

On Standard Concepts Using *ii***-Open Sets**

Beyda S. Abdullah, Amir A. Mohammed

Department of Mathematics, College of Education for pure Sciences, University of Mosul, Mosul, Iraq Email: baedaa419@gmail.com

How to cite this paper: Abdullah, B.S. and Mohammed, A.A. (2019) On Standard Concepts Using *ii*-Open Sets. *Open Access Library Journal*, **6**: e5604. https://doi.org/10.4236/oalib.1105604

Received: July 15, 2019 Accepted: September 14, 2019 Published: September 17, 2019

Copyright © 2019 by author(s) and Open Access Library Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

Interp.//creativecontinions.org/ficenses/by/4.0/

Open Access

Abstract

Following Caldas in [1] we introduce and study topological properties of *ii*-derived, *ii*-border, *ii*-frontier, and *ii*-exterior of a set using the concept of *ii*-open sets. Moreover, we prove some further properties of the well-known notions of *ii*-closure and *ii*-interior. We also study a new decomposition of *ii*-continuous functions. Finally, we introduce and study some of the separation axioms specifically T_{0ii} , T_{1ii} .

Subject Areas

Mathematical Analysis

Keywords

a-Open Set, ii-Open Set, Separation Axioms

1. Introduction

The notion of *a*-open set was introduced by Njastad in [2]. Caldas in [1] introduced and studied topological properties of *a*-derived, *a*-border, *a*-frontier, *a*-exterior of a set by using the concept of *a*-open sets. In this paper, we introduce and study the same above concepts by using *ii*-open sets. A subset *A* of *X* is called *ii*-open set [3] if there exists an open set *G* in the topology τ of *X*, such that: $G \neq \phi, X$, $A \subseteq CL(A \cap G)$ and Int(A) = G, the complement of an *ii*-open set is an *ii*-closed set. We denote the family of *ii*-open sets in (X, τ) by τ^{ii} . It is shown in [4] that each of $\tau \subset \tau^{ii}$ and τ^{ii} is a topology on *X*. This property allows us to prove similar properties of *a*-open set. Also, we define *ii*-continuous functions and we study the relation between this type of function and continuous, semi-continuous, *a*-continuous and *i*-continuous functions. Finally, we introduce a new type of separation axioms namely T_{0ii} , T_{1ii} . We prove similar properties and characterizations of T_0 and T_1 .

2. Preliminaries

Throughout this paper, (X,τ) and (Y,σ) (simply X and Y) always mean topological spaces. For a subset A of a space X, Cl(A) and Int(A) denote the closure of A and the interior of A respectively. We recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset *A* of a space *X* is called

1) Semi-open set [5] if $A \subseteq CL(Int(A))$.

2) *a*-open set [2] if $A \subseteq Int(CL(Int(A)))$.

3) *i*-open set [3] if there exist an open set *G* in the topology τ of *X*, such that i) $G \neq \phi, X$

ii)
$$A \subseteq CL(A \cap G)$$

The complement of an *i*-open set is an *i*-closed set.

4) *ii*-open set [4] if there exist an open set G in the topology τ of X, such that

i) $G \neq \phi, X$

ii)
$$A \subseteq CL(A \cap G)$$

iii) Int(A) = G

The complement of an *ii-open* set is an *ii-*closed set.

5) *int*-open set [4] if there exist an open set G in the topology τ of X and $G \neq \phi, X$ such that Int(A) = G. The complement of *int*-open set is *int*-closed set.

6) *ao* (*X*), *So* (*X*), *io* (*X*), *iio* (*X*), *into* (*X*) are family of *a*-open, semi-open, *i*-open, *ii*-open, *iit*-open sets respectively.

7) τ^{i} , τ^{ii} denote the family of all *i*-open sets and *ii*-open sets respectively.

Definition 2.2. [3] A topological space *X* is called

1) T_{0i} if a, b are to distinct points in X, there exist an *i*-open set U such that either $a \in U$ and $b \notin U$, or $b \in U$ and $a \notin U$.

2) T_{1i} if $a, b \in X$ and $a \neq b$, there exist *i*-open sets *U*, *V* containing *a*, *b* respectively, such that $b \notin U$ and $a \notin V$.

Definition 2.3. A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called

1) Continuous [6], if $f^{-1}(G)$ is open in (X,τ) for every open set G of (Y,σ) .

2) *a*-continuous [6], if $f^{-1}(G)$ is *a*-open in (X,τ) for every open set *G* of (Y,σ) .

3) Semi-Continuous [5], if $f^{-1}(G)$ is semi-open in (X,τ) for every open set G of (Y,σ) .

4) *i*-Continuous [3], if $f^{-1}(G)$ is *i*-open in (X,τ) for every open set G of (Y,σ) .

3. Applications of *ii*-Open Sets

Definition 3.1. Let A be a subset of a topological space (X, τ) . A derived set of A denoted by D(A) is defined as follows:

 $D(A) = \{x \in X : (G \cap A) \setminus \{x\} \neq \phi, \forall x \in G\}. A \text{ point } x \in X \text{ is said to be } ii\text{-limit}$

point of *A* if it satisfies the following assertion:

 $(\forall G \in \tau^{ii})(x \in G \Rightarrow (G \cap A) \setminus \{x\} \neq \phi)$. The set of all *ii*-limit points of A is called the *ii*-derived set of A and is denoted by $D_{ii}(A)$. Note that $x \in X$ is not *ii*-limit point of A if and only if there exist an *ii*-open set G in X such that $(x \in G \text{ and } (G \cap A) \setminus \{x\} = \phi)$.

