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Abstract 
In this paper, a new epidemic SEIRS model with time delay on complex net-
works is proposed. Based on the mean field theory, the basic reproductive 
number and equilibriums of the model are derived. Moreover, the impact of 
the network topology and time delay on the basic reproductive number is 
analyzed. Theoretical analyses indicate that the basic reproductive number is 
dependent on the topology of the underlying networks. The time delay cannot 
change the basic reproductive number, but it can reduce the endemic level 
and weaken the epidemic spreading. The global asymptotically stability of the 
disease-free equilibrium and the permanence of epidemic are proved in detail. 
Numerical simulations confirm the analytical results. 
 

Subject Areas 
Network Modeling and Simulation 
 

Keywords 
Epidemic Model, Complex Networks, Time Delay, Permanence, Stability 

 

1. Introduction 

Mathematical models describing the population dynamics of infectious diseases 
have played an important role in better understanding epidemiological patterns 
and disease controls for a long time. The basis of modeling dynamics and evolu-
tion of infectious diseases are summarized by Anderson and May [1]. It is well 
known that the spread of a communicable disease involves disease-related factors 
such as infectious agent, mode of transmission, incubation periods, infectious 
periods, susceptibility, and resistance.  

Continuous time deterministic epidemic models are traditionally elaborated as 
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systems of ordinary differential equations. More realistic models should include 
some states of these systems, and ideally, a real system should be modeled by de-
lay differential equation. Time delay plays an important part in propagation 
process of the epidemic, and we can simulate the exposed period of infectious 
diseases, the infections period of patients and the immunity period of recovery 
of the disease with time delay. However, compared with studies of the dynamical 
behaviors of the epidemic models with time delays on complex networks, only a 
few attentions about early studies have been paid to them on complex networks. 
In recent years, the dynamics of the SIS, SIR, SEI and SEIR epidemic models have 
received considerable attention [2] [3] [4] [5] [6]. In order to study the effects of 
disease latency or immunity in real life, the delay is incorporated in such models 
[7]-[12]. Liu and Deng et al. discussed epidemic SIS model with discrete time 
delay which represents the infectious period [13], and they obtained the basic 
reproduction number and discussed the persistence of the disease, but they 
failed to give the proof in detail. Wang and Wang et al. discussed an epidemic 
SIR model with discrete time delay which represented the exposed period [14]. 
Based on the above, in this paper, we will present a suitable epidemic SEIRS model 
with time delay which represents the infectious period on complex networks using 
functional differential equations to investigate the epidemic spreading. 

The rest of the paper is organized as follows: Section 2 derives a SEIRS model 
with time delay mechanism on scale-free networks. Then, Section 3 obtains two 
equilibriums and basic reproductive number. In Section 4, numerical simula-
tions are performed. Finally, we conclude the paper in Section 5. 

2. Model Formulation 
One of the most effective interventions to contain the spread of epidemic dis-
eases is the delay mechanism as discussed above. In order to investigate the 
efficiency of delay mechanism, we consider the new SEIRS model with delay 
mechanism on complex networks. On the complex networks, each individual 
is represented by a node of the network and the edges are the connections 
between individuals along which the infection may spread. Taking the con-
nectivity among different nodes into consideration, let ( )kS t , ( )kE t , ( )kI t  
and ( )kR t  be the relative densities of susceptible, exposed, infected and re-
covered nodes of degree k at time t respectively. In the course of disease 
transmission, a susceptible individual will be infected with probability 

( )1 2β β  if it connects to a exposed (infected) one. r is the state transition rate 
from exposed to infectious individual. The rate constant of recovery for in-
fected individuals is denoted by α . τ , for recovered nodes, is the effectively 
constant of immunity, and there are still recovered nodes, when t  moment 
from t τ−  moment, which will lose the immunity ability to become the sus-
ceptible nodes again. Here, we assume that the birth rate equals the death rate, 
and the rate constant is l . Thus, the dynamic mean-field reaction rate equa-
tions can be written as 
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where the probability ( )1 tΘ  denotes a link pointing to an exposed individual, 
and satisfies 
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The probability ( )2 tΘ  denotes a link pointing to an infected individual, and 
satisfies 

 ( ) ( ) ( )
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1kk
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.  

