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Abstract 
A frequent problem in estimating logistic regression models is a failure of the 
likelihood maximization algorithm to converge. Although popular and ex-
tremely well established in bias correction for maximum likelihood estimates 
of the parameters for logistic regression, the behaviour and properties of the 
maximum likelihood method are less investigated. The main aim of this paper 
is to examine the behaviour and properties of the parameters estimates me-
thods with reduction technique. We will focus on a method used a modified 
score function to reduce the bias of the maximum likelihood estimates. We 
also present new and interesting examples by simulation data with different 
cases of sample size and percentage of the probability of outcome variable. 
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1. Introduction 

The logistic regression methods are often used to interpret the statistical analysis 
of dichotomous outcome variables. It is commonly applied procedure for 
describing the relationship between a binary outcome variable. The general 
method of estimating the logistic regression parameter is maximum likelihood 
(ML). In a very general sense the ML method yields values for the unknown 
parameters that maximize the probability of the observed set of data. The 
commonly problem with using ML method is convergence problem, which 
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occurs when the maximum likelihood estimates (MLE) do not exist. The subject 
of the assessment behaviour of MLE for logistic regression model is important, 
as the logistic model is widely used in medical statistics. Much work discusses on 
logistic regression model address converges problem like [1] or the bias 
reduction like [2] [3]. Many assumptions and more details considered about the 
distribution of the coefficients estimated by MLE approach and bias reduction 
technique, and also for more application and effects of the sample size, see [4] 
[5]. However, the behavior and properties of bias correction methods are less 
investigated. A recent paper takes the bias correction technique proposed by [2] 
to achieve the MLE existing. In the present paper, it centers to evaluate the 
behavior and properties of the bias reduction method by simulated data with 
different sample sizes and parameters. The next section, explains the shape and 
fits the logistic regression model. Section 3 discusses clearly the ML convergence 
problem. Application on modified score function in logistic regression model 
will discuss in Section 4 and it illustrates special case of modified function to 
give two equations that are used to estimate the parameters. Section 5 investi- 
gates the asymptotic properties for logistic regression model with making 
compression between estimated parameters with ML method and reduction 
technique by simulated data. The discussion, conclusion and some general 
remarks about the results are in Section 6. 

2. The Logistic Regression Model 

The goal of a logistic regression analysis is to find the best fitting model to 
describe the relationship between an outcome and covariates where the outcome 
is dichotomous. [6] considered the logistic regression model is a member of the 
class of the generalized linear models. For more details of logistic model see [7] 
[8] [9] also [10] [11] [12]. 

The Model 
Suppose now ( )~ binomial ,i i iy m π  where , 1, ,iy i n= �  is a response 

variable. Suppose that { }0,1, ,i iy m∈ �  and iπ  are related to a collection of 
covariates ( )1 2, , ,i i ipx x x�  according to the equation  

T

1
log

1

p
i

j ij i
ji

x xπ β β
π =

 
= = − 
∑                    (1) 

We consider the special case 1im =  so ( )~ binomial 1,i iy π  where iπ  is 
the probability of success for each 1, ,i n= � . We also define T

i ixη β=  so that  
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Here ( ).g  is called the logit link function and T
1

p
i j ij ij x xη β β

=
= =∑  is the 

linear predictor. 
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There are some other link functions which can also be used, instead of the 
logit link function such as the probit link function  

( ) ( )1η π π η−= Φ ↔ = Φ  

and the complementary log-log link function  

( )( ) ( )log log 1 1 exp eηη π π= − − ↔ = − −  

Fitting The Model 
The logistic model when ( )~ binomial ,i i iy m π  with 1im =  can be fitted 

using the method of maximum likelihood to estimate the parameters. The first 
step is to construct the likelihood function which is a function of the unknown 
parameters. we choose those values of the parameters that maximize this 
function. The probability function of the model is  

( ) ( )11 ii yy
i i if y π π −= −                       (4) 

where the likelihood function is  

( ) ( )
1

| |
n

i i i i
i

L y f yπ π
=

=∏                      (5) 