Theorem 3.2. For subsets *A*, *B* of a space *X*, the following statements hold:

- 1) $D_{ii}(A) \subset D(A)$
- 2) If $A \subseteq B$, then $D_{ii}(A) \subseteq D_{ii}(B)$
- 3) $D_{ii}(A) \cup D_{ii}(B) \subset D_{ii}(A \cup B)$ and $D_{ii}(A \cap B) \subset D_{ii}(A) \cap D_{ii}(B)$
- 4) $D_{ii}(D_{ii}(A)) \setminus A \subset D_{ii}(A)$
- 5) $D_{ii}(A \cup D_{ii}(A)) \subset A \cup D_{ii}(A)$

Proof. 1) Since every open set is *ii*-open [4], it follows that $D_{ii}(A) \subset D(A)$. 2) Let $x \in D_{ii}(A)$. Then *G* is *ii*-open set containing *x* such that

$$(A \cap G) \setminus \{x\} \neq \phi \tag{3.1}$$

Since $A \subseteq B$ we get $(A \cap G) \subseteq (B \cap G)$, it implies that

 $(A \cap G) \setminus \{X\} \subseteq (B \cap G) \setminus \{X\} \neq \phi$, from (3.1) we get $(B \cap G) \setminus \{X\} \neq \phi$.

Hence, $x \in D_{ii}(B)$. Therefore $D_{ii}(A) \subseteq D_{ii}(B)$.

3) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, from (2) we get $D_{ii}(A) \subseteq D_{ii}(A \cup B)$, $D_{ii}(B) \subseteq D_{ii}(A \cup B)$.

This implies to $D_{ii}(A) \cup D_{ii}(B) \subset D_{ii}(A \cup B)$.

We shall prove that $D_{ii}(A \cap B) \subset D_{ii}(A) \cap D_{ii}(B)$. Since $A \cap B \subseteq A$, $A \cap B \subseteq B$, from (2) we get $D_{ii}(A \cap B) \subset D_{ii}(A)$ and $D_{ii}(A \cap B) \subset D_{ii}(B)$. Therefore $D_{ii}(A \cap B) \subset D_{ii}(A) \cap D_{ii}(B)$.

4) If $x \in D_{ii}(D_{ii}(A)) \setminus A$ and G is an *ii*-open set containing x, then $G \cap (D_{ii}(A) \setminus \{X\}) \neq \phi$. Let $y \in G \cap (D_{ii}(A) \setminus \{x\})$. Then, since $y \in D_{ii}(A)$ and $y \in G$, $G \cap (A \setminus \{Y\}) \neq \phi$. Let $z \in G \cap (A \setminus \{Y\})$. Then, $z \neq x$ for $z \in A$ and $x \notin A$. Hence, $G \cap (A \setminus \{X\}) \neq \phi$. Therefore, $x \in D_{ii}(A)$.

5) Let $x \in D_{ii}(A \cup D_{ii}(A))$. If $x \in A$, the result is obvious. So, let, $x \in D_{ii}(A \cup D_{ii}(A)) \setminus A$ then for *ii-open* set *G* containing *x*,

 $(G \cap (A \cup D_{ii}(A) \setminus \{x\})) \neq \phi$. Thus, $G \cap (A \setminus \{X\}) \neq \phi$ or

 $G \cap \left(D_{ii} \left(A \right) \setminus \left\{ x \right\} \right) \neq \phi .$

Now, it follows similarly from (4) that $G \cap (A \setminus \{X\}) \neq \phi$. Hence, $x \in D_{ii}(A)$. Therefore, in any case, $D_{ii}(A \cup D_{ii}(A)) \subset A \cup D_{ii}(A)$.

In general, the converse of (1) may not true and the equality does not hold in (3) of theorem 3.2.

Example 3.3. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{b\}\}$. Thus,

 $iio(x) = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}$. Take the following:

1) $A = \{c\}$. Then, $D(A) = \{a, b\}$ and $D_{ii}(A) = \phi$. Hence, $D(A) \not\subset D_{ii}(A)$; 2) $C = \{a, b\}$ and $E = \{c\}$. Then $D_{ii}(c) = \{a, c\}$ and $D_{ii}(E) = \phi$. Hence

 $D_{ii}(C \cup E) \neq D_{ii}(C) \cup D_{ii}(E).$

Theorem 3.4. For any subset A of a space X, $CL_{ii}(A) = A \cup D_{ii}(A)$.

Proof. Since $D_{ii}(A) \subset CL_{ii}(A)$, $A \cup D_{ii}(A) \subset CL_{ii}(A)$. On the other hand, Let $x \in CL_{ii}(A)$. If $x \in A$, then the proof is complete. If $x \notin A$, each *ii-open* set *G* containing *x* intersects *A* at a point distinct from *x*; so $x \in D_{ii}(A)$. Thus, $CL_{ii}(A) \subset A \cup D_{ii}(A)$, which completes the proof.

Definition 3.5. A point $x \in X$ is said to be *ii*-interior point of A if there exist an *ii-open* set G containing x such that $G \subset A$. The set of all *ii*-interior points of A is said to be *ii*-interior of A and denoted by $Int_{ii}(A)$.

