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Abstract 
In this paper we present our views on algebra as a school subject. To say pre-
cisely what is the content of this subject, the language of abstract algebra has 
to be used. Accordingly, this content consists of the establishing and applica-
tion of the properties of operations in the system of natural numbers which 
are then carried over to the extended systems. In the last of these exten-
sions—the set of rational numbers, these properties can be taken to be axioms 
of ordered field and the main facts that are deduced from them. Of course, in 
the classroom practice, this content is didactically transformed and shaped to 
serve the learner and is aimed at the development of the skill of transforming 
numerical and literal expressions. On the other hand, the school arithmetic, 
when structured properly, consists of the gradual building of the number 
blocks up to 10, to 20, to 100 and to 1000, each of them having its own pack-
age of didactical tasks that are supposed to be accomplished. We take that 
both school arithmetic and school algebra have for their intuitive ground, the 
phenomenology which consists of sets at the sensory level and their configu-
rations in the form of additive and multiplicative schemes. And while arith-
metic deals with specific numbers denoted by their decimal notations, algebra 
deals with species of numbers (variables) denoted by letters. As for the prop-
erties of operations, in arithmetic they are related to specific schemes whose 
extent is determined by specific numbers, while in algebra they are related to 
the species of such schemes where letters replace specific numbers. The way 
we view school arithmetic and school algebra inspires us to suggest a fusion 
of these two subjects. In this paper we sketch how this fusion should be car-
ried out, avoiding any possible abrupt semantic jumps from specific to gener-
al cases. The ultimate aim of teaching and learning both, arithmetic and alge-
bra is the building of the systems of natural numbers, integers and rational 
numbers and as this aim is attained in the last classes of elementary school, in 
this paper we confine our considerations to the primary level. At this level we 
suggest and sketch: Elaboration of arithmetic in the form of gradual building 
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of number blocks, based on the permanent meaning of addition and multip-
lication. Derivation of properties of operations and their procedural expres-
sion from the very beginning (within blocks of numbers up to 20 and 100). 
Teaching situations which are selected to help and encourage development of 
the idea of variable (letters in the role of the unknown, evaluation of literal 
expressions, etc.). Derivation of properties of operations in symbolic form, 
based directly upon the experience of species of schemes. 
 
Subject Areas 
Education 
 
Keywords 
Additive and Multiplicative Schemes, Procedural and Symbolic Expression, 
Fostering the Idea of Variable, Derivation of the Properties of Operations 

 

1. Introduction 

Toute science est l’étude d’une 
phenomenology … toute pheno- 
ménologie doit être regardée com- 
me un “spectacle” visual. 

René Thom [1] 

Grecian logistica numerosa was a school subject designed for children to teach 
them calculate and that art was also considered to be indispensable for everyday 
life. Exactly the same may be said for school arithmetic today. What has been 
changed progressively are the methods of its elaboration. At the times of great 
innovators J. A. Comensky, J. H. Pestalozzi and their followers, learning process 
was directed so as to start with sensory experience and to lead to the creation of 
clear concepts. There exists a large variety of contemporary approaches to the 
elaboration of school arithmetic. A common characteristic of them all is the 
tendency to have the teaching matter well illustrated by an ample use of colorful 
pictures. We do not find to have a ground upon which one of these approaches 
would take to be exemplary. Thus, one aim of this paper is the sketching of an 
approach of elaboration of arithmetic structured in the form of number blocks 
up to 10, to 20, to 100, to 1000 etc., each having a package of didactical tasks at-
tached that have to be accomplished. Without any other pretension, this ap-
proach is also the one that this author has studied the most.  

Discovery of Vieta’s logistica speciosa had a great impact on the development 
of mathematics. The use of letters to denote species of numbers led to the idea of 
variable and to creation of literal algebra which, in the first half of 19th century, 
was founded on its own axioms (Peacock, De Morgan et al.). 

Becoming a school subject (mostly during the first half of 19th century), 
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teaching and learning algebra caused a lot of problems and this subject was con-
sidered to be based upon “the rules without reason”. The old fashioned arith-
metic reduced to the art of denoting numbers in the positional system and the 
performance of four arithmetic operations on these notations had the emphasis 
on carrying lengthy calculations with mechanical speed and accuracy. Of course, 
a natural link between such arithmetic and algebra could not exist, what caused 
algebra to be cut off from its meaning. The search for reasons of rules of school 
algebra, started in the latte decades of the 20th century, has opened a large avenue 
of research. The books [2], [3] and [4] provide a quite complete presentation of 
the state of affairs in this area of research.  

