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Abstract—The focus of this paper is on determination of the dynamic parameters of structural systems with viscoelastic (VE)
dampers described by Maxwell rheological models. Such parameters could be obtained after solving the appropriately defined
nonlinear eigenvalue problem for frames with VE dampers. The solution to the nonlinear eigenvalue problem is obtained by
equating to zero the determinant of the considered system of equations. Apart from complex conjugate eigenvalues, the real ones
occurred when dampers that are described by the classic Maxwell model, are also determined.
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1. Introduction
In civil engineering passive damping systems are mounted

on structures in order to reduce excessive vibrations caused by
winds and earthquakes [1-3]. Different kinds of mechanical
devices, such as viscous dampers, viscoelastic dampers, tuned
mass dampers, or base isolation systems, are used in the
passive systems. In the past, several rheological models were
proposed for describing the dynamic behaviour of VE dampers
and materials [1-3]. In recent years, the fractional calculus has
received considerable attention and has been used in modelling
the rheological behaviour of VE materials and dampers [4, 5].
The fractional models have an ability to correctly describe the
behaviour of VE materials and dampers using a small number
of model parameters. However, in this case, the VE damper
equation of motion is a fractional differential equation [6]. It is
the aim of this paper to find the dynamic properties (i.e.,
natural frequencies and non-dimensional damping factors) for
structures with VE dampers. The above-mentioned properties
are defined on the basis of eigenvalues, obtained from the
nonlinear eigenproblem. The approach, as presented in this
work, differs from the standard one which mostly uses the
state-space variables and the dynamic parameters are derived
from the linear eigenproblem [7] or the non-linear
eigenproblem [8], depending on the assumed model of damper.
One of the most important achievements of the proposed
formulation is the dimension of the problem, which is much
smaller, compared with the standard approach. The solution to
the nonlinear eigenvalue problem is obtained by equating to
zero the determinant of the considered system of equations.
The results of sample numerical calculations are presented and
discussed. It is shown that the results of nonlinear
eigenproblem which correspond to the classic models differ
qualitatively from the results obtained for the fractional model.

2. Rheological Model of Damper

The rheological properties of VE dampers were described
using three different Maxwell models, i.e., classic model (Fig.
1a), fractional model (Fig. 1b) and generalized model (Fig. 1c).
The classic Maxwell model consists of a dashpot with the
constant dc , connected in series with a spring of the stiffness

dk .

Figure 1. Rheological models of damper.

In the case of the fractional Maxwell model of damper,
instead of the dashpot we have a fractional dashpot (see Fig. 1b)
with the constants: dc and � ( 10 ��� ), which denotes the
order of fractional derivative [6].

In the generalized Maxwell model (Fig. 1c), there is an
additional element of the stiffness 0k , which is connected in
parallel with the other elements of the system, described
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respectively by stiffness lk and damping lc , ( pl ,...,2,1	 ).
The equations of motion for the classic or fractional and
generalized Maxwell models could be written as follows:
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where, kji qqtq �	& )( , dd ck	# , lll ck	# . Moreover,

iu , liu and jq , kq denote the dampers force, the force in the
j-th Maxwell unit and nodal displacements, respectively. The
symbol )(A�

tD denotes the Riemann-Liouville fractional
derivative of the order � with respect to time, t. More
information concerning the fractional derivative can be found
in [6]. For consistent notation, we introduce )()(1 tqqDt c	 . The
equation of motion for the classic Maxwell model could be
obtained after introducing into (1) 1	� .

3. Structural system with dampers
A. The equation of motion

In this paper, the structure with VE dampers is treated as an
elastic linear system modelled as a shear frame. The mass of
the system is lumped at the level of storeys. Viscoelastic
dampers are installed between two successive storeys. The
equation of motion of the structure with dampers can be written
as follows:

)()()()()( ttttt ssssss pfqKqCqM 
	

 ccc =Q>

where the symbols sM , sC and sK denote the mass, the
damping, and the stiffness matrices, respectively. Moreover,

T
nsjsss qqqt ],...,,...,[)( ,,1,	q denotes the vector of

displacements of the structure and T
nj pppt ],...,,...,[)( 1	p the

vector of excitation forces. The components of vector
T

nffft ],...,,[)( 21	f are the interaction forces between the
frame and the dampers (Fig.. 2).

Figure 2. Diagram of frame and the interaction forces.

If a structure with only one damper denoted as the damper
number i, mounted between two successive storeys, k and k+1,

is considered, then the vector of damper forces could be written
in the following form:

)(]0,.....,,,...,0[)( 1 tuufuft ii
T

ikiki ef 	�			 
 =d>

where, T
kki ee ]0,...,1 ,1,...,0[ 1 �			 
e . For a structure with

m dampers the vector of interaction forces is the sum of vectors
)(tif , i.e.:
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B. The Laplace transform
After applying the Laplace transform and taking into

account that:

= >8 9 qq 	tL bN 8 9 qq �� 	 stDt )(L bN 8 9 qq stDt 	)(1L b =R>

the equation of motion (2) can be written as:

= > )()()(2 sssss ssss pfqKCM 
	

 e =S>

The vectors )(ssq , )(tf and )(sp denote the Laplace
transforms of displacements and forces, respectively.
According to (3), for damper i, the force transform is

)()( sus iii ef 	 . The Laplace transform converts (1) into one
relationship which is valid for each considered model of
damper:

8 9 )()()( sqsGksu iivii &
	 e =T>

The quantities vik and )(sGi are defined as:
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for classic ( 1	� i ) or fractional models and for generalized
Maxwell model, respectively. Now the second index in the
symbols ik0 , lik , li# refers to the damper’s number. Moreover,

)()( ssq s
T
ii qe�	& .