Theorem 3.6. For subset *A*, *B* of a space *X*, the following statements are true:

- 1) $Int_{ii}(A)$ is the union of all ii-open subset of A
- 2) *A* is ii-open if and only if $A = Int_{ii}(A)$
- 3) $Int_{ii}(Int_{ii}(A)) = Int_{ii}(A)$
- 4) $Int_{ii}(A) = A \setminus D_{ii}(X \setminus A)$
- 5) $X \setminus Int_{ii}(A) = CL_{ii}(X \setminus A)$
- 6) $X \setminus CL_{ii}(A) = Int_{ii}(X \setminus A)$
- 7) If $A \subseteq B$, then $Int_{ii}(A) \subseteq Int_{ii}(B)$
- 8) $Int_{ii}(A) \cup Int_{ii}(B) \subseteq Int_{ii}(A \cup B)$
- 9) $Int_{ii}(A) \cap Int_{ii}(B) \supseteq Int_{ii}(A \cap B)$

Proof. 1) Let $\{G_{ii} \setminus ii \in \wedge\}$ be a collection of all *ii*-open subsets of A. If $x \in Int_{ii}(A)$, then there exist $j \in \wedge$ such that $x \in G_j \subseteq A$. Hence $x \in \bigcup_{ii \in \wedge} G_{ii}$, and so $Int_{ii}(A) \subseteq \bigcup_{ii \in \wedge} G_{ii}$. On the other hand, if $y \in \bigcup_{ii \in \wedge} G_{ii}$, then $y \in G_k \subseteq A$ for some $k \in \wedge$. Thus $y \in Int_{ii}(A)$, and $\bigcup_{ii \in \wedge} G_{ii} \subseteq Int_{ii}(A)$. Accordingly, $\bigcup_{ii \in \wedge} G_{ii} \subseteq Int_{ii}(A)$.

2) Straightforward.

3) It follows from (1) and (2).

4) If $x \in A \setminus D_{ii}(X \setminus A)$, then $x \notin D_{ii}(X \setminus A)$ and so there exist an *ii-open* set G containing x such that $G \cap (X \setminus A) = \phi$. Thus, $x \in G \subset A$ and hence $x \in Int_{ii}(A)$. This shows that $A \setminus D_{ii}(X \setminus A) \subset Int_{ii}(A)$. Now let $x \in Int_{ii}(A)$. Since $Int_{ii}(A) \in \tau^{ii}$ and $Int_{ii}(A) \cap (X \setminus A) = \phi$. We have $x \notin D_{ii}(X \setminus A)$. Therefore, $Int_{ii}(A) = A \setminus D_{ii}(X \setminus A)$.

5) Using (4) and Theorem (3.4), we have

$$X \setminus Int_{ii}(A) = X \setminus (A \setminus D_{ii}(X \setminus A)) = (X \setminus A) \cup D_{ii}(X \setminus A) = CL_{ii}(X \setminus A).$$

6) Using (4) and Theorem (3.4), we get.

$$Int_{ii}(X \setminus A) = (X \setminus A) \setminus D_{ii}(A) = X \setminus (A \cup D_{ii}(A)) = X \setminus CL_{ii}(A)$$

7) Since $A \subseteq B$ and $Int_{ii}(A) \subseteq A$, $Int_{ii}(B) \subseteq B$, we get $Int_{ii}(A) \subseteq Int_{ii}(B)$.

8) Since $A \subseteq (A \cup B)$ and $B \subseteq (A \cup B)$, from (7) we get $Int_{ii}(A) \subseteq Int_{ii}(A \cup B)$, $Int_{ii}(B) \subseteq Int_{ii}(A \cup B)$. Therefore $Int_{ii}(A) \cup Int_{ii}(B) \subseteq Int_{ii}(A \cup B)$.

9) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, from (7) we get $Int_{ii}(A \cap B) \subseteq Int_{ii}(A)$, $Int_{ii}(A \cap B) \subseteq Int_{ii}(B)$. Therefore $Int_{ii}(A \cap B) \subseteq Int_{ii}(A) \cap (B)$.

Definition 3.7. $b_{ii}(A) = A \setminus Int_{ii}(A)$ is said to be the *ii*-border of A.

Theorem 3.8. For a subset A of a space X, the following statements hold:

1) $b_{ii}(A) \subset b(A)$ where b(A) denotes the border of A

2) $Int_{ii}(A) \cup b_{ii}(A) = A$

3) $Int_{ii}(A) \cap b_{ii}(A) = \phi$ 4) $b_{ii}(A) = \phi$ if and only if A is *ii*-open set 5) $b_{ii}(Int_{ii}(A)) = \phi$ 6) $Int_{ii}(b_{ii}(A)) = \phi$ 7) $b_{ii}(b_{ii}(A)) = b_{ii}(A)$ 8) $b_{ii}(A) = A \cap CL_{ii}(X \setminus A)$ 9) $b_{ii}(A) = A \cap D_{ii}(X \setminus A)$ Proof. 1) Since $Int(A) \subset Int_{ii}(A)$, we have $b_{ii}(A) = A \setminus Int_{ii}(A) \subseteq A \setminus Int(A) = b(A).$ 2) and (3). Straightforward. 4) Since $Int_{ii}(A) \subseteq A$, it follows from Theorem 3.6 (2). That A is *ii*-open \Leftrightarrow $A = Int_{ii}(A) \Leftrightarrow b_{ii}(A) = A \setminus Int_{ii}(A) = \phi.$ 5) Since $Int_{ii}(A)$ is *ii*-open, it follows from (4) that $b_{ii}(Int_{ii}(A)) = \phi$. 6) If $x \in Int_{ii}(b_{ii}(A))$, then $x \in b_{ii}(A)$. On the other hand, since $b_{ii}(A) \subset A$, $x \in Int_{ii}(b_{ii}(A)) \subset Int_{ii}(A)$. Hence, $x \in Int_{ii}(A) \cap b_{ii}(A)$. Which contradicts (3). Thus $Int_{ii}(b_{ii}(A)) = \phi$. 7) Using (6), we get $b_{ii}(b_{ii}(A)) = b_{ii}(A) \setminus Int_{ii}(b_{ii}(A)) = b_{ii}(A)$. 8) Using Theorem 3.6 (6), we have $b_{ii}(A) = A \setminus Int_{ii}(A) = A \setminus (X \setminus CL_{ii}(X \setminus A)) = A \cap CL_{ii}(X \setminus A)$ 9) Applying (8) and the Theorem (3.4), we have $b_{ii}(A) = A \cap CL_{ii}(X \setminus A) = A \cap ((X \setminus A) \cup D_{ii}(X \setminus A)) = A \cap D_{ii}(X \setminus A).$ **Example 3.9.** Consider the topological space (X, τ) given in Example (3.3). If $A = \{a, b\}$, then $b_{ii}(A) = \phi$ and $b(A) = \{a\}$. Hence, $b(A) \not\subset b_{ii}(A)$, that is, in general, the converse Theorem 3.9 (1) may not be true. **Definition 3.10.** $Fr_{ii}(A) = CL_{ii}(A) \setminus Int_{ii}(A)$ is said to be the *ii*-frontier of A. **Theorem 3.11.** For a subset *A* of a space *X*, the following statements hold: 1) $Fr_{ii}(A) \subset Fr(A)$ where Fr(A) denotes the frontier of A 2) $CL_{ii}(A) = Int_{ii}(A) \cup Fr_{ii}(A)$ 3) $Int_{ii}(A) \cap Fr_{ii}(A) = \phi$ 4) $b_{ii}(A) \subset Fr_{ii}(A)$ 5) $Fr_{ii}(A) = b_{ii}(A) \cup D_{ii}(A)$ 6) $Fr_{ii}(A) = D_{ii}(A)$ if and only if A is *ii*-open set 7) $Fr_{ii}(A) = CL_{ii}(A) \cap CL_{ii}(X \setminus A)$ 8) $Fr_{ii}(A) = Fr_{ii}(X \setminus A)$ 9) $Fr_{ii}(A)$ is *ii*-closed 10) $Fr_{ii}(Fr_{ii}(A)) \subset Fr_{ii}(A)$ 11) $Fr_{ii}(Int_{ii}(A)) \subset Fr_{ii}(A)$ 12) $Fr_{ii}(CL_{ii}(A)) \subset Fr_{ii}(A)$ 13) $Int_{ii}(A) = A \setminus Fr_{ii}(A)$ Proof. 1) Since $CL_{ii}(A) \subseteq CL(A)$ and $Int(A) \subseteq Int_{ii}(A)$, it follows that $Fr_{ii}(A) = CL_{ii}(A) \setminus Int_{ii}(A) \subseteq CL(A) \setminus Int_{ii}(A) \subseteq CL(A) \setminus Int(A) \subseteq Fr(A).$ 2) $Int_{ii}(A) \cup Fr_{ii}(A) = Int_{ii}(A) \cup (CL_{ii}(A) \setminus Int_{ii}(A)) = CL_{ii}(A).$

- 3) $Int_{ii}(A) \cap Fr_{ii}(A) = Int_{ii}(A) \cap (CL_{ii}(A) \setminus Int_{ii}(A)) = \phi$. 4) Since $A \subseteq CL_{ii}(A)$, we have $b_{ii}(A) = A \setminus Int_{ii}(A) \subseteq CL_{ii}(A) \setminus Int_{ii}(A) = Fr_{ii}(A)$.
- 5) Since $Int_{ii}(A) \cup Fr_{ii}(A) = Int_{ii}(A) \cup b_{ii}(A) \cup D_{ii}(A)$,
- $Fr_{ii}(A) = b_{ii}(A) \cup D_{ii}(A).$
 - 6) Assume that *A* is *ii*-open. Then

 $Fr_{ii}(A) = b_{ii}(A) \cup D_{ii}(A) \setminus Int_{ii}(A) = \phi \cup (D_{ii}(A) \setminus A) = D_{ii}(A) \setminus A = b_{ii}(X \setminus A) ,$ by using (5), Theorem 3.6 (2), Theorem 3.8 (4) and Theorem 3.8 (9).

Conversely, suppose that $Fr_{ii}(A) = b_{ii}(X \setminus A)$. Then

 $\phi = Fr_{ii}(A) \setminus b_{ii}(X \setminus A) = (CL_{ii}(A) \setminus Int_{ii}(A)) \setminus (X \setminus A) \setminus Int_{ii}(X \setminus A) = A \setminus Int_{ii}(A).$ by using (4) and (5) of Theorem 3.6, and so $A \subseteq Int_{ii}(A)$. Since $Int_{ii}(A) \subseteq A$ in general, it follows that $Int_{ii}(A) = A$ so from Theorem 3.6 (2) that A is *ii*-open set.

7) $Fr_{ii}(A) = CL_{ii}(A) \setminus Int_{ii}(A) = CL_{ii}(A) \cap (CL_{ii}(X \setminus A)).$ 8) It follows from (7). 9) $\frac{CL_{ii}(Fr_{ii}(A)) = CL_{ii}(CL_{ii}(A)) \cap (CL_{ii}(X \setminus A))}{\subset CL_{ii}(CL_{ii}(A)) \cap CL_{ii}(CL_{ii}(X \setminus A)) = Fr_{ii}(A)}.$ Hence, $Fr_{ii}(A)$ is

ii-closed.