Rules of school algebra are the properties of operating with literal expressions 
which are composed of letters denoting species of numbers (variables) combined 
with operational signs. Literal expressions get a meaning when linked with those 
in arithmetic which are composed of notations for specific numbers also com-
bined with operational signs. The meaning of arithmetic expressions is related to 
various patterns of objects (which are usually dots, circlets, etc. as often seen in 
the school books). When the structure of these patterns is not fixed but their re-
presentation suggests their variability (as, for example, it is a rectangular ar-
rangement having k rows and l columns), then such species of patterns are an 
intuitive basis for the meaning of algebraic expressions. Historically, algebra was 
considered to be the “the doctrine of solving equations”, while the school algebra 
is primarily an art of dealing with literal expressions. We consider both, school 
arithmetic and school algebra to have for their ultimate aim construction of the 
systems of natural numbers, integers and rational numbers.  

To say it formally and precisely, school algebra is the way how the key idea of 
variable is acquired and exploited and how the properties of operations are es-
tablished and applied in the system of natural numbers and then carried over to 
the extended systems. In the last of these extensions—the set of rational num-
bers, these properties can be taken to be axioms of the ordered field and the facts 
deduced from them. Here we use the language of abstract algebra, but in the 
classroom practice all these facts are (or, better to say, should be) didactically 
transformed and shaped so as to serve best the learner. The second aim of this 
paper is a sketch of the way how the first ideas of algebra are elaborated in the 
primary school, bearing in mind their link with the arithmetic contents.  

We continue with making some general observations about the way how con-
cepts are formed at this early stage of learning.  

Learning arithmetic, the concepts are created gradually in such a way that 
children experience a long series of corresponding examples that are embedded 
in everyday situations. Some accompanying questions and requirements direct 
attention and activities of children in whose mind an inner representation is 
formed, called mental image and who assimilate a word to serve as the name of 
the concept. From such activities a concept results as a tripartite entity consisted 
of corresponding examples, mental image and name. In psychology, all unessen-
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tial properties of examples corresponded to a concept (i.e. those properties that 
some of these examples have and some others do not) are collectively called 
noise. It is usually easier to say which properties are unessential and their ignor-
ing (neglecting) is often a more realistic way of abstracting. In the most cases, 
creation of concepts consists of selecting their corresponding examples and of 
deliberate neglecting of their unessential properties, what leaves behind their 
characteristic properties.  

The inscribed motto indicates a phenomenology as the realm of meaning of a 
science. In the case of arithmetic the underlying phenomenology consists of 
groups of visible objects in the surrounding space and of manipulation with 
them. Pictures and drawings that represent such groups of objects, when they 
are not immediately perceived, are also included and called pictograms, as well 
as those drawings which are iconic signs of concepts. This latter kind of pictorial 
signs are the examples of concepts having as little noise as possible. Exactly in 
that sense they have to be taken as represents of concepts, usually called ideo-
grams and it would be a wrong idea to identify them with abstract entities as the 
concepts are. Typical examples of ideograms are geometric drawings and, in 
arithmetic, number pictures which are regular patterns of objects (dots, circlets, 
etc.), number of which is projected at the first glance. Let us add that at the early 
stages of learning mathematics the iconic representations are important con-
veyors of meaning. 

As the concept of set is taken to be more general than all other concepts of 
classical mathematics, its examples exist at all levels of abstraction. The lowest of 
these levels is the case when the examples are groups of real world objects in the 
surrounding space. At somewhat higher level the examples of sets whose ele-
ments are conventional symbols (letters, decimal notations for natural numbers, 
etc.) are used, continuing then up to the levels when the elements of sets are also 
abstract concepts (the set of natural numbers, the set of real numbers, etc.). For 
the groups of visible objects in the surrounding space the term sets at the sensory 
level is used. These sets and manipulation with them represent the underlying 
phenomenology upon which arithmetic is based. Hence we should not overlook 
the dependence of conception of natural numbers on the experiencing sets at 
sensory level and the manipulations with them.  

