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Abstract—A SIR epidemic model with delay, saturated contact rate and vertical transmission is considered. The basic 
reproduction number 

0R
is calculated. It is shown that this number characterizes the disease transmission dynamics: if  

0 1R � , there 
only exists the disease-free equilibrium which is globally asymptotically stable; if 

0 1R � , there is a unique endemic equilibrium 
and the disease persists, sufficient cond- itions are obtained for the global asymptotic stability of the endemic equilibrium. 
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1. Introduction  
In [1], Cooke formulated an SIR model with time delay 
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where ( )S t  denote the number of susceptibles, ( )I t  the 
number of infectives and ( )R t the number of the removed.  
  is 
the recruitment rate. The force of infection at time t  is given 
by ( ) ( )S t I t� �� . �  is the average number of contacts per 

infective per day and  0� �  is a fixed time during which the 
infectious agents develop in the vector, and it is only after that 
time that the infected vector can infect a susceptible human. 

1 2 3, ,� � � are positive constants repre- senting the death rates 
of susceptibles, infectives, and recovered, respectively.  �  is 
the recovery rate of infectives. 

 Incidence rate plays an important role in the modelling of 
epidemic dynamics. The bilinear incidence rate  

SI�
 and the 

standard incidence rate  /SI N�  are mostly used. Different 

incidence rate have been used recently, such as p qS I� [2], 
( ) /N SI N� [3], / (1 )SI I� � [4]. 

Hu et al [5] studied an SIR epidemic model with saturation 

incidence rate and vertical transmission as follows  

/ (1 ) (1 ) (1 ) ,
/ (1 ) ( ) ( ).
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In model (1), it is assumed that the total population is unity, 
i.e. 1S I R  	 , 0� �  is the birth rate (or death rate),  

/ (1 )S S� � ( 0, 0)� �� �  is the saturation inci- dence 

rate,  0� �  is the recovery rate, 1 �� (0 1)�� �  is the 
proportion of the vertical transmission.  

For system (1), they obtained the disease-free equilibrium 

0 (1,0)E . The basic reproduction for (1) is 

0 / [(1 )( )]R � � � ��	   . 

If 0 1R � , (1) has a unique endemic equilibrium  * * *( , )E S I   

with  * ( ) / [ ( )],S � �� � � � ��	  �   

       

 Also, in [5], it is proved  when  0 1,R �
0E
 is globally asym- 

ptotically stable; when 0 1,�� � *E  is globally asymptotic-
ally  stable. 

Motivated by the works [1] and  [5], we now consider the 

delay effect and formulate the following model 
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The initial condition of delay differential equations (2) is 

given as 

1 2( ) ( ) 0, ( ) ( ) 0, [ , 0],S I� � � � � � � �	 � 	 � � �    (3) 

* [ (1 )( )] / [( )( ( ))].I � � � � �� � � � � � ��	 �    � 
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where 2
1 2( ( ), ( )) ([ , 0], )C R� � � � � � � , the Banach space 

of continuous functions mapping the interval [ , 0]��  into 

��2
1 2( , ) : 0, 1, 2 .iR x x x i 	 � 	  

System (2) has the same basic reproduction number and 

equilibria as those of (1). 

2. Global Stability of the Equilibria and 
the Permanence of the System 

 
 Lemma 2.1. (see [6])  Consider the following equation 

 ( ) ( ) ( ),x t a xt b xt�	 � �&                     (4) 

where , , 0,a b � �  ( ) 0x t �  for 0.t�� � �  We have 

(i) if ,a b�  then lim ( ) 0;t x t�� 	  

(ii) if  ,a b�  then  lim ( ) .t x t�� 	 �  

Theorem 2.1. The disease-free equilibrium  0 (1,0)E  is 
globa- 

lly asymptotically stable for 
0 1,R �  and unstable for 

0 1.R �  

Proof. The characteristic equation of the linearized system of 

 (2) at  0 (1,0)E  is 

    ( )( / (1 )) 0.e ��� � � � �� � ��   �  	          (5) 

For  0,� 	  we have that 

( )( / (1 )) 0.� � � � �� � �   �  	  

Obviously,  1 2 0, ( )( 1).R� � � � ��	 � 	  �  Hence, for   

0 1R � the roots of (5) have negative real parts for 0.� 	  

Note that  0� 	  is not a root of (5) while 0 1R � . If (5) 
has pure imaginary roots ( 0)i� � �	 � �  for some  

0,� �  then we have from (5) that 

cos( ) / (1 ),
sin( ) / (1 ).

� �� � �� �
� � �� �
 	 �

� 	 � �
 

This implies that 2 2 2
0( ) ( 1) 0R� � ��	  � � for 0 1R � . 

Therefore, any root of (5) must have a negative real part, and 

hence the disease-free equilibrium  
0E
 is locally asymptotical- ly 

stable for any time delay  0.� �  

Denote ( ) / (1 ),h e ��� � � �� � ��	   �   then 
for 

0 1,R � 0(0) ( )(1 ) 0h R� ��	  � � , lim ( )h
�

�
��

	 � , 

thus ( ) 0h � 	  has one positive real root. Therefore, 
0E
 is 

unstable for  0 1.R �  

  Also we have 

( ) ( ) / (1 ) ( ) ( ).I t I t I t� � � � ��� �  � &  

If 0 1R � , from Lemma 2.1  and the comparison theorem, we 
obtain  ( ) 0I t �  as .t � �  Then the limit equation for  

( )S t  is  (1 ),S S�	 �& which implies lim ( ) 1.
t

S t
��

	  This 

completes the proof. 