10)
$$Fr_{ii}(Fr_{ii}(A)) = CL_{ii}(Fr_{ii}(A)) \cap CL_{ii}(X \setminus Fr_{ii}(A)) \subset CL_{ii}(Fr_{ii}(A)) = Fr_{ii}(A)$$

11) Using Theorem 3.6 (3), we get

 $Fr_{ii}\left(Int_{ii}\left(A\right)\right) = CL_{ii}\left(Int_{ii}\left(A\right)\right) \setminus Int_{ii}\left(Int_{ii}\left(A\right)\right) \subseteq CL_{ii}\left(A\right) \setminus Int_{ii}\left(A\right) = Fr_{ii}\left(A\right).$ $Fr_{ii}\left(CL_{ii}\left(A\right)\right) = CL_{ii}\left(CL_{ii}\left(A\right)\right) \setminus Int_{ii}\left(CL_{ii}\left(A\right)\right) = CL_{ii}\left(A\right) \setminus Int_{ii}\left(CL_{ii}\left(A\right)\right)$ $= CL_{ii}\left(A\right) \setminus Int_{ii}\left(A\right) = Fr_{ii}\left(A\right).$ $Fr_{ii}\left(A\right) = Fr_{ii}\left(A\right).$ $Fr_{ii}\left(A\right) = Fr_{ii}\left(A\right).$

13) $A \setminus Fr_{ii}(A) = (A \setminus CL_{ii}(A)) \setminus Int_{ii}(A) = Int_{ii}(A).$

The converses of (1) and (4) of Theorem 3.11 are not true in general, as shown by Example

Example 3.12. Consider the topological space (X, τ) given in Example 3.3. If $A = \{c\}$, then $Fr(A) = \{a, c\} \not\subset \{c\} = Fr_{ii}(A)$, and if $B = \{a, b\}$, then $Fr_{ii}(B) = \{c\} \not\subset b_{ii}(B)$.

Definition 3.13. $Ext_{ii}(A) = Int_{ii}(X \setminus A)$ is said to be an *ii*-exterior of A. **Theorem 3.14.** For a subset A of a space X, the following statements hold:

- 1) $Ext(A) \subset Ext_{ii}(A)$ where Ext(A) denotes the exterior of A
- 2) $Ext_{ii}(A)$ is ii-open
- 3) $Ext_{ii}(A) = Int_{ii}(X \setminus A) = X \setminus CL_{ii}(A)$
- 4) $Ext_{ii}(Ext_{ii}(A)) = Int_{ii}(CL_{ii}(A))$
- 5) If $A \subseteq B$, then $Ext_{ii}(A) \supset Ext_{ii}(B)$
- 6) $Ext_{ii}(A \cup B) \subset Ext_{ii}(A) \cup Ext_{ii}(B)$
- 7) $Ext_{ii}(A \cap B) \supset Ext_{ii}(A) \cap Ext_{ii}(B)$
- 8) $Ext_{ii}(X) = \phi$
- 9) $Ext_{ii}(\phi) = X$
- 10) $Ext_{ii}(A) = Ext_{ii}(X \setminus Ext_{ii}(A))$

- 11) $Int_{ii}(A) \subset Ext_{ii}(Ext_{ii}(A))$
- 12) $X = Ext_{ii}(A) \cup Ext_{ii}(A) \cup Fr_{ii}(A)$
- *Proof.* 1) It follows from Theorem 3.6 (1).

2) It is straightforward by Theorem 3.6 (6).

3)
$$\frac{Ext_{ii}(Ext_{ii}(A)) = Ext_{ii}(X \setminus CL_{ii}(A))}{= Int_{ii}(X \setminus X \setminus CL_{ii}(A)) = Int_{ii}(CL_{ii}(A))}$$

- 4) Assume that $A \subset B$. Then
- $Ext_{ii}(B) = Ext_{ii}(X \setminus B) \subseteq Ext_{ii}(X \setminus A) = Ext_{ii}(A)$, by using Theorem 3.6 (7).
 - 5) Applying Theorem 3.6 (8), we get

$$Ext_{ii}(A \cup B) = Int_{ii}(X \setminus (A \cup B)) = Int_{ii}((X \setminus A) \cup (X \setminus B))$$

$$\subseteq Int_{ii}(X \setminus A) \cup Int_{ii}(X \setminus B) = Ext_{ii}(A) \cup Ext_{ii}(B).$$

6) Applying Theorem 3.6 (9), we obtain

$$Ext_{ii}(A \cap B) = Int_{ii}(X \setminus (A \cap B)) = Int_{ii}((X \setminus A) \cap (X \setminus B))$$

$$\supset Int_{ii}(X \setminus A) \cap Int_{ii}(X \setminus B) = Ext_{ii}(A) \cap Ext_{ii}(B).$$

7) Straightforward.

8) Straightforward.

9)

$$\begin{aligned}
Ext_{ii}\left(X \setminus Ext_{ii}\left(A\right)\right) &= Ext_{ii}\left(X \setminus Int_{ii}\left(X \setminus A\right)\right) = Int_{ii}\left(X \setminus (X \setminus Int_{ii}\left(X \setminus A\right))\right) \\
&= Int_{ii}\left(Int_{ii}\left(X \setminus A\right)\right) = Int_{ii}\left(X \setminus A\right) = Ext_{ii}\left(A\right). \\
10) Int_{ii}\left(A\right) \subset Int_{ii}\left(CL_{ii}\left(A\right)\right) = Int_{ii}\left(X \setminus Int_{ii}\left(X \setminus A\right)\right) \\
&= Int_{ii}\left(X \setminus Ext_{ii}\left(A\right)\right) = Ext_{ii}\left(Ext_{ii}\left(A\right)\right).
\end{aligned}$$

Example 3.15. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{c, d\}\}$. Thus, $iio(x) = \{\phi, X, \{c, d\}, \{b, c, d\}, \{a, c, d\}\}$. If $A = \{a\}$ and $B = \{b\}$. Then $Ext_{ii}(A) \not\subset Ext(A)$. $Ext_{ii}(A \cap B) \neq Ext_{ii}(A) \cap Ext_{ii}(B)$ and $Ext_{ii}(A \cup B) \neq Ext_{ii}(A) \cup Ext_{ii}(B)$.

