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Abstract 
The p-value is widely used for quantifying evidence in a statistical hypothesis 
testing problem. A major criticism, however, is that the p-value does not sa-
tisfy the likelihood principle. In this paper, we show that a p-value assessment 
of evidence can indeed be defined within the likelihood inference framework. 
Included within this framework is a link between a p-value and the likelihood 
ratio statistic. Thus, a link between a p-value and the Bayes factor can also be 
highlighted. The connection between p-values and likelihood based measures 
of evidence broaden the use of the p-value and deepen our understanding of 
statistical hypothesis testing. 
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1. Introduction 

The p-value is a popular tool for statistical inference. Unfortunately, the p-value 
and its role in hypothesis testing are often misused in drawing scientific conclu-
sions. Concern over the use, and misuse, of what is perhaps the most widely 
taught statistical practice has led the American Statistical Association to craft a 
statement on behalf of its members [1]. For statistical practitioners, a deeper in-
sight into the workings of the p-value is essential for an understanding of statis-
tical hypothesis testing. 

The purpose of this paper is to highlight the flexibility of the p-value as an as-
sessment of statistical evidence. An alleged disadvantage of the p-value is its iso-
lation from more rigorously defined likelihood based measures of evidence. This 
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disconnection leads some to prefer competing measures of evidence, such as li-
kelihood ratio statistics or Bayes factors. However, this disconnection can be 
bridged. In this paper, we draw attention to results establishing the p-value 
within the likelihood inferential framework. 

In Section 2, we discuss the general idea of statistical evidence. In Section 3, 
we consider the likelihood principle and establish the aforementioned connec-
tion with the p-value. In Section 4, we discuss how the link between a p-value 
and the likelihood ratio establishes a link between a p-value and a Bayes factor. 
We close the paper in Section 5 with some concluding remarks on how the 
p-value plays a role in a broader class of hypothesis testing problems than may 
be currently appreciated. 

2. The P-Value and Evidence 

Before going any further, let’s take a moment to think about what is meant by 
statistical evidence. Let’s think of a researcher collecting data on some natural 
phenomenon in order to determine which of two (or more) scientific hypotheses 
is most valid. Data favors a hypothesis when that hypothesis provides a reasona-
ble explanation for what has been observed. Conversely, data provides evidence 
against a hypothesis when what has been observed deviates from what would be 
expected. Scientific evidence is not equivalent to scientific belief. It is not until 
multiple sources of data evidence favor a hypothesis that a foundation of strong 
belief is built. Because belief arises from multiple researchers and multiple stu-
dies, the language for communicating an advancement of scientific knowledge is 
the language of evidence. Thus, quantification of evidence is a core principle in 
statistical science. 

R.A. Fisher is credited with popularizing the p-value as an objective way for 
investigators to assess the compatibility between the null hypothesis and the ob-
served data. The p-value is defined as the probability, computed under the null 
hypothesis, that the test statistic would be equal to or more extreme than its ob-
served value. While the p-value definition is familiar to statistical practitioners, a 
simple example may help focus on the idea of quantifying evidence. Consider a 
scientist investigating a binomial probability .θ  The goal is to test : 1 2oH θ =  
against a lower tail alternative 1 : 1 2.H θ <  So, ( ),1 2X B n  under the null 
hypothesis. In 12n =  trials, 3x =  successes are observed. Since small values 
of X  support the alternative, the p-value is computed to be 

( ) ( )
3 12

0

12
3 1 2 0.0730o

i
p P X

i=

 
= ≤ = = 

 
∑  

The null hypothesis is most compatible with data near the center of the null 
distribution. Data incompatible to the null distribution is then characterized by a 
small p-value. In this way, the p-value serves as an assessment of evidence 
against the null hypothesis. 

The p-value is a probabilistic measure of evidence, but not a probabilistic 
measure of belief. The desire to interpret p  as a probability on the null hypo-
thesis must be resisted. But this leaves open the question of how to represent a  
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Table 1. P-value scale of evidence. 

p evidence against oH  

0.10 

0.05 

0.025 

0.01 

0.001 

borderline 

moderate 

substantial 

strong 

overwhelming 

 
p-value scale of evidence. Fisher recommended the Table 1 [2]. 