Theorem2.2. If 0 1,R � the  endemic equilibrium * * *( , )E S I  
is locally asymptotically stable. 

Proof.  It is clear that at  * * *( , )E S I  the associated transcend- 

dental characteristic is 

          2 ( ) 0,A B C D e ��� � � �  �  	                     (6) 

where * * 2/ (1 )A I S� �� � � �	     , 

* * 2( ) ( ) / (1 )B I S� � �� � � � �	     , 

C � ��	  , ( )D � � ��	  . 

For  0,� 	  we have from (6) that 

2 ( ) 0A C B D� � �  � 	 .                          (7) 

Since 0A C� � , 0B D� � , then from Routh-Hurwitz 
criterion it follows that for 0� 	   both roots of (6) have 
negative real parts. 

  Since B D� , then  0� 	  is not a root of (6). If (6) 
has pure imaginary roots ( 0)i� � �	 � �  for some 0,� �    
then we have from (6) that 

2 sin( ) cos( ),
cos( ) sin( ).

B C D
A C D
� � �� ��
� � �� ��

� � 	 
�

	 ��
 

We have that  
2 2 2 2 2( ) ( 2 ) 0g z z A B C z B D	  � �  � 	 , 2z �	 . 

And 2 22A B C� �  
2 * * 2 * 2 * 42 / (1 ) ( ) / (1 ) 0,I S I S� ��� � � �	     �  

since 0B D� � , then we have  2 2 0B D� � . Hence, we 
have that  ( ) 0g z � for any  0z � , this is a contradicts to 

( ) 0.g z 	  This shows that all roots of the characteristic (6) 
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have negative real parts for any time delay  0.� �  This 
completes the proof. 

Theorem 2.3. If  0 1R � , the unique endemic equilibrium *E  

is globally asymptotically stable whenever *,I I� *S S� or 
* *, .I I S S� �  

Proof.  Denote  ( , ) / (1 )f S I SI S� �	  . Consider the 
following Lyapunov functional 
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Differentiating this function with respect to time yields 
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in the above equation, we have used the fact that 
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and * *( ( ), ) / ( ( ), ( )) / ( )f S t I f S t I t I I t� �� 	 � . 

From the monotonicity of the function ( , )f S I  with respect 
to S ,  we have  

* * * * *(1 ( ) / )[1 ( , ) / ( ( ), )] 0S S t S f S I f S t I� � � � . 

The conditions in this theorem implies that 
* * * *(1 )( ( ))[1 ( , ) / ( ( ), )]I I t f S I f S t I� �� � �  

* * *(1 )( ( ))( ( ) ) / ( ( )(1 )) 0.I I t S t S S t S� � �	 � � �  �    

Since the function ( ) 1 ln () 0H x x x	 � � � for any  0x � , 

and ( ) 0H x 	 if and only if  1x 	 . Therefore, 

( ) 0V t �& and the equality holds only at  * *, .S S I I	 	  
Hence, from Kuang [7] (1993, Corollary 5.2, p. 30), we have 
that *E  is globally asymptotically stable under the condition  

0 1R � . This completes the proof of Theorem 2.3. 

From the above proof, we obtain the following result. 

Corollary 2.1. If 0 1R � ,  1� 	 , then the unique endemic 

equilibrium *E   is globally asymptotically stable.  

 Corollary 2.1 shows that if there is no vertical transmission, 
when the endemic equilibrium exists, it is globally asymptotic- 
ally stable. 

  We now consider the permanence of system (2). Using the 
same method as that in Theorem 3.2 of [8], we get the 
following result. 
Theorem 2.4. If 0 1R � , then there exists an 0 �  such that 

every solution ( ( ), ( ))S t I t  of system (2) with initial cond- 

itions (3) satisfies lim inf ( ) .
t

I t  
��

�  

It is easy to obtain that  lim inf ( ) / ( )
t

S t �� � �
��

�  , 

and also ( ) 1, ( ) 1S t I t� � , from Theorem 2.4, we have 

Theorem 2.5. If  0 1R � , then system (2) is permanent. 

3. Discussion  
In this paper, a SIR epidemic model with delay, saturated 

contact rate and vertical transmission is investigated.  We 
obtained the basic reproduction number 0.R It is shown that if 

0 1,R � the disease-free equilibrium is globally asymptotical- 

ly stable; if 0 1R � , there is a endemic equilibrium and the 

system is permanent. When 0 1R � , in Theorem 2.3, by cons- 
tructing a Lyapunov functional, sufficient conditions are obta- 
ined for the global asymptotic stability of the endemic 
equilibrium. We conjecture that for any 0 1�� � , when the 
endemic equilibrium exists, it is globally asymptotically stable. 
New technique is required to prove this. 
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