4. A New Decomposition of *ii*-Continuity

We begin by the following definition:

Definition 4.1. A function $f:(X,\tau) \to (Y,\sigma)$ is called *ii*-continuous if $f^{-1}(G)$ is *ii*-open set in (X,τ) for any open set G of (Y,σ) .

- **Theorem 4.2.** Let $f:(X,\tau) \to (Y,\sigma)$ be a function then:
- 1) Every continuous function is an *ii*-continuous,
- 2) Every *ii*-continuous function is an *i*-continuous,

3) Every *a*-continuous function is an *ii*-continuous.

Proof. 1) Let G be open set in (Y, σ) . Since f is continuous, it follows that $f^{-1}(G)$ is open set in (X, τ) . But every open set is *ii-open* set [4]. Hence $f^{-1}(G)$ is *ii-open* set in (X, τ) . Thus f is *ii-continuous*.

2) Let G be open set in (Y,σ) . Since f is an *ii*-continuous, it follows that $f^{-1}(G)$ is an *ii*-open set in (X,τ) . But every *ii*-open set is *i*-open set [4]. Hence $f^{-1}(G)$ is *i*-open set in (X,τ) . Thus f is *i*-continuous.

3) Let G be open set in (Y, σ) . Since f is a-continuous, it follows that

 $f^{-1}(G)$ is *a*-open set in (X, τ) . But every *a*-open set is *ii-open* set [4]. Hence $f^{-1}(G)$ is *ii-open* set in (X, τ) . Thus *f* is an *ii*-continuous.

The converse need not be true by the following example.

Example 4.3. Let

$$X = \{a, b, c, d\}, \quad \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$$

and

$$Y = \{a, b, c, d\}, \quad \sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{a, d\}, \{a, b, d\}\}$$

and

$$iio(x) = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}\},\$$

$$io(x) = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}\}, \{a,b,c\}, \{a,b,d\}, \{a,b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\}.$$

Let $f:(X,\tau) \to (Y,\sigma)$ be the identity function then $f^{-1}(\{a\}) = \{a\}$, $f^{-1}(\{b\}) = \{b\}$, $f^{-1}(\{c\}) = \{c\}$, $f^{-1}(\{d\}) = \{d\}$. Then f is *ii*-continuous, but f is not a-continuous, since for the open set $\{a,d\}$ in (Y,σ) ,

 $f^{-1}(\{a,d\}) = \{a,d\} \text{ is not } a\text{-open in } (X,\tau) \text{ and } f\text{ is not continuous, since for the open set } \{a,d\} \text{ in } (Y,\sigma), f^{-1}(\{a,d\}) = \{a,d\} \text{ is not open in } (X,\tau).$ Now when $f:(X,\tau) \to (Y,\sigma)$ be defined by $f^{-1}(\{a\}) = \{b\}, f^{-1}(\{b\}) = \{a\}, f^{-1}(\{c\}) = \{c\}, f^{-1}(\{d\}) = \{d\}$ we get f is *i*-continuous, but f is not *ii*-continuous, since for the open set $\{a,d\}$ in $(Y,\sigma), f^{-1}(\{a,d\}) = \{b,d\}$ is not *ii*-open in (X,τ) .

Theorem 4.4. Let $f:(X,\tau) \to (Y,\sigma)$ be a function then every semi-continuous function is an *ii*-continuous.

Proof. Let G be open set in (Y, σ) . Since f is semi-continuous, it follows that $f^{-1}(G)$ is semi-open set in (X, τ) . But every semi-open set is *ii-open* set [4]. Hence $f^{-1}(G)$ is *ii-open* set in (X, τ) . Thus f is an *ii-*continuous.

Definition 4.5. A function $f:(X,\tau) \to (Y,\sigma)$ is called *int*-continuous if $f^{-1}(G)$ is *int*-open set in (X,τ) for any open set G in (Y,σ) .

Theorem 4.6. Let $f:(X,\tau) \to (Y,\sigma)$ be a function then:

1) Every continuous function is *int-*continuous,

2) Every *ii*-continuous function is *int*-continuous,

3) Every *a-continuous* function is *int*-continuous.

Proof. 1) Let G be open set in (Y, σ) . Since f is continuous, it follows that $f^{-1}(G)$ is open set in (X, τ) . But every open set is *int*-open set [4]. Hence $f^{-1}(G)$ is *int*-open set in (X, τ) . Thus f is *int*-continuous.

2) Let G be open set in (Y,σ) . Since f is *ii*-continuous, it follows that $f^{-1}(G)$ is an *ii-open* set in (X,τ) . But every *ii-open* set is *int*-open set [4]. Hence $f^{-1}(G)$ is *int*-open set in (X,τ) . Thus f is *int*-continuous.

3) Let G be open set in (Y, σ) . Since f is a-continuous, it follows that $f^{-1}(G)$ is a-open set in (X, τ) . But every a-open set is *int*-open set [4]. Hence $f^{-1}(G)$ is *int*-open set in (X, τ) . Thus f is *int*-continuous.

The converse need not be true by the following example.

Example 4.7. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b, c\}\}$ and $Y = \{a, b, c\}$, $\sigma = \{\phi, Y, \{a\}, \{a, c\}\}$ and $into(x) = \{\phi, X, \{a\}, \{a, b\}, \{b, c\}, \{a, c\}\}$,

 $iio(x) = \alpha o(x) = \{\phi, X, \{a\}, \{b, c\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function then $f^{-1}(\{a\}) = \{a\}$, $f^{-1}(\{b\}) = \{b\}$, $f^{-1}(\{c\}) = \{c\}$. Then f is *int*-continuous, but f is not *ii*-continuous, since for the open set $\{a, c\}$ in (Y, σ) , $f^{-1}(\{a, c\}) = \{a, c\}$ is not *ii*-open in (X, τ) and f is not continuous, since for the open set $\{a, c\}$ in (Y, σ) , $f^{-1}(\{a, c\}) = \{a, c\}$ is not open in (X, τ) and f is not a-continuous, since for the open set $\{a, c\}$ in (Y, σ) , $f^{-1}(\{a, c\}) = \{a, c\}$ is not a-open.