As we know it from the history of mathematics, when the Pythagoreans dis-
covered incommensurable quantities, it threw into question measuring in geo-
metry. And it was Eudoxus who overcame that crisis, extending the earlier (Py-
thagorean) idea of number as the ratio of two natural numbers to the ratios of 
two quantities of the same kind, creating so the theory of (positive) real num-
bers. Since arithmetic in Antiquity was rhetoric, numbers represented by infinitely 
many equivalent ratios of quantities and the operations performed on quantities 
(not on numbers), this all made this great creation technically very complex and 
tedious. Almost two millennia later, Descartes discovered the number axis as the 
model for real numbers, where each number is uniquely represented by an in-
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terval having an end point at the origin O and where this model is closed for 
constructions on these intervals (i.e. for operations on numbers). This signifi-
cant simplification of Eudoxus’ theory permitted the number axis to enter school 
books and to be an inevitable didactical device for learning real numbers. 

Natural numbers are embedded into the system of real numbers and, on the 
number axis, they are represented by intervals which are unions of sequences of 
adjunctive unit intervals. The right ends of these intervals form a monotonous 
sequence of marks which is conceived as being unbounded, what is an intuitive 
ground for conception of the infinite set of natural numbers. Graphical repre-
sentation of the number axis is only an iconic sign which stands to suggest its 
whole structure. Identifying this structure with the seen sign is a naïve mistake 
and the cause for perplexities. Marks on various scales used for measuring are 
examples of sets at the sensory level as it is also the drawing representing the 
number axis when taken without the meaning it suggests (A drawing, often seen 
in primary school books, of a sequence of marks enumerated with numbers up 
to 20 and with a jumping frog does not seem to be a very clever device to 
represent addition and subtraction in this block of numbers).  

2. Learning Arithmetic—A Brief Survey of the Main  
Teaching Themes 

The knowledge of natural numbers that is gained through learning in school is 
essential and it deserves a brief recapitulation in terms of didactics of mathe-
matics. Such an account is of interest not only for primary teachers but also for 
all mathematics teachers and we will present it here in the form of a series of the 
main teaching themes. This presentation will conjure up to some degree every-
body’s experience from the years spent in school. 

2.1. Counting up to 10—An Introductory Theme of Teaching  
Arithmetic 

Reciting the number names in correct order up to 10 is the only case of genuine 
counting, which children usually learn at their parents’ home and then practice 
systematically in the classroom. At this stage children do not learn to write 
numbers, their attention is directed to (illustrated) situations, understanding of 
which makes sense to the questions as “How many altogether”, “How many 
left”, “How many more (less)”, etc. that are answered orally. Groups of objects to 
be counted are small (not exceeding 10 in number) and the main didactical task 
of this theme is preparation of children to understand fully the meaning of usual 
questions with which the teaching of arithmetic starts.  

2.2. Cantor Principle of Invariance of Number 

Perception of sets precedes the conception of numbers. Cantor describes this 
cognitive process that leads to the idea of cardinal number in its natural depen-
dence on sets of observable objects as the result of two abstractions: ignoring of 
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all properties except ordering and then ignoring the ordering itself (see [5]). 
Modifying slightly this formulation to make it more suitable for didactical pur-
poses, we express Cantor principle of invariance of number in the following way: 

Starting with the observation of a set of visible objects and abstracting (forget-
ting) 

1) the nature of these objects, and 
2) any kind of their organization, the abstract idea of number results.  
When we say organization we mean any way how the elements of a set can be 

ordered, arranged, grouped etc. Following Cantor, when a set is denoted by S, 
the number of its elements is denoted by S  where two overbars indicate two 
above abstractions. Let us also say that this cognitive principle stands for the 
formal concept of equivalent sets expressed in terms of one to one correspon-
dences.  

We see the role of this principle at the very beginning when the elements of 
various sets are counted and when they are attached to the number names in 
different order. Particularly important is the case when different expressions 
corresponding to the different groupings of elements of a set are equated since 
they represent one and the same number. 

In proceeding further let us note that Vigotskii [6] calls a class of mutually re-
lated concepts a system of concepts. In mathematics such a class is called a (con-
crete) mathematical structure. In psychology, reflection in mind of such a class is 
called a mental scheme. In what follows we will be concerned with building of 
number blocks up to 10, up to 20, up to 100 and up to 1000 which consist of 
concepts of individual natural numbers and operations with them. These blocks 
will be specific examples of systems of concepts. 

2.3. Block of Numbers up to 10  

We summarize here what is done when this block is built and which didactical 
tasks are accomplished.  

The meaning of numbers 1, 2, …, 10 and 0 is established by relating each of 
them with the corresponding sets of various objects.  

Each of these numbers is treated as an individual concept denoted symboli-
cally by its digit and associated with its number image, being an arrangement of 
uniform signs, number of which is projected at the first glance. 