The Fisher scale seems to be consistent with common p-value interpretations. 
For our simple example, we can say there is moderate to borderline evidence 
against the null hypothesis. In the end, the choice of an appropriate evidence 
scale should depend on the underlying science, as well as an assessment of the 
costs and benefits for the application at hand [3]. Particularly troublesome to the 
goal of improving scientific discourse is a blind adherence to any threshold se-
parating significant and non-significant results. 

A perceived shortcoming of the p-value as an assessment of evidence can be 
illustrated from our simple example. Note that the p-value is not only a function 
of the data observed ( )3 ,x =  but of more extreme data that has not been ob-
served ( )3 .x <  The definition of the p-value as a tail probability implies that 
the computation of p  depends on the sampling distribution of the test statistic. 
So, the p-value depends on the, perhaps irrelevant, intentions of the investigator, 
and not merely on the data observed. In this way, the p-value is in violation of 
the likelihood principle. We will see in the next section, however, that a p-value 
measure of evidence can be defined to satisfy the likelihood principle. With this 
result, a major criticism of the p-value is answered. 

3. Likelihood Inference 

We will take a relatively informal approach in our introduction to likelihood in-
ference. Readers interested in a more rigorous treatment are encouraged to con-
sult [4] [5]. Simply put, the likelihood principle requires that an evidence meas-
ure satisfy two conditions: sufficiency and conditionality. The sufficiency condi-
tion states that evidence depend on the data only through a sufficient statistic. 
The p-value has no real issue in that regard. The conditionality condition states 
that evidence depends only on the experiment performed, and the data observed, 
not on the intention of the investigator. To see that the p-value fails in this re-
gard, we return to the simple binomial example. Suppose instead of a predeter-
mined sample size 12,n =  the scientist’s intention was to sample until 3x =  
successes were observed. Under this scenario, the number of trials N  is a ran-
dom variable. Under the null hypothesis, ( )3,1 2 .N NB  Since large values of 
N  support the lower tail alternative, the p-value is computed to be  

( ) ( )
12

1
3 1 2 0.0327

2
i

o
i

i
p P N

∞

=
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 
∑  



A. A. Neath 
 

4/11 OALib Journal

Now, we have moderate to substantial evidence against the null. Equivalent 
hypotheses, tested from equivalent data, reach different levels of evidence. 
Computation of the p-value is not invariant to the sampling scheme, even 
though the plan to collect the data is unrelated to the evidence provided from 
what is actually observed. That an unambiguous p-value assessment does not 
seem to be available is a problem we will address. 

The development of an evidence measure which does satisfy the likelihood 
principle proceeds as follows. Let ( )L θ  denote the likelihood as a function of an 
unknown parameter .θ  (For simplicity, we take the single parameter case. Nuis-
ance parameters and parameter vectors can be handled with slight adjustments to 
the development.) Let θ̂  denote the maximum likelihood estimate. We consider 
the problem of testing the null hypothesis :o oH θ θ=  under the likelihood infe-
rence framework. Define the likelihood ratio as ( ) ( ) ( )ˆ .o oLR L Lθ θ θ=  Then 

( )0 1.oLR θ< <  As ( )oLR θ  decreases, data evidence against the null hypothe-
sis increases. In this sense, ( )oLR θ  provides a measure of evidence against the 
null hypothesis in the same spirit as a p-value. 

We return once more to the binomial data. The likelihood ratio is invariant to 
sampling scheme. So, the measure of evidence is the same whether the data 
comes from a binomial or negative binomial. Write 

( ) ( )

( )
1

ˆ ˆ1

n xx

n xx
LR

θ θ
θ

θ θ

−

−

−
=

−
 

where the sample proportion ˆ x nθ =  is the maximum likelihood estimate. For 
testing 1 2oθ =  with observed data 3, 12,x n= =  we compute ˆ 1 4θ =  and 

( ) 0.208.oLR θ =  We can say the data supports the null value at about 20% of 
the level of support to the maximum likelihood estimate. But while we are suc-
cessful in creating a measure of evidence which satisfies the likelihood principle, 
we have lost the familiarity of working with a probability scale. 