Definition 4.8. A subset A of X is called weakly *ii*-open set if A is *ii*-open set and $A \subseteq CL(Int(A) \cap A)$.

Theorem 4.9. A subset A of a space X is α -open set if and only if A is weakly *ii*-open.

Proof. Let A be a-open set. Since $A \subseteq Int(CL(Int(A)))$ and $A \subseteq CL(A)$. Therefore $A \subseteq CL(Int(A)) \cap CL(A)$, this implies that $A \subseteq CL(Int(A) \cap A)$. Now, put G = Int(A) where $G \neq \phi, X$, then A is *ii*-open set. Therefore, A is weakly *ii*-open set.

Conversely, Let A be weakly *ii*-open set, then there exist an open set $G \neq \phi, X$, such that G = Int(A) satisfying $A \subseteq CL(Int(A) \cap A)$ and A is *ii*-open set. Since $A \subseteq CL(Int(A) \cap A)$, this implies that $A \subseteq CL(Int(A))$ and $Int(A) \subseteq Int(CL(Int(A)))$. Since A is *ii*-open set, using (2) from Theorem (3.6), we get A = Int(A). Therefore $A \subseteq Int(CL(Int(A)))$. Thus A is a -open set.

As a summary the following Figure 1 shows the relations among semi-continuous, *ii*-continuous, *i*-continuous, *in*-continuous, *a*-continuous and continuous.

Corollary 4.10. A function $f:(X,\tau) \to (Y,\sigma)$ is *a*-continuous if and only if it is weakly *ii*-continuous.

Proof. Clear from Theorem 4.9.

5. ii-Separating Axioms

In this section we define T_{0ii} and T_{1ii} spaces for *ii*-open sets and we determine them by giving many examples. Specially, we define T_1 , $T_{1\alpha}$ and T_{1i} spaces to compare them with T_{1ii} space.

Definition 5.1. A topological space X is called

1) T_{0ii} if a, b are to distinct points in X, there exists *ii-open* set U such that either $a \in U$ and $b \notin U$, and $b \in U$ and $a \notin U$.

2) T_{1ii} if $a, b \in X$ and $a \neq b$, there exist *ii*-open sets U, V containing a, b respectively, such that $b \notin U$ and $a \notin V$.

Example 5.2. Let $X = \{a, b\}$, $\tau^{ii} = \tau = \{\phi, X, \{a\}, \{b\}\}$ (X, τ) and (X, τ^{ii}) are topological spaces.

1) $a, b \in X$ ($a \neq b$) there exists $\{a\} \in \tau^{ii}$ such that $a \in \{a\}$, $b \notin \{a\}$. Therefore (X, τ) is T_{0ii} .

2) $a, b \in X$ $(a \neq b)$ there exists $\{a\}, \{b\} \in \tau^{ii}$ such that $a \in \{a\}, b \in \{b\}$. Therefore (X, τ) is T_{1ii} .

Theorem 5.3.

1) Every T_0 -space is T_{0ii} -space,

2) Every T_1 -space is T_{0ii} -space,

3) Every T_1 -space is T_{1ii} -space,

4) Every T_{1ii} -space is T_{0ii} -space.

Proof. (1), (2), (3) and (4) follow using the fact that every open set is *ii*-open [4]. The converse needs not to be true by the following example.

Example 5.4. Let

$$X = \{a, b, c\}, \quad \tau = \{\phi, X, \{a\}\} \text{ and } \tau^{ii} = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$$

 (X,τ) and (X,τ^{ii}) are topological spaces.

 (X,τ) is not T_0 -space because, $b,c \in X$ $(b \neq c)$ there is no open set G such that $b \in G$, $c \notin G$.

 (X,τ) is T_{0ii} -space because, $a,b \in X$ $(a \neq b)$ there exists $\{a\} \in \tau^{ii}$ such that $a \in \{a\}, b \notin \{a\}$.

 $a, c \in X$ $(a \neq c)$ there exists $\{a\} \in \tau^{ii}$ such that $a \in \{a\}, c \notin \{a\}$.

 $b, c \in X$ $(b \neq c)$ there exists $\{a, b\} \in \tau^{ii}$ such that $b \in \{a, b\}, c \notin \{a, b\}$.

 (X, τ) is not T_1 -space because, $a, b \in X$ $(a \neq b)$ there exists $X \in \tau$ such that $a \in X$, $b \in X$.

 (X, τ) is not T_{1ii} -space because, $b, a \in X$ $(a \neq b)$ there exists $\{a, b\} \in \tau^{ii}$ such that $a \in \{a, b\}$, $b \in \{a, b\}$.

Theorem 5.5. Every $T_{1\alpha}$ -space is T_{1ii} -space.

Proof. Let X be $T_{1\alpha}$ -space. Let a, b be two distinct points in X. Since X is $T_{1\alpha}$ -space there exist two α -open sets U, V in X such that $a \in U$, $b \notin U$, $a \notin V$,

 $b \in V$. Since every *a*-open set is *ii*-open set [4], *U*, *V* is an *ii*-open set in *X*. Hence *X* is T_{iii} -space.

Theorem 5.6. Every T_{1ii} -space is T_{1i} -space.

Proof. Let X be a T_{1ii} -space. Let a, b be two distinct points in X. Since X is T_{1ii} -space there exist two *ii*-open sets U, V in X such that $a \in U$, $b \notin U$, $a \notin V$, $b \in V$. Since every *ii*-open set is *i*-open set [4], U, V is an *i*-open set in X. Hence X is T_{1i} -space.