A somewhat more delicate is the case of zero which is related to the materiali-
zation of the empty set as being the “empty place”. For example in a sequence of 
boxes containing less and less marbles the last empty one is an example of the 
empty place.  

Each digit is written in a number of moves of the hand that are made in a 
fixed order. Exercising, these moves tend to be more and more regular and the 
handwriting becomes nicer. It is important that children learn to write digits 
correctly from the very beginning.  

Children are given the examples of situations which can be modeled as the 
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union of two disjoint sets. Such an idea is called an additive scheme and when 
the numbers of elements of these sets are given and the number of elements of 
their union is to be found, it is said that this scheme is followed by an addition 
task. As soon as the children are aware of an additive scheme followed by an ad-
dition task, they write a sum to denote the sought number. This meaning of ad-
dition is permanent and should not be confused with a more technical one, 
when sums are calculated to find the unique decimal notation for their value.  

When the additive scheme is imagined or experienced (pictorially represented) 
and when the numbers of elements of the union and of the one of these sets are 
given and the number of elements of the other set is to be found, then we say 
that this scheme is followed by a subtraction task. Examples of situations of this 
kind provide a permanent meaning to subtraction. 

Let us note that, in the classroom practice, additive schemes are mostly given 
in the form of simple pictures—the sets are “small” (their number of elements 
does not exceed 10) and the sought numbers are found by counting (But this is 
not the reason for the teachers not to recognize the importance of the activities 
when the meaning of these two operations starts to be formed).  

Children write two different sums when they denote the number of elements 
of the union of two disjoint sets taken in two different orders. By equating these 
sums they discover the rule of the interchange of summands. Teachers should 
understand that this rule is one of the principles of arithmetic which is intuitive-
ly acceptable but not to be verified by counting (or calculation). 

A sum (a difference) denotes a number which is called its value. To calculate a 
sum (a difference) means to express its value by its unique decimal notation. By 
doing a sufficient number of exercises, children are trained to calculate quickly 
sums and differences when their value is within this block. As already said, “cal-
culation” at this stage reduces to counting and is based on the imagery that 
children develop in contact with the number images. 

Numbers up to 10, with the operations of addition and subtraction and the 
relation “to be larger than” constitute a system of concepts (a mathematical 
structure) that we denote by {N10, +, −, <}. 

2.4. Block of Numbers up to 20  

Majority of children learn spontaneously to count up to 20, reciting the number 
names in order. But counting is not taken to be a basis upon which larger num-
ber blocks are built. A sum as, for example, 10 + 7 already has its meaning estab-
lished in the block of numbers up to 10. It denotes the number of elements of the 
union of two sets, one having 10 elements and the other one 7. Decimal notation 
for that number is not included in the material of which block of numbers up to 
10 consists. But the use of such notations is the way how this block is extended 
to the block of numbers up to 20. 

Namely, the sums 10 + 1, 10 + 2, …, 10 + 10 are denoted briefly as 11, 12, …, 
20 respectively and children learn their names eleven, twelve, …, twenty. By 
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equating two notations for the same number, the equalities 10 + 1 = 11, 10 + 2 = 
12, …, 10 + 10 = 20 are established.  

The following properties of addition and subtraction are established: the rule 
of association of summands, the rule of interdependence of addition and sub-
traction, the rule of subtracting α number from α sum, the rule of subtracting α 
sum from α number, the rule of interchange of the subtrahend and the differ-
ence, etc. Application of these rules is not a very simple task for children. Thus, 
the exercises of this kind have to be programed using the technique of place 
holders.  

Methods of adding and subtracting, when the 10-line is crossed are the first 
genuine cases of calculation and these methods are worked out in detail. By 
practicing these methods, children learn to calculate quickly the results of all en-
tries of addition table. Therefore, the block of numbers up to 20 is a natural 
framework within which the addition (and subtraction) table (tables) is (are) 
formed. 

2.5. Place Holders—An Acted-Out Arithmetic  

A variety of graphical signs as number boxes, circlets, shorter and longer under-
lines, etc. are often used to execute some specific tasks in programed learning. 
For example, in arithmetic textbooks these signs are seen applied in the cases as 
the following are 

2 + 4 = __,    5 + __ = 14,    7 × __ = 63, etc. 

