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ABSTRACT 

The propagation of classical waves in one-dimensional random media is examined in presence of short-range correla- 
tion in disorder. A classical analogous of the Kronig-Penney model is proposed by means a chain of repeated sub-sys- 
tems, each of them constituted by a mass connected to a rigid foundation by a spring. The masses are related to each 
other by a string submitted to uniform tension. The nature of the modes is investigated by using different transfer matrix 
formalisms. It is shown that in presence of short-range correlation in the medium which corresponds to the RD model- 
the localization-delocalization transition occurs at a resonance frequency c . The divergence of   near c  is stud- 

ied, and the critical exponent that characterizes the power-law behavior of   near c  is estimated. Moreover an ex- 

act analytical study is carried out for the delocalization properties of the waves in the RD media. In particular, we pre- 
dict the resonance frequency at which the waves can propagate in the entire chain. The transmission properties of the 
system are numerically studied using a statistical procedure yielding various physical magnitudes such the transmission 
coefficient, the localization length and critical exponents. In particular, it is shown that the presence of correlation in 
disorder restores a large number of extended Bloch-like modes in contradiction with the general conclusion of the lo- 
calization phenomenon in one-dimensional systems with correlated disorder. 
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1. Introduction 

More than a half century ago, Anderson [1] introduced 
the concept of localization induced by disorder. Pre- 
sumably, the most relevant achievement in this field is 
the one-parameter scaling theory (1PS) [2,3]. The main 
results may be summarized as follows: 
- the existence of a critical dimension 2d    such for 

d d  , all the electronic states are localized. 
- the transition from localized to extended states occurs 

only for 2d  . 
- the transition is continuous. 

Nowadays, these conclusions are of universal validity 
and supported by strong experimental evidences (for a 
review see [3-5]). Indeed, the results for the one-dimen- 
sional disordered case were anticipated earlier from the 
Mott and Twose’s theorem [6]. 

Physically, the destructive quantum interferences ap- 
pear to be the fundamental mechanism of localization 
induced by disorder. Thus it becomes cleaver to expect  

similar observation of the localization effects in other 
wave propagation phenomena [for a review see Ref. 7], 
namely classical wave equations [8] and other light scat- 
tering experiments [9]. As reported by Maynard [10], 
classical waves may offer easier and more direct realiza- 
tion for the observation of the Anderson localization in 
1D disordered systems. 

However, almost of this aspect holds only for uncor- 
related disorder. In this context over the last couple of 
decades, convincing arguments revealed that short range 
correlations in disorder may have spectacular and unex- 
pected effects [11]. In particular the existence of infi- 
nitely bands of extended states has been demonstrated for 
the electronic problem. This finding has cast some doubt 
on the validity of the Mott and Twose’s theorem [6]. 
Probably, the unexpected feature is probably the possible 
constructive effect of disorder. 

In this domain, originally introduced by Dunlap et al. 
[12], the random dimer model (RDM) has been applied 
to various domains: polymers [13-15], disordered super-
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lattices [16,17] revealing the existence of truly extended 
states supported by experimental evidences [18]. The main 
idea is the presence of the RDM within a short length 
correlation restores the tunnel effect which competes 
with disorder and is strong enough to create the condition 
of delocalization. Obviously, these conclusions hold only 
for the quantum case since the competition between de-
structive interference and tunnel effect is the major cause 
leading to the localization or delocalization of the elec-
tronic states. Therefore, it is relevant to look for the 
mechanism of delocalization for the classical wave propa-
gation. 

Although a great interest has been given to the elec- 
tronic case, very few has been done for the classical ana- 
log. Moreover periodic systems are known to have some 
bearing in modeling of engineering structures. In the fol- 
lowing paper, a classical analog of the Anderson local- 
ization model is examined. In particular, a classical wave 
propagation in random media is investigated through a 
structure displaying a one-dimensional character. The 
conditions to breakdown the localization phenomenon 
and to restore the propagations of wave are suggested. 
The opportunity to control this feature opens new and 
relevant perspectives for technological purposes. 

In this context, the purpose of the present paper is to 
examine the interplay between the effects of topological 
disorder and short range order on the propagation of 
classical waves by means of an analytical model for the 
case of a quasi-one-dimensional string loaded by N mass- 
spring systems has introduced by Richoux et al. [20]. 