Since the observations are independent, the likelihood function is as follows:  

( ) ( )1
1

| 1 ii
n yy

i i i i
i

L yπ π π −

=

= −∏                    (6) 

The maximum likelihood estimate of β  is the value which maximizes the 
likelihood function. In general the log likelihood function is easier to work with 
mathematically and is:  

( ) ( ) ( )
1

log 1 log 1
n

i i i i
i

l y yπ π
=

 = + − − ∑                (7) 

2.1. Special Case of the Logistic Model with Two Covariates 

In this case the logistic regression model with two covariates, thus, 2p = , with 
one the general mean. So, we have 0β  and 1β , such that  

( ) 0 1i i ig xπ η β β= = +                       (8) 

where ix  is now a scalar covariate and  

( )
( )

0 1

0 1

exp
1 exp

i
i

i
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x

β β
π

β β
+

=
+ +

                     (9) 

Therefore we can write the log-likelihood function as:  

( ) ( ) ( )0 1 0 1 0 1
1

, log 1 exp
n

i i i
i

l y x xβ β β β β β
=

 = + − + + ∑         (10) 

To estimate the values of 0β  and 1β  we differentiate ( )0 1,l β β  in terms of 

0β  and 1β  respectively as:  

( )
( ) ( )0 1
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1 exp
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( )( )
( ) ( )0 1

1 11 0 1

exp
1 exp

n n
i i

i i i i i
i ii

x xl y x y x
x

β β
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β β β= =
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= − = −
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Now we set 
0

0l
β
∂

=
∂

 and 
1

0l
β
∂

=
∂

 and so the maximum likelihood estimates  

of 0β  and 1β  are the solution of the following equations  

1 1

n n

i i
i i

y π
= =

=∑ ∑                          (13) 

and  

1 1

n n

i i i i
i i

y x xπ
= =

=∑ ∑                        (14) 

and will be denoted as 0β̂  and 1̂β . We know that for the logistic regression the 
last two equations are non linear in 0β  and 1β , and we need to use a 
numerical method for their solution, such as Newton-Raphson method. 

2.2. The Asymptotic Distribution of the (MLE) 

The estimated parameters ( )0 1
ˆ ˆ ˆ,β β β ′= , have an asymptotic distribution which 

is given by ( )( )1ˆ ~ ,N Iβ β β −  where ( )I β  is Fisher’s information matrix 
defined as  

( )

2 2

2
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                  (15) 

where the matrix is evaluated at the MLE. For the logistic regression the 
estimated Fisher Information matrix can be writen as  

( )
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where ( )
( )
ˆexp

ˆ
ˆ1 expi

η
π

η
=

+
 and 0 1

ˆ ˆˆ ixη β β= + . The variance of β̂  is approximated  

defined by ( ) ( ) 1ˆ ˆVar Iβ β
−

= . 

3. Maximum Likelihood Convergence Problems 

A problem occurs in estimating logistic regression models when the maximum 
likelihood estimates do not exist and one or more components of β̂  are 
infinite. The one case of the occurrence of this problem is when all of the 
observations have the same response. For example, suppose that 1im =  and 
that all of the response variables equal zero i.e., 1 0n

ii y
=

=∑ . In this case the 
log-likelihood function is  

( ) ( )0 1 0 1
1

, log 1 exp
n

i
i

l xβ β β β
=

 = − + + ∑               (17) 
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Now differentiating ( )0 1,l β β  in terms of 0β  and 1β  respectively and 
setting equal to zero gives  

( )
( )

0 1

1 1 0 1

ˆ ˆexp
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ˆ ˆ1 exp

n n i
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i i i
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The first equation has no solution because it is the sum of positive quantities 
and so cannot be equal to zero and satisfy the equation. To make this equation 
equal to zero we need to make 0β  larger and negative i.e. tend to −∞ . 
However, if precisely one of the response variable equal 1, the result maximum 
likelihood equation become  

1
1

n

i
i
π

=

=∑                         (20) 

1
1

n

i i
i

x xπ
=

=∑                        (21) 

where we have assumed the numbers such that 1 1y = . Here the maximum 
likelihood estimates is exist and the convergence of the MLE is achieved. Because 
the two previous equations are sum of positive quantities equal positive values. 
So as in first equation, if parameter is large and positive, then the sum is larger 
than one as well as if it is large and negative, then the sum is smaller than one 
and will not satisfy the equation, then we can find finite estimate of parameters 
which satisfy the equation. 