Previous generations of teachers used to express such assignments in words: 
“Find the sum 2 + 4”, “Which number must be added to 5 to make 14”, “How 
many 7’s you must take to make 63”, etc. When these assignments are expressed 
orally, a pupil has to remember the verbal information first, prior to the giving 
an answer. Set down in the programed form, such assignments keep the whole 
information which can be automatically read off, even without converting it into 
a sentence. Namely, as the school practice shows it, children learn easily what is 
required to be done, filling in the blank spaces indicated by these graphical signs. 
Called place holders (or space holders) these signs have an evident pedagogical 
justification being usable as an invaluable tool in elaboration of arithmetic.  

Let us select here a couple of examples related to the methods of adding up 
over ten and subtracting down below ten. For the sake of understanding, in the 
beginning, children are supposed to accomplish all intermediate steps. The fol-
lowing examples illustrate it.  

7 + 8 = 7 + 3 + __ = ___ + 5 = ___,   16 − 9 = 16 − 6 − __ = ___ − 3 = __. 

To respond correctly, children fill in the blank places, writing the numbers 
which preserve these equalities. In these examples such numbers are: 5, 10, 15 in 
the former case and 3, 10, 7 in the latter. As it is seen, in different places different 
numbers are written. Thus, the place holder technique is used to hold blank 
places and it is a wrong idea to assign them any numerical value. The inevitable 
use of this technique is needed for active learning of arithmetic, fostering so both 
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the understanding and the automatic performance of routine tasks.  

2.6. Block of Numbers up to 100  

The sums 20 + 1, 20 + 2, …, 20 + 10 and their decimal notations 21, 22, …, 30 
make the first step in extension. Then 30 + 1, 30 + 2, …, 30 + 10 and their de-
cimal notations 31, 32, …, 40, …, 90 + 1, 90 + 2, …, 90 + 10 and their decimal 
notation 91, 92, …, 100 are the numbers of this block. The reader will notice that 
addition, not the counting, is the basis of this extension.  

The technique of vertical addition (including the cases when one ten is carried 
over) and vertical subtraction (including the cases when one ten is borrowed) 
are presented in detail. Number images are employed to illustrate these proce-
dures and to supply them with meaning.  

These procedures are also described in terms which underline the decimal 
stricture of the manipulated numbers but as soon as these procedures become 
more automatic, such descriptions are suppressed obtaining abbreviated form of 
the inner speech (For the meaning of inner speech, see [6]). 

Up to this stage the block of numbers up to 100 is an additive structure which 
we denote writing {N100, +, −, <}. But this block is also a natural range of num-
bers within which the meaning of multiplication and division is established. 

A situation which can be modeled as a finite family of disjoint finite equipo-
tent sets is called a multiplicative scheme. When the number m of the members 
of this family and the number n of the elements of these sets are given and the 
number p of the elements of their union is to be found, we say that this is a mul-
tiplication task that follows this scheme. When p and n are given and m is to be 
found, we say that this is a division task, called partition, which follows this 
scheme and when p and m are given and n is to be found, we also say that this is 
a division task, called quotation, which follows this scheme.  

Equivalent ways of representing a multiplicative scheme as a rectangular ar-
rangement or, in the set theory, a direct product can also be an alternative. 

When building the multiplication table all included products are related with 
their iconic representations which suggest a quick calculation of their value. Fol-
lowing illustrations, children are supposed to take an active part in the building of 
this table as well as these representations serve children to memorize easier the 
values of these products. 

Properties of multiplication are established and expressed: the rule of inter-
change of factors, the rule of association of factors, the rule of multiplication of 
sums and differences by α number, etc. A collection of m boxes each containing 
n marbles is a suitable model of the multiplicative scheme. Similarly, k packages, 
each containing m boxes and each box containing n marbles is a suitable model 
for the triple product. Teachers should be aware of the role of the rule of associa-
tion of factors (the associative law for multiplication) which reduces triple and 
multiple products to the products of two numbers. Thus, it is enough to form 
the multiplication table in the case of products of two numbers as well as to ex-
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press properties of multiplication in terms of products of two numbers.  
The following properties of division are established and formulated: the rule 

of interdependence of multiplication and division, the rule of interchange of the 
divisor and the quotient, the rule of division α sum and α difference by α num-
ber, etc. 

By doing exercises, children learn the procedure of division with remainders 
and particularly essential are so called canonical divisions: by 2 up to 19, by 3 up 
to 29, …, by 9 up to 89. These cases of division are supposed to be done mentally 
and, together with the addition and multiplication tables, they enter long term 
memory store.  

With multiplication and division, the block of numbers up to 100 becomes a 
still richer structure which is denoted by {N100, +, −, ×. :, <}. 

