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Abstract 
In this paper, we consider by the first time the Aumann integral on time 
scales. Hence, we introduce the Aumann ∆-integral on time scales. We also 
have established properties for the Aumann ∆-integral on time scales. In par-
ticular, we obtain a formula that relates the Aumann ∆-integral on time scales 
and the Aumann integral. 
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1. Introduction 

Integrals on time scales were considered, for example, by Liu and Zhao [1], Mo-
zyrska et al. [2] and by Peterson and Thompson [3]. Liu and Zhao [1] studied 
the McShane integral on time scales. On the other hand, Mozyrska et al. [2] stu-
died the Riemann-Stieltjes integral on time scales. In turn, Peterson and 
Thompson [3] studied the Henstock-Kurzweil integral on time scales. Here we 
establish an extension of the Aumann integral. Thus, using the Lebesgue 
∆-integral on time scales, see for example Guseinov [4], we define the Aumann 
∆-integral on time scales. To the best of our knowledge, the Aumann integral on 
time scales has not yet been considered in the literature. We get some basic 
properties for the Aumann ∆-integral on time scales in consonance with the ba-
sic properties of the Aumann integral considered by Aumann [5]. Furthermore, 
we established a formula that relates the Aumann ∆-integral on time scales and 
the Aumann integral, in analogy to the formula obtained by Cabada and Vi-
vero [6] that relates the Lebesgue ∆-integral on time scales and the Lebesgue 
integral. 
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2. Preliminaries 

In this section we consider concepts and results necessary for the study of the 
Aumann ∆-integral on time scales. 

2.1. Time Scales 

A time scale is a nonempty closed subset ⊂   of the real numbers. Here we 
use an arbitrary bounded time scale   where mina =   and maxb =   are 
such that a b< . 

Define the forward jump operator :σ →   by 

( ) { }inf : .t s s tσ = ∈ >  

Here we assume that inf sup∅ =  . 
Lemma 1 [6] There exist I ⊂   and { }i i I

t
∈
⊂   such that 

( ){ } { }: : ,i i I
RS t t t tσ

∈
= ∈ < =  

where RS  stands for right scattered points of the time scale  . 

2.2. Lebesgue Integration on Time Scales 

The definition of ∆-mensurable sets of  , was considered, for example, by Gu-
seinov [4]. 

We denote the family of ∆-mensurable sets of   by ∆. We remember that ∆ 
is a σ-algebra of subsets of the time scale  . 

It is said that a function :f →   is ∆-measurable if for each r∈  the 
set ( ){ }:t f t r∈ <  is ∆-measurable. The vector valued function : nf →   
is ∆-measurable if each component :if →   is ∆-measurable. 

Consider a function :f →   and a set E∈∆ . We indicate by 

( )
E

f s s∆∫  

the Lebesgue ∆-integral of f over E. If : nf →   is a ∆-measurable function 
and E∈∆ , f  is integrable over E if each component :if →   is integra-
ble over E. In this case 

( ) ( ) ( )( )1 , , .nE E E
f s s f s s f s s∆ = ∆ ∆∫ ∫ ∫  

We denote by ( )1 , nL E   the set of functions : nf →   ∆-integrable over 
E. 

Cabada and Vivero [6] and Santos and Silva [7] consider a more complete 
approach to Lebesgue integration theory on time scales. 

Given a function : nf →  , define [ ]: , nf a b →   as 

( ) ( )
( ) ( )( )

,
, , for some ,i i i

f t t
f t

f t t t t i Iσ
∈=  ∈ ∈




 

where I ⊂   and { }i i I
t RS

∈
= . 

If E ⊂  , define 
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( )( ),
E

i i
i I

E E t tσ
∈

= 



 

where 

{ }: : .E iI i I t E RS= ∈ ∈   

It follows from Cabada and Vivero [6] the next two results. 
Proposition 1 Take a function : nf →  . Then f  is ∆-measurable if and 

only if f  is Lebesgue measurable. 
Theorem 1 Let E∈∆  be such that b E∈/ . Then ( )1 , nf L E∈   if and only 

if ( )1 , nf L E∈   . In this case 

( ) ( )d .
E E

f s s f s s∆ =∫ ∫


  

2.3. Measurable Multifunctions 

Let ( ),Ω   be a measurable space. A multifunction is a set-valued function 
: nΓ Ω   that takes points x∈Ω  into subsets ( )xΓ  of n . We say that 

the multifunction : nΓ Ω   is  -measurable if the set 

( ) ( ){ }1 :V x x V−Γ = ∈Ω Γ ≠ ∅  

is  -measurable for all compact sets nV ⊂  . 
A function : nγ Ω→  is a selection of the multifunction Γ  if 
( ) ( )x xγ ∈Γ  for each x∈Ω . 
A multifunction Γ  is said to be closed, compact, convex or nonempty when 
( )xΓ  satisfies the required property, for each point x∈Ω . 
We will use the following result due to Castaing and Valadier [8]. 
Theorem 2 Let ( ),Ω   be a measurable space and : mΓ Ω   a nonempty 

closed multifunction. If Γ  is  -measurable then Γ  admits a measurable se-
lection. 

3. Aumann ∆-Integral on Time Scales 

If A⊂  , we denote the set A  by A . 
Consider a nonempty multifunction : nF   . Let   be the set of all 

functions : nf →   such that f is ∆-integrable over [ ),a b   and 
( ) ( )f t F t∈  for all t∈ . We define the Aumann ∆-integral of F over [ ),a b   

by 

[ ) ( ) [ ) ( ){ }, ,
: .

a b a b
F s s f s s f∆ = ∆ ∈∫ ∫

 
  

We note that the Aumann ∆-integral of F over [ ),a b   coincides with the 
usual Aumann integral when [ ],a b= . Hence the Aumann ∆-integral on time 
scales is a generalization of the usual Aumann integral. 

