}\left(f ; t^{2 r}\right)_{p} \leq \omega_{\varphi^{\lambda}}^{2 r}\left(f ; t^{2 r}\right)_{p} \leq M K_{\varphi^{\lambda}}^{2 r}\left(f ; t^{2 r}\right)_{p}
$$

We are now in a position to state our main results.

Theorem1.1.

For
$f \in G, r \in \mathbb{N}, 0 \leq \lambda \leq 1, \delta_{n}(x)=\varphi(x)$
$+\frac{1}{\sqrt{n}}$, one has the Steckin-Marchaud inequality

$$
\omega_{\varphi^{2}}^{2 r}\left(f ; n^{-\frac{r}{2}} \delta_{n}^{r(1-\lambda)}(x)\right)_{p} \leq M n^{-1} \sum_{k=1}^{n}\left\|O_{k, r}(f)-f\right\|_{p} .
$$

Theorem1.2. Let $f \in G, r \in \mathbb{N}, 0 \leq \alpha \leq 2 r$.Then
$\left\|O_{n, r}(f)-f\right\|_{p}=O\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right) \Rightarrow \omega_{\varphi^{\lambda}}^{2 r}(f ; t)_{p}=O\left(t^{\alpha}\right)$.
Remark 1.3. For the inverse result, it is obvious that the result of [2] is a special case of the Theorem 1.2 with $\lambda=1$, the result of [3] is a special case of the Theorem 1.2 with $\lambda=0, p=\infty$, and the result of $[4]$ is a special case of the Theorem 1.2 with $p=\infty$.

Throughout this paper, M denotes a positive constant independent of and f which may be different in different places.

I. AUXILIARY LEMMAS

To prove the theorems, we need also the following Lemmas.

Lemma2.1. If $c<\frac{1}{2}, d<\frac{1}{2}$. Then
$\int_{0}^{1} p_{n, k}(t) t^{-c}(1-t)^{-d} d t \leq M n^{-1}\left(\frac{k+1}{n}\right)^{-c}\left(1-\frac{k-1}{n}\right)^{-d}$.
(2.1)

Proof. We notice [5, pp.164]

$$
\begin{aligned}
& \int_{0}^{1} p_{n, k}(t) t^{\eta} d t \leq M n^{-1}\left(\frac{k+1}{n}\right)^{\eta}, \quad \eta>-1 \\
& \int_{0}^{1} p_{n, k}(t)(1-t)^{\xi} d t \leq M n^{-1}\left(1-\frac{k-1}{n}\right)^{\xi}, \quad \xi>-1
\end{aligned}
$$

Using Holder inequality, we have

$$
\begin{aligned}
& \int_{0}^{1} p_{n, k}(t) t^{-c}(1-t)^{-d} d t \\
\leq & \left(\int_{0}^{1} p_{n, k}(t) t^{-2 c} d t\right)^{\frac{1}{2}}\left(\int_{0}^{1} p_{n, k}(t)(1-t)^{-2 d} d t\right)^{\frac{1}{2}} \\
\leq & M n^{-1}\left(\frac{k+1}{n}\right)^{-c}\left(1-\frac{k-1}{n}\right)^{-d}
\end{aligned}
$$

Lemma2.2. If $c \geq 0, d \geq 0, x>0$. Then

$$
\begin{equation*}
\sum_{k=0}^{n} p_{n, k}(x)\left(\frac{k+1}{n}\right)^{-c}\left(1-\frac{k-1}{n}\right)^{-d} \leq M x^{-c}(1-x)^{-d} \tag{2.2}
\end{equation*}
$$

Proof. We notice [5, pp.164]

$$
\begin{aligned}
& \sum_{k=0}^{n} p_{n, k}(x)\left(\frac{n}{k+1}\right)^{l} \leq M x^{-l}, l \in \mathbb{N} \\
& \sum_{k=0}^{n} p_{n, k}(x)\left(\frac{n}{n-k+1}\right)^{\zeta} \leq M(1-x)^{-\zeta}, \zeta \in \mathbb{N}
\end{aligned}
$$