4. Modified Score Function 

Firth [2] proposed a method to reduce bias in MLE. The maximum likelihood 
convergence problem does not exist with the modified score function. The idea 
that extend and focus on two standard approaches have been extensively studied 
in the literature. The computationally-intensive jackknife method proposed by 
[13] [14]. The second approach simply substitutes β̂  for the unknown β  in  
( )b
n
β

. The point that discussed in case of small size sets of data, it is not  

uncommon that β̂  is infinite in some samples of logistic regression models 
[15] [16]. We know that the maximum likelihood approach is dependent on the 
derivative the log-likelihood function as a solution to the score equation  

( ) ( ) 0
l

U
β

β
β

∂
= =

∂
                    (22) 

[2] proposed that instead, we solve ( )* 0U β = , where the appropriate 
modification to ( )U β  is:  

( ) ( ) ( ) ( )*U U I bβ β β β= −                  (23) 
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and the expected value of β̂  proposed by [3], is given by:  

( ) ( ) ( )1ˆ ˆE b O nβ β β −= + +                    (24) 

where  

( )

2 3

2 3

22
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2

l l lE E
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lE

β β β
β
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   ∂ ∂ ∂
+   ∂ ∂ ∂   =

  ∂ 
  ∂   

 

The variance of β̂  is approximated defined by ( ) ( ) 1ˆ ˆVar Iβ β
−

� . 

4.1. Modified Function with Logistic Regression Model 

In this part we will apply the modified score function to simple logistic regression 
model. We know that the ( )1O n−  bias vector given in the form  

( ) 1T Tb X WX X Wξ
−

=  which proposed by [17]. Here Wξ  has ith element  
1
2i ih π − 

 
 and ih  is the ith diagonal element of the hat matrix  

( ) 11 2 T T 1 2.H W X X WX X W
−

=  

where ( )( )1i iW diag π π= −  and X  is the design matrix. Then, the modified 
score function is written as  

* TU U X Wξ= −                       (25) 

In this case, the modified score function ( )* * *
0 1,U U U=  gives two equations  

( )*
0

1
1 0

2

n
i

i i i
i

hU y h π
=

  = + − + =    
∑                (26) 

and  

( )*
1

1
1 0

2

n
i

i i i i
i

hU y h xπ
=

  = + − + =    
∑               (27) 

These are used to estimate the parameters. 

4.2. Special Case of Modified Function 

For more evaluation, we will discuss the behaviour of the adjusted score function 
when all the observation have the same response i.e. 1 0n

ii y
=

=∑ . As a special 
case, suppose we have one explanatory variable ix  taking values 0 or 1. Before 
we calculate the adjusted score function, first calculate the form of ih  which we 
obtain from H . Here, ih  is the diagonal element of the H  matrix and is  

( ) ( )2
2 1 01 2i i i i

i

X x X x X
h

π π− − +
=

∆
               (28) 

where 2
0 2 1X X X∆ = − , ( ) ( )0 0 0 0 1 1 11 1X n nπ π π π= − + − , ( )1 1 1 11X nπ π= −  

and ( )2 1 1 11X nπ π= − , where 0n  and 1n  are the number of observations of x 
equal to 0 and 1 respectively. Hence  

( ) ( )0 0 1 1 1
0

1 1n
h

π π π π− −  =
∆

                  (29) 
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and  

( ) ( )1 1 0 0 0
1

1 1n
h

π π π π − − =
∆

                  (30) 