Finally, one may rewrite (6) in the following form:

8 9 )()()(2 sssss sss pqGKCM 	


 b =g>
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m stands for the number of dampers.

C. Nonlinear eigenproblem
For 0p 	)(s , the equation of motion (9) expresses a

nonlinear eigenproblem from which the eigenvalues and
eigenvectors can be determined [8]. In the case of the fractional
Maxwell model it is possible to write the relationship:

= > 0qBKCM 	
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where, T
iiii k eeB 	 . For the classic Maxwell model 1	� i .

The solution to the system (10) yields a set of complex and
conjugate eigenvalues. The number of pairs of eigenvalues
equals the number of degree of freedom for the considered
system. Moreover, for a structural system with the classic or
the generalized Maxwell models of dampers we obtain a set of
real eigenvalues of which the number equals the number of all
dashpots occurring in the damper models. The calculation
carried out by the authors suggests that for the dampers
described by the fractional Maxwell model, real solutions do
not exist.

A nonlinear eigenproblem can be solved using the
continuation method which is similar to the one described in
the paper [8]. Another possibility to obtain the values is is a
method of equating to zero the determinant of the system of
equations [9]. It is to be noted that for 1	� i the value existing
in the denominator in (10) leads to the singularity when

is #�	 . In order to eliminate these singularities, we transform
the system of equations (10) into the following form:

= > 0qBKCM 	
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In this work, real and complex eigenvalues are obtained by
searching the value of determinant of the system (11) and by
evaluating the roots of determinant function.

D. Dynamic properties of structure
The dynamic behaviour of a frame with viscoelastic

dampers is characterized by the natural frequencies i� and the
non-dimensional damping parameters i� . Similarly to viscous
damping, the above-mentioned properties are defined as
follows:

iiiiii ���	�K
�	� /,222 b =PQ>

where )Re( ii s	� , )Im( ii s	K . For the real eigenvalues is 
relationships (12) are not valid. The real eigenvalues

correspond to the rheological properties of the considered
dampers.

4. Results of Calculation
In the numerical example, a two-storey building structure

modelled as a shear plane frame with the rigid beams is
considered. The mass is lumped and same at every floor:

kgms 2000	 . The bending rigidity of each storey is
 kN/mks 4000	 . The viscoelastic damper with the stiffness

parameter  kN/mk 25001 	 and damping /m kNsc �501 	 is
mounted on the first storey. Thus, the coefficient 501 	# . On
the second floor there is a damper, characterized by the
parameters:  kN/mk 6002 	 , /m kNsc �302 	 , 202 	# .

Firstly, the calculations were carried out for a frame with
dampers described by the fractional Maxwell model, for which
the value of the fractional parameter was 6.0	� . After
equating to zero the determinant of the system of equations
(11), we obtain the characteristic equation which enables four
complex and conjugate eigenvalues is to be derived (see
Table I).

TABLE I. THE EIGENVALUES – FRACTIONAL MAXWELL MODEL

Root number i )( isi )( isj

1, 2 -0.7254 ±28.3351
3, 4 -1.8983 ±74.8284

The value determinant biasZ 7
		 )(det(A) is a
complex number which depends on the complex variable

yixs 7
	 , where 1�	i . Thus, the value of the
determinant equals zero only if its real and imaginary part

simultaneously is equal to zero, 0),( 	yxa and 0),( 	yxb .
The roots iii yixs 7
	 of a characteristic equation are in a
complex plane at the intersection of lines, along which the real
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part is equal to zero (solid line in Fig. 3) and the imaginary part
is equal to zero (dashed line in Fig. 3).

Figure 3. Plot of functions (Z) i , (Z) j - fractional Maxwell model.

In Fig. 3 one may observe four such intersection points of
which the coordinates coincide with the values given in Table I.

Next, the dampers were modeled using the classic Maxwell
model. The eigenproblem derived in the form of (11) was
solved by equating the determinant of the system of equations
to zero. This leads to a characteristic equation of which the
solution yields four complex, conjugate eigenvalues is and
four real eigenvalues (see Table II).

TABLE II. THE EIGENVALUES – CLASSIC MAXWELL MODEL

Root number i )( isi )( isj

1, 2 -2.9931 ±29.7644
3, 4 -3.6167 ±80.3574
5 -17.6578 0
6 -20 0
7 -39.1227 0
8 -50 0

The roots of the number 6 and 8 correspond to the solutions
iis #�	 , that means a singular solution of (10), which should

not be treated as the eigenvalues. For these points, the value of
the determinant, as derived from eigenproblem (10), tends to
infinity.

The discussed solutions are presented in Fig. 4, as the
points of intersection of the zero level lines of the surface

y))(Z(x, i and surface y))(Z(x, j derived from (11).

Figure 4. Plot of functions (Z) i and (Z) j - classic Maxwell model.

The real solutions 5 s and 7 s given in Table II coincide with
the rheological properties of dampers mounted in structure.

5. Concluding Remarks
Comparing the results of calculations for a frame with

dampers modeled using the classic Maxwell model and the
results obtained for the fractional Maxwell model, we may
observe qualitative differences. The solution to the nonlinear
eigenproblem leads to a number of pairs of complex and
conjugate eigenvalues iii yixs 7�	 . Moreover, in the case of
the classic Maxwell model of damper we obtain some real
eigenvalues for 0�ix and 0	iy . For the fractional Maxwell
model, real solutions do not exist because of discontinuity in
the imaginary part of the determinant ),(det(A) yxZ	 (see
Fig. 5).

Figure 5. Diagram of imaginary part of determinant function.
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