For $c=0, d=0$, the result of (2.2) is obvious.
For $c>0, d>0$, using Holder inequality, we have

$$
\begin{aligned}
& \sum_{k=0}^{n} p_{n, k}(x)\left(\frac{k+1}{n}\right)^{-c}\left(1-\frac{k-1}{n}\right)^{-d} \\
\leq & \left(\sum_{k=0}^{n} p_{n, k}(x)\left(\frac{k+1}{n}\right)^{-2 c}\right)^{\frac{1}{2}}\left(\sum_{k=0}^{n} p_{n, k}(x)\left(1-\frac{k-1}{n}\right)^{-2 d}\right)^{\frac{1}{2}} \\
\leq & \left(\sum_{k=0}^{n} p_{n, k}(x)\left(\frac{n}{k+1}\right)^{([2 c]+1)}\right)^{\frac{c}{[2 c]+1}} \\
\cdot & \left(\sum_{k=0}^{n} p_{n, k}(x)\left(\frac{n}{n-k+1}\right)^{[2 d]+1}\right)^{\frac{d}{2 d]+1}} \\
\leq & M\left(x^{-([2 c]+1)}\right)^{\frac{c}{2 c]+1}}\left((1-x)^{-([2 d]+1)}\right)^{\frac{d}{[2 d]+1}} \leq M x^{-c}(1-x)^{-d} .
\end{aligned}
$$

For $c>0, d=0$, or $c=0, d>0$, the proof is similar. Thus, this proof is complete.

Lemma2.3. For $f \in L_{p}[0,1], r \in \mathbb{N}, 0 \leq \lambda \leq 1, \delta_{n}(x)=$ $\varphi(x)+\frac{1}{\sqrt{n}}, n \geq 2 r$, one has the Bernstein-type inequality

$$
\begin{equation*}
\left\|\varphi^{2 r \lambda} O_{n, r}^{(2 r)}\right\|_{p} \leq M n^{r} \delta_{n}^{2 r(1-\lambda)}(x)\|f\|_{p} \tag{2.3}
\end{equation*}
$$

Proof.

$$
\begin{equation*}
\text { For } \quad p=1 \text {, } \tag{if}
\end{equation*}
$$

$x \in E_{n}=\left[\frac{1}{n}, 1-\frac{1}{n}\right], \varphi^{-\xi}(x) \leq n^{\frac{\xi}{2}}$,
$\xi>0$, by simple computation, we have

$$
\begin{gather*}
D_{n}^{(2 r)}(f ; x)=(x(1-x))^{-2 r} \sum_{i=0}^{2 r} Q_{i}(x, n) n^{i} \sum_{k=0}^{n} p_{n, k}(x) \\
\cdot\left(\frac{k}{n}-x\right)^{i}(n+1) \int_{0}^{1} p_{n, k}(u) f(u) d u \tag{2.4}
\end{gather*}
$$

with $Q_{i}(x, n)$ is a polynomial in $n x(1-x)$ of degree $[(2 r-i) / 2]$ with non-constant bounded coefficients. Therefore,

$$
\left|Q_{i}(x, n) n^{i}\right| \leq M(x(1-x))^{r-\frac{1}{2}} n^{r+\frac{1}{2}}, \quad x \in E_{n} .
$$

Thus,

$$
\begin{array}{r}
\left|\varphi^{2 r \lambda} D_{n}^{(2 r)}(x)(f ; x)\right| \leq M n^{r(2-\lambda)} \left\lvert\, \sum_{i=0}^{2 r} n^{\frac{i}{2}} \varphi^{-i}(x) \sum_{k=0}^{n} p_{n, k}(x)\right. \\
\left.\cdot\left(\frac{k}{n}-x\right)^{i}(n+1) \int_{0}^{1} p_{n, k}(u) f(u) d u \right\rvert\, \cdot(2 . \tag{2.5}
\end{array}
$$