In the following paper, a classical analog of the Ander- 
son localization model is examined A quasi-one-dimen- 
sional string is loaded by N masses, each one fixed to a 
spring. Disorder is introduced onto the system by consid- 
ering masses, springs and/or lattice spacing as random 
variables. The wave propagation is formulated in terms 
of the transfer matrix. The transmission coefficient and 
the Lyapunov exponent is computed for different situa- 

tions, yielding the frequency spectrum and the localiza- 
tion length. Both analytical results and numerical simula- 
tions have been performed for the ordered as well as dis- 
ordered cases. The conditions to breakdown the local- 
ization phenomenon and to restore the propagations of 
wave are suggested. 

2. Theoretical Model 

In the following, we consider treat the transverse vibra- 
tions  ,y x t  of an infinite tight string having an ho- 
mogeneous density   submitted to a uniform tension 

0  and connected to a grounding rigid foundation. The 
string is loaded by  elementary cells constituted by a 
mass-spring system along. The n-th cell is characterized 
by two physical parameters: the mass n  and the linear 
stiffness constant n . The masses n are located at the 
lattice point n

T
N

m
k m

x  along the x -axis between two fixed 
ends at 0x   and x L  and the lattice spacing is de- 
noted by 1n n nd x x   (see Figure 1). The above 
model simulates a one-dimensional classical lattice. 

We focus our attention to the propagation of transverse 
wave in the vertical plane. The wave amplitude y at the 
longitudinal coordinate x is solution of the general wave 
propagation equation in space: 

       
2

2
2 n n

n

y x
K y x x x y x

x
 






  

    (1) 

with 

K
v


  and 0T

v


            (2) 

Here K and  stands for the wave vector and the 
wave (or sound) velocity through the whole system re- 
spectively.  is the fundamental frequency to be deter- 
mined. 

v

The quantity n  associated to each delta peak corre- 
sponds to the vibration mode defined by [21]: 

 

 

Figure 1. The one dimensional disordered dimer media. 
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 
2

2
2

0 0

1
1n

n n n
n

k
k m

T T

 


     


       (3) 

where: 

2 n
n

n

k

m
                  (4) 

The term n  is the free frequency of the nth cell 
while the parameter n  may be understood as an effec- 
tive delta peak strength. The inverse 1

n
  has the physi- 

cal meaning of a characteristic length translating the 
bearing of the associated string. 

The wave Equation (1) represents a perfect analogy 
with the electronic Kronig-Penney model, namely:  

       
22

22 n n
n

x
x x x E x

m x


   






   

 
 (5) 

Randomness may be introduced in different ways: dis- 
order in mass and/or stiffness, referred to the cellular 
disorder, and/or disorder in position through the symbol 
, i.e. the so-called topological disorder. Moreover as 
reported by Maynard [10] the equivalence between the 
classical and quantum models is achieved under the con- 
dition that the potential may be approximated by a series 
of delta functions if the masses are sufficiently small in 
extent (~few hundred of mg). 

For the n-th region within the interval 
 1nd x n d   , the solution of Equation (1) is a su- 

perposition of forward and backward scattering waves: 

     exp i exp in ny x A kx B kx         (6) 

where andn nA B  are the amplitude coefficients. 
The transfer matrix nT  relating the amplitudes be-

tween two successive cells is defined by: 

 1

1

n
n

n n

nA A
T

B B




  
  

  





           (7) 

For convenience, we introduce the reflection the trans- 
mission amplitudes Nr  and Nt  of the system, assum- 
ing that the incident amplitude as unity. Following this 
description,  y x  obeys to the boundary conditions: 

 
   
 

exp i exp i , 0

exp i ,

N

N

kx r kx x
y x

t kx x

   
 L

   (8) 

The amplitudes nA  and n  through the initial and 
final amplitudes can be linearly expressed using bound- 
ary conditions in a close expression giving the total trans- 
fer matrix 

B

 M N of the whole system, such as: 

 
1

0
N

N

M N
r

   
   

   
            (9) 

with 

 
1

n
i N

M N




Then, the transmission coefficient 
2

Nt  , describ- 
ing the wave propagation, may be numerically computed 
via the relation: 

2

22M                  (11) 

The knowledge of   enables one to determine the 
nature of the propagating modes by means the normal- 
ized Lyapunov exponent given by the ratio [ ]: 

1
log

2

L 

                (12) 

 being the localization length. 