2.7. Block of Numbers up to 1000 

Products: 2 × 100, 3 × 100, …, 10 × 100 have their meaning already established 
in the block N100. Denoting them by their decimal notations 200, 300, …, 1000 
the hundreds of the first thousand are introduced. Then the sums of these hun-
dreds and two digit numbers as, for example, 200 + 18, 300 + 71, 900 + 54, etc. 
also obtain their decimal notations 218, 371, 954 etc. what gives meaning to the 
numbers up to 1000. 

Vertical addition and subtraction of two three digit numbers is worked out in 
detail. Formal operations on digits are illustrated by means of number images 
and such illustrations provide a full understanding of these procedures. Descrip-
tion of these activities, intentionally leaving out details, also turns into the forms 
of the inner speech. 

Multiplication and division of three-digit numbers by one-digit numbers is 
also illustrated by the use of number images and a thorough elaboration of this 
theme is a necessary introduction to the more complex cases of multiplication 
and division by multi-digit numbers. 

Our analysis demonstrates it clearly that the explanation of the steps made in 
performing addition and subtractions based on rules of arithmetic is rather 
awkward. Instead of it, vertical addition and subtraction, when columns of units, 
tens and hundreds are formed evidently has an advantage. This remark equally 
holds in the case of operations with multi-digit numbers. 

At the end, let us remark that the blocks of numbers up to 20 and up to 100 
are the stages of learning arithmetic when the permanent meaning of arithmetic 
operations is established and where the rules expressing the main properties of 
these operations are derived (In classroom practice, pedagogical reasons may 
postpone, of course, derivation of some of these rules to the classes that follow). 
In that respect, these stages are a particularly subtle period of learning arithmet-
ic. The block of numbers up to 1000 is just a prelude to the technical tasks of 
learning algorithms of operating with the multi-digit numbers. Without any in-
tention to diminish the importance of these algorithms, here we put emphasis on 
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meaning and properties of arithmetic operations.  

3. Beginnings of School Algebra. Fostering the Idea  
of Variable 

In the period of rhetoric algebra, a specific example of a type of equations was 
done to demonstrate that analogously all other cases have to be done. Similarly, 
when teaching arithmetic, the properties of operations (rules of arithmetic) are 
expressed in words (rhetorically) and then applied to specific cases. Now we list 
the prerequisites for derivation of these rules. 

Children are used to write sums and differences whenever they recognize ad-
ditive schemes, followed by addition and subtraction tasks, respectively as well as 
they are used to write products and quotients whenever they recognize multip-
licative schemes followed by multiplication and division tasks, respectively. 

Let us call sums, differences products and quotients basic expressions. Child-
ren know that a component of a basic expression which is a sum or a difference 
is written with brackets put round it. Brackets are understood as a command: 
first do what is written in brackets. 

Children know to calculate the value of simple expressions, when such exer-
cises are programed with place holders acting as the silent hints. 

When a scheme is seen in two different ways, two different expressions are 
written. Denoting one and the same number (i.e. having the same value) such 
two expressions are equated. Different way of grouping elements of a set leads to 
different expressing of the number of its elements what, according to the Cantor 
principle, does not effects its cardinality. This procedure of equating expressions 
is the ground upon which rules of arithmetic are derived.  

Let us remark that the term “procedural knowledge” is taken with a negative 
connotation meaning that a procedure is carried out without a necessary under-
standing. But when a piece of knowledge is assimilated with full understanding 
and expressed example by example, then this manner of expressing we will call 
procedural (without packing any negative connotation). For example, the ways 
how the algorithms of performing four arithmetic operations on multi-valued 
numbers are procedural—having demonstrated them in a number of specific cas-
es, then it is expected that all other cases will be done analogously.  

3.1. Derivation of Arithmetical Rules and Procedural Way of  
Their Expression 

Already within the block of numbers up to 20, the rule of interchange of sum-
mands, the rule of association of summands and the rule of interdependence of 
addition and subtraction are derived and expressed procedurally. At this level of 
teaching disjoint sets and their families are represented by some more concrete 
models, say, by boxes of marbles and their packages.  