Note that [5, pp.129]

$$
\int_{E_{n}} \varphi^{-2 m}(x) p_{n, k}(x)\left(\frac{k}{n}-x\right)^{2 m} d x \leq M n^{-m-1},
$$

We can write

$$
\begin{align*}
\left\|\varphi^{2 r \lambda} D_{n}^{(2 r)}(f)\right\|_{1\left(E_{n}\right)} & \leq M n^{r(2-\lambda)} \left\lvert\, \sum_{i=0}^{2 r} n^{\frac{1}{2}} \sum_{k=0}^{n} \varphi^{-i}(x) p_{n, k}(x)\right. \\
& \left.\cdot\left(\frac{k}{n}-x\right)^{i}(n+1) \int_{0}^{1} p_{n, k}(u) f(u) d u \right\rvert\, \\
& \leq M n^{r(2-\lambda)} \sum_{k=0}^{n} \int_{0}^{1} p_{n, k}(u)|f(u)| d u \tag{2.11}\\
& \leq M n^{r(2-\lambda)}\|f\|_{1} . \tag{2.6}
\end{align*}
$$

If $x \in E_{n}{ }^{c}=\left[0, \frac{1}{n}\right) \cup\left(1-\frac{1}{n}, 1\right]$, then $\frac{n!}{(n-2 r)!} \sim n^{2 r}$, $\left\|\varphi^{2 r \lambda}\right\|_{\infty} \sim n^{-r \lambda}, \int_{0}^{1} p_{n, k}(x) d x=\frac{1}{n}$. By simple calculation, we have

$$
\begin{align*}
& D_{n}^{(2 r)}(f ; x)=\frac{n!}{(n-r)!} \sum_{k=0}^{n-2 r} p_{n-2 r, k}(x)(n+1) \\
& \quad \times \int_{0}^{1} \sum_{j=0}^{2 r}(-1)^{j}\binom{2 r}{j} p_{n, k+j}(u) d u \tag{2.7}\\
& \left\|\varphi^{2 r \lambda} D_{n}^{(2 r)}(f)\right\|_{1\left(E_{n}^{e}\right)} \leq M n^{2 r(2-\lambda)} \sum_{k=0}^{n-2 r} \int_{0}^{1} p_{n-2 r, k}(x) d x \\
& \times \sum_{j=0}^{2 r}\binom{2 r}{j}(n+1) \int_{0}^{1} p_{n, k+j}(u)|f(u)| d u \\
& \leq M n^{2 r(2-\lambda)} \sum_{j=0}^{2 r}\binom{2 r}{j} \sum_{k=0}^{n-2 r} \int_{0}^{1} p_{n, k+j}(u)|f(u)| d u \tag{2.12}\\
& \leq M n^{2 r(2-\lambda)}\|f\|_{1} .
\end{align*}
$$

Lemma 2.4. If $f \in G, r \in \mathbb{N}, 0 \leq \lambda \leq 1, n>2 r$, Then

$$
\left\|\varphi^{2 r \lambda} O_{n, r}^{(2 r)}(f)\right\|_{p} \leq M\left\|\varphi^{2 r \lambda} f^{(2 r)}\right\|_{p} .
$$

Lemma 2.5. If $f \in G, r \in \mathbb{N}, 0 \leq \lambda \leq 1$, Then

$$
\begin{aligned}
&\left\|\varphi^{2 r \lambda} O_{n, r}^{(2 r)}(f)\right\|_{p} \\
& \leq M n^{r-1} \delta_{n}^{2 r(\lambda-1)}(x) \sum_{k=1}^{n}\left\|O_{k, r}(f)-f\right\|_{p} .
\end{aligned}
$$