The converse needed not to be true by the following example.

Example 5.7. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b, c\}\}$ and.

 $\tau^{i} = \left\{ \phi, X, \{a\}, \{b\}, \{c\}, \{b, c\} \right\}. \quad \tau^{ii} = \left\{ \phi, X, \{a\}, \{b, c\} \right\}.$

 (X, τ) and (X, τ^{ii}) are topological spaces.

 (X,τ) is T_{li} -space because, $a,b \in X$ ($a \neq b$) there exists $\{a\},\{b\} \in \tau^i$ such that $a \in \{a\}, b \notin \{a\}$ and $b \in \{b\}, a \notin \{b\}$.

 $a, c \in X$ ($a \neq c$) there exists $\{a\}, \{c\} \in \tau^i$ such that $a \in \{a\}, c \notin \{a\}$ and $c \in \{c\}, a \notin \{c\}$.

 $b, c \in X$ $(b \neq c)$ there exists $\{c\}, \{b\} \in \tau^i$ such that $c \in \{c\}, b \notin \{c\}$ and $b \in \{b\}, c \notin \{b\}$.

 (X,τ) is not T_{1ii} -space because, $b,c \in X$ ($c \neq b$) there exists $\{b\},\{c\} \in \tau^{ii}$ such that $c \in \{b,c\}$, $b \in \{b,c\}$.

Theorem 5.8. A space X is T_{0ii} if and only if $CL_{ii}(\{x\}) \neq CL_{ii}(\{y\})$ for every pair of distinct points x, y of X.

Proof. Let X be a T_{0ii} -space. Let $x, y \in X$ such that $x \neq y$, then there exists an *ii*-open set U containing one of the points but not the other, then $x \in U$ and $y \notin U$. Then $X \setminus U$ is *ii*-closed set containing y but not x. But $CL_{ii}(\{y\})$ is the smallest *ii*-closed set containing y. Therefore $CL_{ii}(\{y\}) \subset X \setminus U$ and hence $x \notin CL_{ii}(\{y\})$. Thus $CL_{ii}(\{x\}) \neq CL_{ii}(\{y\})$.

Conversely, Suppose for any $x, y \in X$ with $x \neq y$, $CL_{ii}(\{x\}) \neq CL_{ii}(\{y\})$. Let $z \in X$ such that $z \in CL_{ii}(\{x\})$ but $z \notin CL_{ii}(\{y\})$. If $x \in CL_{ii}(\{y\})$ then $CL_{ii}(\{x\}) \subset CL_{ii}(\{y\})$ and hence $z \in CL_{ii}(\{y\})$. This is contradiction. Therefore $x \notin CL_{ii}(\{y\})$. That is $x \in X \setminus CL_{ii}(\{y\})$. Therefore $X \setminus CL_{ii}(\{y\})$ is *ii*-open set containing x but not y. Hence X is an T_{0ii} -space.

Theorem 5.9. A space (X, τ) is T_{1ii} -space if and only if the singletons are *ii*-closed sets.

Proof. Let X be T_{1ii} -space and let $x \in X$, to prove that $\{x\}$ is *ii*-closed set. We will prove $X \setminus \{x\}$ is *ii*-open set in X. Let $y \in X \setminus \{x\}$, implies $x \neq y$ and since X is T_{1ii} -space then their exist two *ii*-open sets U, V such that $x \notin U$, $y \in V \subset X \setminus \{x\}$. Since $y \in V \subset X \setminus \{x\}$, then $X \setminus \{x\}$ is *ii*-open set. Hence $\{x\}$ is *ii*-closed set.

Conversely, Let $x \neq y \in X$ then $\{x\}, \{y\}$ are *ii*-closed sets. That is $X \setminus \{x\}$ is *ii*-open set clearly, $x \notin X \setminus \{x\}$ and $y \in X \setminus \{x\}$. Similarly $X \setminus \{y\}$ is *ii*-open set, $y \notin X \setminus \{y\}$ and $x \in X \setminus \{y\}$. Hence X is an T_{1ii} -space.

As a consequence the following Figure 2 shows the relations among T_0 , T_{0ii} , T_1 , T_{1ii} and $T_{1\alpha}$.

Figure 2. Relations among T_0 , T_{0ii} , T_1 , T_{1ii} and $T_{1\alpha}$.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Caldas, M. (2003) A Note on Some Applications of *a*-Open Sets. *International Journal of Mathematics and Mathematical Sciences*, 2, 125-130. https://doi.org/10.1155/S0161171203203161
- [2] Njastad, O. (1965) On Some Classes of Nearly Open Sets. *Pacific Journal of Mathematics*, 15, 961-970. <u>https://doi.org/10.2140/pjm.1965.15.961</u>
- [3] Askander, S.W. (2016) Oni-Separation Axioms. *International Journal of Scientific and Engineering Research*, **7**, 367-373. <u>https://www.ijser.org</u>
- [4] Mohammed, A.A. and Abdullah, B.S. (2019) II-Open Sets in Topological Spaces. *International Mathematical Forum*, 14, 41-48. https://doi.org/10.12988/imf.2019.913
- [5] Levine, N. (1963) Semi-Open Sets and Semi-Continuity in Topological Spaces. *The American Mathematical Monthly*, **70**, 36-41. <u>https://doi.org/10.2307/2312781</u>
- [6] Mashhour, A.S., Hasanein, I.A. and Ei-Deeb, S.N. (1983) *a*-Continuous and *a*-Open Mappings. *Acta Mathematica Hungarica*, **41**, 213-218. <u>https://doi.org/10.1007/BF01961309</u>