Therefore, when we set the adjusted score function ( )* *
0 1, 0U U =  with  

1 0n
ii y

=
=∑  we have  

( )*
1

1
1 0

2

n
i

i i i
i

hU h xπ
=

 = − + =  
∑                  (31) 

This gives  

( )1
1 11 0

2
h h π − + =  

                     (32) 

and  

( )
1

1
12 1

h
h

π =
+

                        (33) 

Now,  

( )*
0

1
1 0

2

n
i

i i
i

hU h π
=

 = − + =  
∑                   (34) 

and so  

( ) ( )01
1 1 1 1 0 0 0 01 1 0

2 2
nnh n h h n hπ π  − + + − + =     

         (35) 

we get  

( )
0

0
02 1

h
h

π =
+

                       (36) 

Before calculate 0π  and 1π  we can consider the following way to calculate 

0h  and 1h . Let ( )1 1 11A nπ π= −  and ( )0 0 01B n π π= − . Then, 0X A B= + , 

1X A=  and 2X A= , so, we can write ∆  as  

( ) ( )2 2 2
0 2 1 1 1 1 0 0 01 1X X X A AB A AB n nπ π π π∆ = − = + − = = − −   (37) 

Therefore, 0h  and 1h  can be written as  

( ) ( )
( ) ( )

0 0 1 1 1
0

01 1 1 0 0 0

1 1 1
1 1

n
h

nn n
π π π π
π π π π

− −  = =
− −  

              (38) 

and  

( ) ( )
( ) ( )

1 1 0 0 0
1

11 1 1 0 0 0

1 1 1
1 1

n
h

nn n
π π π π
π π π π

 − − = =
− −  

              (39) 

Then, we obtain  

( ) ( ) ( )
0 0

0
0 0 0

1 1
2 1 2 1 1 2 1

h n
h n n

π = = =
+ + +

             (40) 

and  

( ) ( ) ( )
1 1

1
1 1 1

1 1
2 1 2 1 1 2 1

h n
h n n

π = = =
+ + +

              (41) 
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As a result of this example with 0,1x =  when 1 0n
i y
=

=∑ , we can say that, 
the estimate of parameters are finite. The modified function works well and the 
problem of convergence does not exist. 

5. Simulation Study 

The follow discussion are the simulation plan and the designs used in generating 
the data to identify the effect of sample size and proportion of events (the 
percentage of 1y =  or 0y = ) on estimation of parameters. We will examine 
the precision of the estimation by calculating the variance of parameters 
obtained by simulation for the two approaches, MLE and Firth, and compare 
those with ( ) 1I β −

 evaluated at the known values of β . The simulation study 
is designed as follows:  

1) Thre sample sizes have been used 40n = , 120n =  and 500n = . 
2) For each sample size we choose ix  as a draw from ( )0,1N . The x variables 

are fixed at these values throughout the simulation.  
3) We choose 0β  and 1β  to give three cases. Choose 1 0.2β =  and adjust 

0β  so that over the covariates ( )pr 1y =  is approximately (a) 0.5, (b) 0.1, (c) 
0.05. 

4) For each sample size and set of parameter values we perform 100,000 
simulation. 

5) Two approaches are used to estimate the parameters, MLE and the bias- 
reduced estimator Firth. 

5.1. Results and Discussion of Sample Size n = 500 

The simulation reported the accuracy of the estimation of ( )ˆVar β  using the 
information matrix. We calculate ( )0

ˆVar β  and ( )1̂Var β  for the simulated 
values of 0β̂ , 1̂β  and also by evaluating ( )I β  at the known values of β . The 
results in the Table 1, which shows the three cases of the proportion of 1y = , 
achieved the convergence of likelihood maximization alogrithm. 