Proof. By Lemma 2.3., Lemma2.4., note that $O_{1, r}^{(2 r)}=0$, we have

$$
\begin{aligned}
& n^{-r}\left\|\varphi^{2 r \lambda} O_{n, r}^{(2 r)}(f)\right\|_{p} \\
\leq & n^{-r}\left\|\varphi^{2 r} O_{n, r}^{(2 r)}\left(O_{k, r}(f)\right)\right\|_{p} \\
+ & n^{-r}\left\|\varphi^{2 r} O_{n, r}^{(2 r)}\left(O_{k, r}(f)-f\right)\right\|_{p} \\
\leq & M_{2} n^{-r}\left\|\varphi^{2 r} O_{k, r}^{(2 r)}(f)\right\|_{p} \\
+ & \left.M_{1} \delta_{n}^{2 r(\lambda-1)}(x) \| O_{k, r}(f)-f\right) \|_{p} .
\end{aligned}
$$

We write $\left.\left.\| O_{q, r}(f)-f\right)\left\|_{p}=\max _{1 \leq k \leq n}\right\| O_{k, r}(f)-f\right) \|$.

For $\left.\| O_{q, r}(f)-f\right) \|_{p}$, there exists M_{3}, and $k: 1 \leq k \leq n$, such that $\left.\left.\| O_{q, r}(f)-f\right)\left\|_{p} \leq M\right\| O_{k, r}(f)-f\right) \|$.

Therefore,

$$
\begin{align*}
& \quad M_{2} n^{-r}\left\|\varphi^{2 r} O_{k, r}^{(2 r)}(f)\right\|_{p} \\
& \leq \frac{M_{2}}{n^{r}}\left\|\varphi^{2 r \lambda} O_{k, r}^{(2 r)}\left(O_{1, r}(f)-f\right)\right\|_{p} \\
& +\frac{M_{2}}{n^{r}}\left\|\varphi^{2 r \lambda} O_{k, r}^{(2 r)}\left(O_{1, r}(f)\right)\right\|_{p} \\
& \leq M_{1} M_{2} \delta_{k}^{2 r(\lambda-1)}\left\|O_{1, r}(f)-f\right\|_{p} \\
& +M_{2}^{2} \delta_{k}^{2 r(\lambda-1)}\left\|O_{k, r}^{(2 r)}(f)\right\|_{p} \\
& \quad \leq M_{1} M_{2} \delta_{k}^{2 r(\lambda-1)}\left\|O_{q, r}(f)-f\right\|_{p} \\
& \leq M_{1} M_{2} M_{3} \delta_{k}^{2 r(\lambda-1)}\left\|O_{k \cdot r}(f)-f\right\|_{p} \tag{2.13}\\
& \text { Note that } \quad \delta_{k}^{2 r(\lambda-1)}(x) \leq \delta_{n}^{2 r(\lambda-1)}(x)
\end{align*}
$$

by (2.12), (2.13), we have

$$
\left\|\varphi^{2 r \lambda} O_{n, r}^{(2 r)}(f)\right\|_{p} \leq M n^{r-1} \delta_{n}^{2 r(\lambda-1)}(x) \sum_{k=1}^{n}\left\|O_{k, r}(f)-f\right\|_{p}
$$

where $M=M_{1}+M_{1} M_{2} M_{3}$.

2. Proofs of Theorems

Proof of Theorem 1.
Proof. For $n>2$, there exists $m \in \mathbb{N}$,
such that $\frac{n}{2} \leq m \leq n$, and

$$
\begin{array}{r}
\left\|O_{m, r}(f)-f\right\|_{p}=\min _{\frac{n}{2} \leq k \leq n}\left\|O_{k, r}(f)-f\right\|_{p} \\
\left\|O_{m, r}(f)-f\right\|_{p} \leq 2 n^{-1} \sum_{\frac{n}{2} \leq k \leq n}\left\|O_{k, r}(f)-f\right\|_{p}
\end{array}
$$