From definition, if { }0,1=  and :F    is given by ( ) { }0,1F t =  for  
each t∈ , then 

[ ) ( ) { }
0,1

0,1F s s∆ =∫


. On the other hand, if [ ]0,1=  and  

:F    is defined by ( ) { }0,1F t =  for every t∈ , then  
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[ ) ( ) [ ]
0,1

0,1F s s∆ =∫


. 

Below we establish properties for the Aumann ∆-integral on time scales. 
Theorem 3 If : nF    is a convex nonempty multifunction, then  

[ ) ( )
,a b

F s s∆∫


 is convex. 

Proof. Let 1 2,f f ∈ . If [ ]0,1α ∈  it follows that ( )1 21f fα α+ − ∈ . 
Hence, 

[ ) ( ) ( ) [ ) ( )

[ ) ( )( )( ) [ ) ( )

1 2, ,

1 2, ,

1

1

a b a b

a b a b

f s s f s s

f f s s F s s

α α

α α

∆ + − ∆

= + − ∆ ∈ ∆

∫ ∫

∫ ∫
 

 

 

and thus 
[ ) ( )

,a b
F s s∆∫


 is convex. 

We say that the multifunction : nF    is ∆-integrably bounded if there is 
a function [ ): 0,c → +∞  ∆-integrable over [ ),a b   such that ( )y c t≤  for 
all y and t such that ( )y F t∈ . 

Theorem 4 Let nF :  be a nonempty closed, ∆-integrably bounded  
and ∆-measurable multifunction. Then 

[ ) ( )
,a b

F s s∆∫


 is nonempty. 

Proof. From Theorem 2 the multifunction F admits a ∆-measurable selection f. 
Since F is ∆-integrably bounded, it follows that f is ∆-integrable over [ ),a b  .  
Thus, f ∈  and then 

[ ) ( )
,a b

F s s∆∫


 is nonempty. 

Given a multifunction : nF   , we define the multifunction  
[ ]: , nF a b   by 

( ) ( )
( ) ( )( )

,
=

, , for some .i i i

F t t
F t

F t t t t i Iσ
∈

 ∈ ∈



 

Theorem 5 Let :F    be a nonempty compact and convex multifunc-
tion. Then 

[ ) ( ) [ ] ( )
, ,

d .
a b a b

F s s F s s∆ =∫ ∫ 


 

Proof. Let :f →   be a selection of F. Suppose that f is ∆-integrable over 
[ ),a b  . Hence the function [ ]: ,f a b →   is a selection of F . Furthermore, it 
follows from Theorem 1 that 

[ ) ( ) [ ) ( ) [ ] ( )
, , ,

d d
a b a b a b

f s s f s s f s s∆ = =∫ ∫ ∫ 


 

and therefore 

[ ) ( ) [ ] ( )
, ,

d .
a b a b

F s s F s s∆ ⊂∫ ∫ 


 

Consider a selection [ ]: ,g a b →  of F . Suppose that g is Lebesgue in-
tegrable over [ ],a b . 

Let ( )( ),i ii I
A t tσ

∈
=


. We have 

[ ] ( ) [ ) ( ) [ )( ) ( )

( ) [ ) ( )
, , , \

, \

d d d

d d

a b a b A a b A

A a b A

g s s g s s g s s

g s s g s s

= =

= +

∫ ∫ ∫

∫ ∫
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( )( ) ( ) [ ) ( )
, , \

d d .
i it t a b A

i I
g s s g s s

σ
∈

= +∑∫ ∫  

Since F is a compact and convex multifunction, for each i I∈  there exists 
( )i iF tβ ∈  such that 

( )( ) ( ) ( )( ),
d .

i i
i i it t

g s s t t
σ

β σ= −∫  

Define the function :h →   as 

( ) ( ) ( )
, if for some

, if .
i it t i I

h t
g t t t
β

σ
= ∈

=  =
 

Then 

[ ) ( ) [ ) ( ) [ ) ( )
, , ,

d d
a b a b a b

g s s h s s h s s= = ∆∫ ∫ ∫


 

and thus 

[ ] ( ) [ ) ( )
, ,

d .
a b a b

F s s F s s⊂ ∆∫ ∫


 

Hence the proof is complete. 
Theorem 6 Let :F    be a nonempty compact, convex and ∆-integrably 

bounded multifunction. Then 
[ ) ( )

,a b
F s s∆∫


 is a compact set. 

Proof. We know by Aumann [5] that the set 

[ ] ( )
,

d
a b

F s s∫   

is compact. From Theorem 5 we may conclude that the set 

[ ) ( )
,a b

F s s∆∫


 

is compact. 

4. Conclusion 

By introducing the Aumann ∆-integral on time scales, the paper contributes to 
the theory of time scales, more specifically, for the integration on time scales. 
The Aumann integral on time scales is added to other extensions of integrals for 
the theory of time scales, namely, the McShane integral on time scales, the Rie-
mann-Stieltjes integral on time scales and the Henstock-Kurzweil integral on 
time scales, among others. The paper also established properties for the Aumann 
∆-integral on time scales. Moreover, a formula is also established that relates the 
Aumann ∆-integral on time scales and the Aumann integral. However, such a 
formula is restricted to multifunctions :F   . Thus, future work might 
consider possibilities under which this formula remains valid for multifunctions 

: nF   . 
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