Where k  describes the average degree and ( )P k  describes the connec-
tivity distribution. ( ) ( ) ( )kkE t P k E t=∑  is the total density of exposed indi-
viduals, and the ( ) ( ) ( )kkI t P k I t=∑  is the total density of infected individuals 
in the whole network. 

For simplicity, through this paper, let ( ) ( ) ( )1 1 2 2t t tρ β β= Θ + Θ  and 
( )kP kP k k= . Thus, the system (1) is equivalent to the following model 
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With the normalization condition, there is 

( ) ( ) ( ) ( ) 1.k k k kS t E t I t R t+ + + =  

Obviously, the initial conditions for system satisfy 

( ) ( ) ( ) ( )0 0 , 0 , 0 , 0 1.k k k kS E I R≤ ≤  

3. Analysis of the Novel SEIRS Model 

In this part, we put forward the analytic solution of system (2) for describing the 
dynamic behavior.  

Theorem 1. Denote  
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The disease-free equilibrium ( )0 1,0,0,0E  of system (2) always exists and 
there exists a positive endemic equilibrium ( ), , ,k k k kE S E I R∞ ∞ ∞ ∞

+  of system (2) 
when 0 1R > . 

Proof. To get the equilibrium solution ( ), , ,k k k kE S E I R∞ ∞ ∞ ∞
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right side of system (2) equal to zero. Then, the equilibrium ( ), , ,k k k kE S E I R∞ ∞ ∞ ∞
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According to the normalization condition 1k k k kS E I R+ + + = , we can get 

 

( ) ( ) ( ) ( )

( )

( )

2 e 1 e

1 e

l l

k
k

k
k

k
k

l

k
k

rl k rl l l k l l r rl
S

B
l k l

E
B

k rlI
B

k r
R

B

τ τ

τ

ρ α ρ α α

α ρ

ρ

α ρ

− −

∞

∞

∞

−
∞

  + + + + + − +  =



+ =

 =

 −
 =


 (5) 

where ( ) ( ) ( )e 1 e .l l
kB rl l k l l r rlτ τα ρ α α− − = + + + + − +   

For ( ) ( ) ( )( )1
1 1 2 2 1 2 1 2k kkt t k kP k E Iρ β β β β β β−= Θ + Θ = + ≤ +∑ , we can 

find that 0ρ =  satisfies Equation (5). Therefore, 1kS =  and 0k k kE I R= = =  
is a disease-free equilibrium of system (2). Substituting kI  and kE  of Equation 
(5) into ρ , we can obtain 

( ) ( )2
2 1 .k

k

l r lk P k
k B

ρ β α β
ρ

+ +  = ∑                (6) 

We suppose  

( ) ( ) ( )2
2 11 k
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f
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ρ
+ +  = − ∑ , 

so that, Equation (6) can be written 

( ) 0.fρ ρ =  
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Due to 
( )d

0
d
f ρ
ρ

>  and ( )1 2 0f β β+ > , the equation ( ) 0f ρ =  has a 

non-trivial solution if and only if ( )0 0f < . 

So, we have 
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Let’s define ( )2 2
k kk P k=∑ , thus, we can compute the base reproduction 

number as follows 
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Namely, there is the unique nontrivial solution if and only if 0 1R > . From 
Equations ((4) and (5)), we are able to obtain 

0 1kS∞< < , 0 1kE∞< < , 0 1kI ∞< < , 0 1kR∞< < . 