In order to illustrate this way of derivation of rules of arithmetic, let us con-
sider the case of derivation of the rule of multiplication a sum by a number (dis-

https://doi.org/10.4236/oalib.1104889


M. M. Marjanović 
 

 

DOI: 10.4236/oalib.1104889 12 Open Access Library Journal 
 

tributive law) which is attached to the block of numbers up to 100.  
(Imagine that a teacher leads and his/her class follows him/her with active 

participation).  
There are 6 packages each containing a red box with 7 marbles in it and a blue 

box with 5 marbles in it. Altogether, there are 7 + 5 marbles in each package. In 
6 packages there are 6 × (7 + 5) marbles. In 6 red boxes there are 6 × 7 marbles 
and in 6 blue boxes there are 6 × 5 marbles. Altogether, there are 6 × 7 + 6 × 5 
marbles. Equating two expressions which denote the total number of marbles in 
the packages, we write  

6 × (7 + 5) = 6 × 7 + 6 × 5 

(An illustration of 6 packages of boxes with numbers inscribed on their lids 
would surely be helpful to children in following this long text). This example is 
then varied changing the data and including children in the activity. For exam-
ple, the teacher asks: what would you write if there were: a) 3 packages, b) 5 
packages, c) 7 packages? 

a) __ × (7 + 5) = __ × 7 + __ × 5, 
b) __ × (7 + 5) = __ × 7 + __ × 5, 
c) __ × (7 + 5) = __ × 7 + __ × 5. 

What would you write if there were: a) 3 marbles in the red box, b) 5 marbles 
in the red box, c) 6 marbles in the red box? 

a) 6 × (__ + 5) = 6 × __ + 6 × 5, 
b) 6 × (__ + 5) = 6 × __ + 6 × 5, 
c) 6 × (__ + 5) = 6 × __ + 6 × 5. 

Then, such variations should follow changing the number of marbles in the 
blue box, etc. and, at the end, varying simultaneously all three numbers of pack-
ages and of marbles in both boxes. 

(Here we see how inevitable is the technique of place holders without which 
the explanation of what has to be done would be just inadmissible rigmarole of 
words.) 

All relations that express rules of arithmetic continue to hold true when the 
involved numbers are replaced by any other numbers. For example, when in the 
relation 6 × (7 + 5) = 6 × 7 + 6 × 5 the numbers 6, 7, 5 are replaced by any other 
three numbers, the relation so obtained continues to hold true. For a relation 
having this property we say that it has invariant form. In the following six exam-
ples:  

a) 3 + 4 = 5 + 2, 3 + 4 = (3 + 2) + (4 − 2),  
b) (3 + 4) + 7 = 10 + 4, (3 + 4) + 7 = 3 + (4 + 7) 
c) 7 × (10 − 1) = 7 × 10 − 7, 7 × (10 − 1) = 7 × 10 − 7 × 1  

all relations are true but, in all examples under a), b) and c), only the second of 
them has invariant form. 

(When subtraction or division figures in a relation then the involved numbers 
should be replaced by the numbers for which these operations are feasible.)  

When a rule has been derived and elaborated properly, its symbolic form is 
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obtained replacing the involved numbers by letters. Children easily accept this 
procedure of replacing if they are already experienced to use letters in the role of 
variable. Now we focus our attention to those teaching and learning situations 
which are intended to serve developing of the idea of variable. 

3.2. Steps Taken to Develop the Idea of Variable  

Historically, the first manifestation of the idea of variable was the use of letters to 
denote the unknowns. It is exactly the same when mathematics is taught and 
learnt, the first step is the using of letters to denote unknown numbers. The jot-
tings as, for example, x = 5 or x + 5 have no a priori meaning. Therefore some 
activities have to be planed through which such an equality and such an expres-
sions gain the meaning. 

The way how children are told that a letter, say x, is used to denote an un-
known number is, for example, the following: 

The teacher shows to his/her class picture (or a model) of a box with x written 
on its lid. “When the box is closed, can we know how many marbles there are 
inside it?”, the teacher asks “No, we can’t”, the children would answer in one 
voice. “We write x to denote that unknown number”, says the teacher. Then 
he/she shows another picture of that box with its lid lifted up (or lifts up the lid). 
The marbles are counted and it is found that there are them 8. “Now the number 
of marbles is known and we write x = 8”, the teacher continues. Repeating such 
and similar exercises, the children acquire the meaning of x when it denotes an 
unknown number as well as the meaning of the equality x = 8, etc.  

A model for the additive scheme can be two boxes (or their picture) with 
marbles in them. To such representation of this scheme, exercises of attaching 
them sums and differences should be done. When one of three numbers: k—the 
number of marbles in the first box, l—the number of marbles in the second box, 
s—the total number of marbles is unknown, the equations x + l = s, k + x = s, s − 
x = k, s − x = l arise. They are solved applying the rule of interdependence of ad-
dition and subtraction and the rule of interchange places of subtrahend and dif-
ference. For example, the equation s − x = k is solved writing x = s − k. 