3. Results 

3.1. Ballistic Case 

For the particular situation where all the strength n  

vanish, i.e. all the frequencies are identical 2 0
0

0

k

m
    

and the existence of a 0   , a spectacular phenome- 
non occurs. Equation (1) reduces to: 

   
2

2
2 0

y x
K y x

x


 


 

which describes the free wave propagation. The trans- 
mission coefficient reaches it maximum value, inde- 
pendently from the system length. Consequently, the 
wave propagates freely through the string leading to the 
so-called ballistic regime. 

3.2. Ordered Case 

A proper understanding of the effect of the disorder on 
the band structures of the modes of vibration requires the 
knowledge of the ordered limit case. Towards this end it 
is convenient to take advantage of the -function limit, 
the wave propagation equation may be handled within 
the framework of the Poincaré map representation relat- 
ing two successive lattice points. According to Bellissard 
et al. [22], defining , Equation (1) may 
be exactly transformed into a simple site description: 

ny y x n d  

ny 



1


1

1

n
n

n n

y
M

y y




  
  

  
           (13) 

with: 

2

1 0
n

nM
 

 
 

           (14) 

where 

  cos sin
2

n
n Kd Kd

K

       (15) 

yields the frequency spectrum [18]. T              (10) 
The condition determining the bands of the allowed 
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and forbidden frequencies is then: 

   cos sin 1
2

Kd Kd
K


         (16) 

Setting tg
2K

  , it simplifies to: 

  cos cosKd               (17) 

whose solutions are: 

π

π 2

Kd n

Kd n 


  
              (18) 

For the n-th allowed bands, the frequencies obey to: 

  11 π 2tg π
2

n K
K

      
 

d n      (19) 

Since we are considering the ordered limit, the pa- 
rameters n  are identical to the same value . 

In Equation (19), the term 12tg
2K

  
 


  measures  

the width of a forbidden band Δω. It may be written as: 
2 2

1
2

0

2tg
k v

T




    
       




nA

B





n

       (20) 

Moreover if the upper limit of the band is well deter- 
mined, the limit of lower limit frequency appears to be 
challenging from the physical point of view by treating 
analytically the amplitude of the wave and determining 
the band edge as well. Towards this end let us start with 
the relation:  

 
 

i i
1

i i
1

1 e e

e 1 e

Kd Kd
n n n

Kd Kd
n nn n

A u u

B u u







    
         

  (21) 

For convenience, setting: 

n nA B                (22) 

and 

n n nA B                (24) 

it reduces to in the limit : 1Kd 

1 in n nKd n    

n

            (25) 

1 i 2n n n n nKd u            (26) 

or in the continuum limit, 

   d
i

d

n
K n

n


               (27) 

     d 2
i

d
nn u

K n
n d


   n      (28) 

 n  being solution of the equation: 

     
2

2 2
2

d 2i

d
nn u

K n n
dn


         

 (29) 

As usual, for propagating wave of type  
      exp in N N n     d : 

1 2
2

21K K
d

 
  

       
        (30) 

The sign of the variable 2  enables one to discrimi- 
nate the nature of the propagating wave; if 0  , ω 
belongs to an allowed band and if 0   to a forbidden 
one. Thus the condition 0   determines the lower 
band edge low  since we are concerned by the limit of 
low frequencies, namely: 

4 21 1
low low

2
0

d v d

  
  


        (31) 

Obviously we have retained only the positive solution, 
i.e: 

2 2
2
low 2 2 2

d

2 4 dv v





    

1 
       (32) 

3.3. Random Dimer Disordered Case 

Let us consider now a set of two unit cells separated by a 
distance d and distributed at random along the x axis. 
Thus Equation (1) becomes: 

   

     

2
2

2

d

d

n n
n

y x
K y x

x

x x d y x  



    
     (34) 

In the following topological disorder, all the cells are 
identical, i.e. constituted by the same mass m and the 
same spring with stiffness k. Thus all the variables n are 
equal: 

2

2
0

1
k

T




   


            (35) 

The wave equation Equation (34) may be solved for a 
one dimer cell located at  and 0 nx  1nx  d   : 

    exp i exp i

for 0

y x  A Kx B Kx  

x

  




  (36-a) 

    exp i exp i

for 0

y x A Kx B Kx  

x d

  

 


 (36-b) 

   exp iy x   Kx  for x d        (36-c) 

Matching the wave amplitudes at xn = 0 and 1nx  d    
yields: 

  
2 2

2
1 i exp exp i

2 4
A  iKd   Kd

K K

      
 

  (37) 