So, we define the equilibrium ( ), , ,k k k kE S E I R∞ ∞ ∞ ∞
+ . Hence, when 0 1R > , sys-

tem (2) has a unique positive endemic equilibrium ( ), , ,k k k kE S E I R∞ ∞ ∞ ∞
+ . The 

proof is completed. 
Remark. The basic reproductive number is obtained by (7), which depends on 

different model parameters and fluctuations of the degree distribution. The delay 
parameter cannot change the basic reproductive number. Clearly, in the 
eco-limits of infinite size network the number of nodes grows to infinity, i.e.,  

N →∞ , then 
2k

k
 grows to infinity, so the increase of the basic reproductive 

number, i.e., 
0R →∞ , is obvious.  

Theorem 2. If 0 1R < , the disease-free equilibrium 0E  is globally asymptoti-
cally stable. When 0 1R > , the epidemic disease is permanent, which means 
there exists 0ξ > , such that 
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Thus, the jacobian matrix of the virus-free equilibrium for the system (2) can 
be obtained, the jacobian matrix is a 3 3n n×  matrix, such that 
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We can put forward the characteristic equation of the disease-free equilibrium 
from jacobian matrix, such that 

( ) ( ) ( )1 1 2 0n nl l r p qλ α λ λ λ− −+ + + + + + = , 

where ( ) ( ) 1 nl r l n Pp α β+ + + −=  and  
( )( ) ( ) 1 2 nq l l r l r nPα β βα − + +  = + + . 

Note that 0 1R <  is equivalent to 0q >  which  
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+ + > + +  ∑ , which means that 0p > . Therefore, the  

eigenvalue λ  of J  are all negative if 0 1R < ; otherwise, if and only if 0 1R < , 
here exists a unique positive eigenvalue λ  of J . Using the Perron-Feobenius 
theorem, this suggests that the maximal real part of all eigenvalues of J  is pos-
itive only if 0 1R > . Thus, we can obtain the results of this theorem by using a 
theorem presented of Lajmanovich and York [15]. The proof is completed. 

4. Numerical Simulations and Sensitivity Analysis 

To support and explain our theoretical analysis results, we present several nu-
merical simulations in this section. The system (2) is considered on complex 
networks, whose the degree distribution is ( ) 3P k ck −= , where the parameter 
satisfies 3

1 1n
k ck −
=

=∑ , 1000n = . We suppose ( )0 0.9kS = , ( )0 0.1kE = , 
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( )0 0kI =  and ( )0 0kR = .  
In Figure 1, the parameters are chosen as 1 0.01β = , 2 0.1β = , 0.2l = , 

0.4u = , 0.5r = , thus the threshold value 0 0.4230 1R = < . According to 0 1R < , 
we can see that when 0 1R < , ( )k kE I+  grows to zero, i.e., the infectious indi-
viduals will ultimately disappear. If 0 1R < , the equilibrium 0E  is globally at-
tractive and the disease eventually disappear.  

In Figure 2, the parameters are chosen as 1 0.3β = , 2 0.4β = , 0.2l = , 
0.4u = , 0.5r = , thus the threshold value 0 2.8705 1R = > . We can see that 

when 0 1R > , ( )k kE I+  grows to a constant, i.e., the epidemic disease is per-
manent and the number of infected individuals will converge to a positive con-
stant. 

In Figure 3, the parameters are chosen as 1 0.01β = , 2 0.1β = , 0.2l = , 
0.4u = , 0.5r = , 0 0.4230R = . We can see that the corresponding ( )k kE I+   
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Figure 3. With 0 1R < , the prevalence of ( )kE t  and ( )kI t  versus t  corresponding 
for 100k =  and different parameter τ . 

 

 

Figure 4. With 0 1R > , the prevalence of ( )kE t  and ( )kI t  versus t  corresponding 
for 100k =  and different parameter τ . 
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totically stable; while 0 1R > , the endemic equilibrium is permanent. Moreover, 
increasing delay parameters can result in the weakness of the diseases spreading 
and the decrease of population infected. Numerical simulations show that the 
endemic equilibrium E+  is globally asymptotically stable when 0 1R >  (as 
shown in Figure 2). It is interesting but challenging to discuss the stability of 
equilibrium E+ . We leave it for our future work. This study has valuable guiding 
significance in effectively predicting epidemic spreading.  
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