Therefore, using the definition of $K_{\varphi^{\lambda}}^{2 r}\left(f ; t^{2 r}\right)_{p}$, and
Lemma 2.5., note that $\delta_{m}^{2 r(\lambda-1)}(x) \leq \delta_{n}^{2 r(\lambda-1)}(x)$, we have

$$
\begin{aligned}
& K_{\varphi^{\lambda}}^{2 r}\left(f ; n^{-r} \delta_{n}^{2 r(1-\lambda)}(x)\right)_{p} \\
\leq & \left\|O_{m, r}(f)-f\right\|_{p}+n^{-r} \delta_{n}^{2 r(1-\lambda)}\left\|\varphi^{2 r \lambda} O_{m, r}^{(2 r)}(f)\right\|_{p}
\end{aligned}
$$

$$
\begin{aligned}
& +M n^{-r} \delta_{n}^{2 r(1-\lambda)} \sum_{k=1}^{m}\left\|O_{k, r}(f)-f\right\|_{p} \\
& \leq M n^{-1} \sum_{k=1}^{n}\left\|O_{k, r}(f)-f\right\|_{p}
\end{aligned}
$$

By relationship of K-functional and modulus of smoothness, we get

$$
\omega_{\varphi^{\lambda}}^{2 r}\left(f ; n^{-\frac{r}{2}} \delta_{n}^{r(1-\lambda)}\right)_{p} \leq M n^{-1} \sum_{k=1}^{n}\left\|O_{k, r}(f)-f\right\|_{p}
$$

This completes the proof of Theorem !.
Proof of Theorem 2 .
Proof. By $\left\|O_{n, r}(f)-f\right\|_{p} \leq M\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)$, Acording to the definition of $K_{\varphi^{\lambda}}^{2 r}\left(f ; t^{2 r}\right)$, we have

$$
\begin{aligned}
& K_{\varphi^{2}}^{2 r}\left(f ; t^{2 r}\right)_{p} \leq\left\|f-O_{n, r}(f)\right\|_{p}+t^{2 r}\left\|\varphi^{2 r \lambda} O_{n, r}^{(2 r)}(f)\right\|_{p} \\
\leq & M\left[\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{\alpha}+t^{2 r}\left(\left\|\varphi^{2 r \lambda} O_{n}^{(2 r)}(f-g)\right\|_{p}\right.\right. \\
+ & \left.\left.\left\|\varphi^{2 r \lambda} O_{n}^{(2 r)}(g)\right\|_{p}\right)\right] \\
\leq & M\left[\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{\alpha}+t^{2 r}\left(n^{r} \delta_{n}^{2 r(\lambda-1)}(x)\|f-g\|_{p}\right.\right. \\
+ & \left.\left.\left\|\varphi^{2 r \lambda} g^{(2 r)}\right\|_{p}\right)\right] \\
\leq & M\left(\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{\alpha}+\frac{t^{2 r}}{n^{-r} \delta_{n}^{2 r(1-\lambda)}(x)} K_{\varphi^{2}}^{2 r}\left(f ; n^{-r} \varphi^{2 r(1-\lambda)}\right)_{p}\right)
\end{aligned}
$$

By Berens-Lorens theorem, and relationship of K-functional and modulus of smoothness, we have

$$
\omega_{\varphi^{\lambda}}^{2 r}(f ; t)_{p} \leq M t^{\alpha}
$$

This completes the proof of Theorem 2.

References

[1] M..M..Derrieinnic, "On Multivariate Approximation by Bernstein-type Polynomials," J. Approx. Theory, vol.45, pp. 155-156, 1985.
[2] Z. Ditzian, K. G. Ivanov " Bernstein-type operators and their derivatives," J Approx. Theory, vol.56, pp.72-90, 1989.
[3] D.X.Zhou, "On smoothness characterized by Bernstein type operators," J. Approx Theory, vol.81, pp.303-315, 1995.
[4] S.S. Guo , C.X.Li , "Approxition by Linear Commbinations of Bernstein-Durrmeyer Operators,"

Journal of Lanzhou University (Natural Sciences), vol. 36(6), pp. 13-16, 2000.
[5] Z.Ditzian, V.Totik, " Moduli of Smoothness," SpringerVerlag, New York, 1987.
[6] V. Wiekeren, weakptype inequalities for Kantorovich polynomials and related operators. Indng Math., 1987, 90(1).111-120