A quite convenient model for a multiplicative scheme is a rectangular ar-
rangement having k rows and l columns. Usually dots or circlets are used to 
form such arrangements. Let p be total number of dots, then when one of the 
numbers k, l, p is unknown, the equations k × x = p, x × l = p, p:x = k, p:x = l 
arise. They are solved applying the rule of interdependence of multiplication and 
division and the rule of interchange of places of divisor and quotient. For exam-
ple, the equation p:x = l is solved writing x = p:l (Here we use letters to denote 
the types of these equations. In the classroom practice, instead of letters, specific 
numbers from the block which has been already elaborated are used).  

Solving these equations, one by one, the value of x varies running through a 
set of numbers. Thus x in the role of an unknown number is an example of va-
riable and, probably, the easiest such case to be approached. Let us remark that it 
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suffices to confine the equation solving to these simple, basic types, when the 
task of developing the idea of variable is concerned (A tendency to solve more 
complex types of equations in primary classes seems to not be well founded be-
cause, at this level—neither children acquire with full understanding the idea of 
equivalent conditions nor there is any good reason for such premature formal-
ism).  

Exercises when given numbers are tried to see which of them is the solution of 
a given equation “forces” x to run through a set of possible values. Such exercises 
also strengthen the role of the unknown as a variable.  

Another type of instructive exercises, having this same purpose, is the case 
when the tables with the basic expressions are completed. Let us take, as an ex-
ample, a table having three rows, at the front of which k, l and k + l are written, 
respectively and where k and l denote summands and k + l there sum. While the 
values for k and l run along first two rows, their sum is calculated and written in 
the third row.  

When children have gathered together a lot of experience of the use of letters 
in the situations that we have just touched upon, they are prepared well to accept 
easily the replacement of specific numbers by letters in the relations which have 
invariant form. 

4. Concluding Remarks 

When the use of letters becomes a routine practice, children and in particular 
students in upper classes of elementary school will be able to follow derivation of 
rules of algebra when data used to denote the extent of schemes are letters 
(without starting first with specific numbers as it is done when such derivation 
begins at the primary level). In our papers [7] and [8], derivation of these rules is 
presented in the system of natural numbers, from which they are carried over to 
the extended systems. 

Looking closely at a number of different textbooks in mathematics for upper 
classes of elementary school, the following question arose: Which rules and with 
which reason are pointed out to be a basis for transformation of literal expres-
sions. Scarcely have I found some of them. In any case not enough to say they 
constitute a complete set of rules with reason. The current research is mostly di-
rected towards primary level and semiotic questions of symbolism. Thus the re-
search of didactical shaping of algebraic content at the level of upper classes of 
elementary school has to be a matter of high interest. 

Curricular innovations are successful only if the teachers are well acquainted 
with the new content. For that purpose, these contents have to be digested and 
served to them, simulating the classroom practice. Such digested contents have 
also to be included in didactics courses at the institutions where teachers are 
educated (without being afraid it will lower the academic level of such courses).  

The great classical ideal, the Euclid’s Elements [9], is no longer a paragon for 
arithmetic teaching and learning. In the Elements, arithmetic is embedded in 

https://doi.org/10.4236/oalib.1104889


M. M. Marjanović 
 

 

DOI: 10.4236/oalib.1104889 15 Open Access Library Journal 
 

geometry and the properties of proportions are basic in the operating with mag-
nitudes (and numbers). As the phenomena whose experience produces the mean-
ing of natural and rational numbers are discrete realities (sets at the sensory lev-
el), the Euclid’s geometric model is rather a formal and narrow framework of 
meaning for the building of these number systems. On the other hand, the pro-
portions do not have such a fundamental position as they had in the Elements. 
Multiplication as an always feasible operation in the set of natural numbers 
comes prior to division and the rule: a:b = c:d if and only if a × d = b × c, sets the 
interdependence between ratios (quotients) and products (when these quotients 
exist in the set of natural numbers). In the Elements, when proofs are carried out 
the word “magnitude” is used as a rhetoric variable, often illustrated as a line 
segment. In the contemporary mathematics, letters denote variables and serve 
for symbolic expression of properties of operations as well as for the formulation 
of statements and derivation of their proofs. This role that letters have empha-
sizes the importance of elaboration of algebra in school. We hope that this paper, 
together with the two our papers cited here, form a whole which can be helpful 
for further propagation of teaching and learning school algebra. 
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