Setting 
2K

  , one may reformulate the complex  
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through the exponential representation via: 

    
1

21 i 1 i exp iβ            (38) 

with the boundary conditions: 

π
0

2
   and   1

0 0
lim lim 0
K K

K  

 
    (39) 

The coefficient A may written as: 

     2 21 exp i 2 exp i A Kd Kd         (40) 

Defining: 

 exp i 2 A A K   d          (41) 

the transmission coefficient is then: 

      

22

122 4 2 21 2 1 cos 2

 A A

Kd



    





 

       




 (42) 

and 1 
K

 for all the acoustical wave having wave vec- 
tor where: 

  πnK d K n            (43) 

Here the delocalization condition may formulated in 
term of the coefficient A by; 

     exp i i exp i sin 1Kd Kd Kd          (45) 

or equivalently: 

   
     2

cos sin

1 sin cos sin 0

Kd Kd

Kd Kd Kd



 



     
 

Surprisingly, the first equation is the same as the initial 
equation defining the frequency spectrum. 

This result is quite different from the condition ob- 
tained by Hilke et al. [27] obtained for the electronic 
case. 

It could also be written by using A : 

    2 21 exp i 2  Kd      1     (46) 

Physically, as long as the condition (11) is fulfilled, 
the wave does not feel the random character of the media 
since the distance between a double sequence is a multi- 
ple of its wavelength. This in turn is only a proper char- 
acteristic of the dimer cell as usual. 

In order to appreciate more deeply the nature of such 
waves, a proper understanding requires the knowledge on 
the behavior of the divergence of the localization length. 
Towards this end, let us consider a zero-order approxi- 
mation to the overall transmission coefficient of the ran- 
dom media. Namely, we compute the transmission coef- 
ficient of each double sequence and just multiply them 
together [21]. Within such approximation, all the multi- 
ple reflections and interference effects are neglected. 

This assumption is expected to hold so long we are con- 
cerned by modes having frequencies close to the reso- 
nance. Thus the reflection coefficient has a small magni- 
tude and moreover the presence of off-diagonal random- 
ness provides a small contribution from internal multiple 
reflections and transmissions. Therefore the transmitted 
amplitude is: 

1

N i o
i N

y  T y


                (47) 

Here Ny  denotes the transmitted amplitude corre- 
sponding to an incident amplitude o . i  stands for the 
transmission coefficient of each double sequence. Ac- 
cording to [28], the localization length  is defined by: 

y T

1 1 ln N

o

y
ς N

y
               (48) 

Substitution of Equation (12) in Equation (13) yields: 

  1
2 lnς                   (49) 

The coefficient A  in the limit of K close to Kn may 
be expanded to a second order approximation: 

   2
1 i n nA K K K K          (50) 

where the parameters  and  are given by: 
2

d

                      (51) 

2 21
i

2 6 n

d
k k             (52) 

with: 

2

d

k

                      (53) 

Thus, the localization length becomes: 

   
1222 ln 1 2Re nK K  


         (54) 

In the limit of vanishing nK K , i.e. close to an “ex- 
tended” state, the localization length scales as: 

 2

nς                       (56) 

The critical exponent for the localization length is then 
2  . To our knowledge such exponent is found ana- 

lytically for the first time for the case of the propagation 
of classical wave. A similar result has been found for the 
vibrational modes in harmonic chains of N masses re- 
lated by springs with correlated disorder [24] and diluted 
disorder [25]. It appears therefore that this prediction 
strongly indicates its universal character. 

3.4. The Commute Resonance ωc 

Here we consider a binary and correlated of the disorder, 
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i.e. one which the linear stiffness constant and mass take 
only two values, { A  and A } and {k m Bk  and Bm } 
with the additional constraint that the Bk  and Bm  val- 
ues appear only in pairs of neighboring cells of the chain 
(dimer) but distributed at random locations along the 
chain. To predict the origin of possible resonance fre- 
quency c , we improve from analytical consideration 
that yields the frequency c  in terms of the mass n  
and the linear stiffness constant n . As indicating Equa- 
tion (13), there are four different kind of transfer matrix 

m
k

, ,AA AB BAM M M  and BBM  random chain 
Typically the transfer matrices associated to the host 

and dimer unit cells are defined by: 

 

 

2 1

1 0

2 1
and

1 0

A
AA

B
BB

a
M

a
M





 
  
 

 
  
 

        (20) 

In particular, at c  the two formulas for A  and a

Ba  crossover, nameely A c B c   a a  . Hence, the 
resulting matrix elements become identical and conse- 
quently, AA cM   and  BB cM   commute. Physi- 
cally, the incident propagating mode becomes insensitive 
to the difference between the host and impurity cells 
since they act in the same local diffusive way. The pro- 
pagating media is felt as an ordered lattice, with identical 
effective delta peak strength    c A c B c     e 
frequency c

 . Th
  referred as the commuting frequency, can 

be determined analytically, from the condition: 

   AA c BB cM M           (21.a) 

i.e. 