As can be seen in Table 1, ˆVar Lβ  Sim and ˆVar Fβ  Sim are the variance of 
the parameters estimated by MLE and Firth method respectively. Ratio L and 
Ratio F denote the ratio of the variance estimated by MLE and Firth’s method, 
respectively. The results showed that, both the variance of the parameters 
calculated from the simulation and the variance calculated by evaluating the 
information matrix at the known values of β  are almost the same. We note 
that the ratio in the first case when ( )pr 1y =  is 0.5 appeared nearly close to 
one but in the second case and the last case the ratio appeared slightly larger 
than in the first case. 

The variance of parameters calculated by Firth’s method were smaller than 
when calculated by MLE and the ratio in general was close to 1. Moreover, the 
bias ( ˆ -Fβ β ) was smaller. 

5.2. Results and Discussion of Sample Size n = 120 

In this part using the same way used in the previous case when 500n = . The  
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Table 1. Results of 100,000 simulations with sample size n = 500 and (0.5, 0.1, 0.05) 
propotion of y = 1. 

(a) 

( )pr 1y =  parameter ˆVar Lβ  Sim ˆVar Fβ  Sim ˆVarβ  Inf Ratio L Ratio F 

0.5 0β̂  0.00804 0.00813 0.00809 0.99 1.005 

- 1̂β  0.00869 0.00862 0.00858 1.01 1.04 

0.1 0β̂  0.02407 0.02359 0.02312 1.04 1.02 

- 1̂β  0.02455 0.02439 0.02390 1.03 1.02 

0.05 0β̂  0.04938 0.04560 0.04411 1.12 1.03 

- 1̂β  0.04725 0.04656 0.04525 1.04 1.03 

The variance of the parameters estimated by MLE and Firth with (0.5, 0.1, 0.05) propotion of y = 1. 

(b) 

( )pr 1y =  parameter ˆ -Lβ β  ˆ -Fβ β  

0.5 0β̂  −0.0005 0.0003 

- 1̂β  0.0007 −0.0001 

0.1 0β̂  −0.0210 0.0003 

- 1̂β  0.0004 0.0003 

0.05 0β̂  −0.0400 −0.0011 

- 1̂β  0.0026 0.0007 

The bias value with (0.5, 0.1, 0.05) propotion of y = 1. 

 
results of simulation are shown in Table 2. Maximum likelihood convergence 
problems occurred (when ( )pr 1 0.05y = = ). Note that, there are many situations 
in which the likelihood function has no maximum, in which case we say that the 
maximum likelihood estimate does not exist. Consider the simulation which 
generating the data set 100,000 times, in some cases the coefficients reach to 
infinite in the final iterations and so, we have not results of the estimation 0β̂  
and 1̂β , that result in at which point the algorithm has not converged. In our 
simulation we consider the cases that not achieved the converges algorithm. 

Here for only 99,806 (99%) of the data sets was it possible to obtain finite 
estimates of 0β  and 1β  converged. Moreover, the variance of the parameters 

0β̂  and 1̂β  is large. This is because even though convergence is achieved when 

1 1n
ii y

=
=∑ , There are some very large negative values of β̂ . In the other two 

cases of ( ) ( )pr 1 0.5,0.1y = =  we achieved ML convergence in every simulation. 
We note that the ratio is nearly one but is a bit high when compared with case of 

500n = . Firth’s approach showed reasonable results, all cases achieved the 
maximum likelihood convergence. Moreover, the ratio was better than MLE 
approach as well as the bias ˆ -Fβ β . 

5.3. Results and Discussion of Sample Size n = 40 

We used the same analysis as in the previous cases with 40n = . As can be seen 
in Table 3, the results showed that, MLE approach had convergence problems,  
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Table 2. Results of 100,000 simulations with sample size n = 120 and (0.5, 0.1, 0.05) 
propotion of y = 1. 

(a) 

( )pr 1y =  parameter ˆVar Lβ  Sim ˆVar Fβ  Sim Var Inf Ratio L Ratio F 

0.5 0β̂  0.034 0.0335 0.0337 1.04 0.99 

- 1̂β  0.035 0.0331 0.0326 1.07 1.01 

0.1 0β̂  0.125 0.1037 0.0951 1.32 1.09 

- 1̂β  0.105 0.0942 0.0885 1.27 1.06 

0.05 0β̂  230.94 0.2377 0.1811 - 1.31 

- 1̂β  37.96 0.2003 0.1669 - 1.20 

The variance of the parameters estimated by MLE and Firth with (0.5, 0.1, 0.05) propotion of y = 1. 