2 A B
c

A B

k k

m m
 




              (21.c) 

At this commuting resonance frequency c , the two 
indiscernible unit cells present similar properties leading 
to deterministic features. This finding appears in agree- 
ment with the case of electron in superlattices in presence 
of dimer as reported by Gomez et al. [30]. In particular, 
they related the origin of the resonance to the commuting 
properties of the binary individual unit cells. We have 
also to notice that the existence of the set of extended 
modes in a mini band around the resonance frequency 

c  provides from the smooth transition since the recur- 
sive matrix elements are very close together, in other 
words    a aA c B c  . 

This typical feature is completely preserved in the cor- 
responding uncorrelated disorder since there is no dif- 
ference between the host and impurity unit cells as origi- 
nally reported by Ishii [31] for the random KP model. 
The commuting condition (Equation (21)) leads to the 
same resonant statements, as previously demonstrated by 

Hilke et al. [26], T. Hakobyan et al. [30] and Gomez et 
al. [31]. 

Finally, an interesting feature takes place on the com- 
muting resonance with the presence of periodic ampli- 
tude at the commuting frequency c , justifying the ex- 
tended Bloch diffusive character of the corresponding 
propagating resonant mode. Moreover combined effects 
occur near this particular resonance since the vibration 
mode is sensitive to the unit cells [A] and [B]. Such dis- 
order localizes the Bloch-like extended modes within a 
mini band around c , giving rise to a soft transition. 

4. Conclusions 

The propagation of classical waves in random media has 
been studied by using an analogous with the electronic 
disordered Kronig-Penney model to observe the phe- 
nomenological aspects of the Anderson localization. We 
have examined the wave propagation through a system 
constituted by a quasi-one-dimensional string loaded by 
N mass-spring systems. In the light of analytical results, 
relevant conclusions have been obtained. 

The presence of short range correlation in disorder 
lead to the existence of delocalized modes of vibration 
well defined at well defined frequencies within the band 
spectrum. 

Moreover the behavior of the localization length 
around these frequencies exhibits a divergence with a 
critical exponent which has been found equal to 2. The 
same value has been obtained previously by Datta et al. 
[24] in other situations suggesting strongly its universal 
character for the classical analog of the Anderson model. 

In this description, two particular frequencies charac- 
terize the corresponding the ordered case: the fundamen- 
tal frequency   vanishes the Kronig-Penney analytical 
equation, i.e.   0a   while the free frequency 0  
settles down the ballistic regime i.e.  Sin- 
gular behavior happens around the free frequency 

 0 0.n  
0  

since the spatial extent length diverges, i.e. 
2

0

L 

   pointing out the Bloch-like modes. 

Dimers can be constructed with a new interesting way 
that preserves the ballistic regime even in presence of 
pairing configuration. The Bloch-like extended states are 
restored in controversies with the general belief that no 
periodic wave function exist in the well known random 
dimer model. Another resonance appears at the commut- 
ing frequency. This describes an additional delocalization 
process since its corresponding extended eigenstates are 
fundamentally different. 

To conclude, we have reported analytical results de- 
scribing the random dimer effect in a classical mechanic 
situation. At this stage, this model presents the main ad- 
vantage to be checked experimentally within a rather  
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simple method [32]. As discovered recently, symmetry of 
random potential (for instance the mirror symmetry in 
1D Anderson model  causes a nontrivial 
mechanism of tunnelling even at macroscopic distances 
for a localized wave packet [33]. Unlike quantum tunnel- 
ling through a regular potential barrier, which occurs 
only at the energies lower than the barrier height, the 
suggested mechanism of tunnelling exists even for weak 
white-noise-like scattering potentials. The possible rela- 
tion between the resonance frequency of acoustic wave 
in random dimer disordered, observed in this work and 
symmetry of the random stiffness is an open question. 

   V x V x 
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