(b) 

( )pr 1y =  parameter ˆ -Lβ β  ˆ -Fβ β  

0.5 0β̂  −0.0005 −0.0004 

- 1̂β  0.0056 −0.0002 

0.1 0β̂  −0.0845 −0.0021 

- 1̂β  0.0055 0.0008 

0.05 0β̂  −0.4480 −0.0120 

- 1̂β  0.090 −0.0027 

The bias value with (0.5, 0.1, 0.05) propotion of y = 1. 

 
Table 3. Results of 100,000 simulations with sample size n = 40 and (0.5, 0.1, 0.05) 
propotion of y = 1. 

(a) 

( )pr 1y =  parameter ˆVar Lβ  Sim ˆVar Fβ  Sim Var Inf Ratio L Ratio F 

0.5 0β̂  0.12184 0.1076 0.10780 1.13 0.99 

- 1̂β  0.14889 0.1222 0.11766 1.22 1.04 

0.1 0β̂  215.38 0.3702 0.29139 - 1.27 

- 1̂β  81.22 0.3962 0.34304 - 1.16 

0.05 0β̂  820.47 0.5080 0.55184 - 0.92 

- 1̂β  295.64 0.5936 0.65309 - 0.91 

The variance of the parameters estimated by MLE and Firth with (0.5, 0.1, 0.05) propotion of y = 1. 

(b) 

( )pr 1y =  parameter ˆ -Lβ β  ˆ -Fβ β  

0.5 0β̂  0.0029 −0.0001 

- 1̂β  0.0220 −0.0010 

0.1 0β̂  −1.2000 −0.0150 

- 1̂β  0.3830 −0.014 

0.05 0β̂  −3.9900 0.0440 

- 1̂β  1.288 −0.0940 

The bias value with (0.5, 0.1, 0.05) propotion of y = 1. 
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98,273 (98%) and 85,967 (86%) of data sets achieved ML convergence when 
( )pr 1y =  was (0.1, 0.05), respectively. Convergence was only achieved in every 

simulation in the case of ( )pr 1 0.5y = = , where the ratio was nearly close to 
one, but is a bit high from previous cases. Moreover, we found the same problem 
as discussed in the case of 120n = , in that the variance of the parameters 0β̂  
and 1̂β  is large. However, when we use Firth’s approach, all data sets achieved 
M.L convergence. Moreover, the ratio was better than M.L.E approach as well as 
the bias ˆ -Fβ β  being smaller. 

6. Conclusion 

Attention has been directed in this work to determine the behaviour of the 
asymptotic estimation of parameters by two methods—MLE and bias reduction 
technique compared with the result of the information matrix. In fact in regular 
convergence problem the modified score function appeared appropriate 
behaviour, which denoted that the bias form may be removed from the MLE by 
reduction bias term. The asymptotic variance of the MLE may be appeared as 
strange behaviour, and the results shown variance of the parameters were large 
in some cases, even though convergence is achieved. It is denoted that there are 
some very large negative values of β̂ , as shown in results section. We can report 
that the small sample size and the value of ( )pr 1y =  have an effect on 
behaviour estimation of parameters when using MLE. Clearly, we found conver- 
gence problem for some combinations of sample size and ( )pr 1y = . The 
approach of Firth appeared a moderate results that the data sets in all cases of 
sample size and ( )pr 1y =  achieved ML convergence. Overall, we can consider 
the bias reduction technique is worked well and has a moderate behaviour 
almost with all cases which have been investigated. Moreover, the convergence 
problem is not only effective on behaviour of the MLE, and although the 
convergence is achieved, the variance of the parameters estimates appeared large 
value. 
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