It would be desirable to calibrate a likelihood scale for evidence with the more 
familiar p-value scale. We can achieve this goal directly when the likelihood 
function is of the regular case. Let ( ) ( )lnl Lθ θ=  denote the log-likelihood, 
and write its Taylor expansion as 

( ) ( ) ( ) ( ) ( ) ( )2
ˆ

ˆ ˆ ˆ ˆ
2

l
l l l

θ
θ θ θ θ θ θ θ

′′
′= + ⋅ − + ⋅ − +  

The regular case occurs when the log-likelihood can be approximated by a 
quadratic function. Asymptotics for maximum likelihood estimators are derived 
under the conditions leading to the regular case. Since ( )ˆ 0,l θ′ =  then 

( ) ( ) ( )2

2

ˆ1ˆ
ˆ2

l l
θ θ

θ θ
σ

−
≈ −  

where ( )2 ˆˆ 1 lσ θ′′= −  is the reciprocal of the observed Fisher information 

 ( )ˆ .FI l θ′′= −  We can then write the likelihood function at the null value oθ  as 
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( ) ( ) 21ˆ exp
2oL L zθ θ  ≈ ⋅ − 

 
 

where ( )ˆ ˆz θ θ σ= −  is the Wald statistic for testing : .o oH θ θ=  The likelih-
ood ratio statistic becomes 

( ) 21exp .
2oLR zθ  ≈ − 

 
                     (1) 

Let’s introduce a second example to demonstrate the approximation in (1). In 
a well-known example of data collection [6], a statistics class experimented with 
spinning the newly minted Belgian Euro. Spinning instead of tossing a coin is 
more sensitive to unequal weighting of the sides. In 250n =  spins, 140x =  
landed heads side up. Now, the intended sampling scheme is not at all clear from 
the summary provided. But quantifying evidence through the likelihood ratio 
statistic renders the question of experimenter intention unimportant. We have 
ˆ 0.56θ =  and ˆ 0.0314.σ =  For testing : 0.5,oH θ =  we get 1.91.z =  From 

(1), we compute the approximation ( ) 0.161.oLR θ ≈  The exact value of the li-
kelihood ratio statistic is computed as 

( ) ( ) ( )
( ) ( )

140 110

140 110

0.5 0.5
0.165

0.56 0.44
oLR θ = =

 

The use of z  in approximating ( )oLR θ  connects the Wald statistic to the 
likelihood ratio statistic. A z  statistic also leads directly to the calculation of a 
p-value. Since ( )oLR θ  depends on the data through test statistic z  alone, 
then ( )oLR θ  is a function of the corresponding p-value. Therefore, in the reg-
ular case, one can define a p-value which does satisfy the likelihood principle. 
No matter the intended sampling scheme in our example, the p-value for a 
two-sided alternative is seen from the computed Wald statistic to be 0.056.p =  

We will extend the connection between a likelihood ratio statistic and a 
p-value to a more general case. Before that, let’s think about some consequences 
of the regular case. We note that the development could proceed from the 
asymptotics of the likelihood ratio statistic directly. The Wald statistic z  ap-
pears naturally in the regular case, so no extra difficulty is caused by its consid-
eration. Since the likelihood function is invariant to sampling scheme, so is the 
Wald statistic. Specifically, the standard error σ̂  does not depend on the un-
derlying sampling distribution. Let’s demonstrate this by comparing the binomi-
al and negative binomial sampling distributions. In both cases, ˆ .x nθ =  In the 
binomial setting, X  is the random variable with ( ) ( )ˆVar 1 .nθ θ θ= −  The 
estimated variance becomes 

 ( ) ( ) ( )
3

ˆ ˆ1
ˆVar .

x n x
n n

θ θ
θ

− −
= =

 
In the negative binomial setting, N  is the random variable. Applying the 

delta method leads to the asymptotic variance ( ) ( )2ˆVar 1 .A xθ θ θ= −  The es-

timated variance here becomes 
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 ( ) ( ) ( )2

3

ˆ ˆ1
ˆVar .

x n x
A

x n

θ θ
θ

− −
= =

 
Thus, ˆ Varσ =  is identical across sampling schemes. This property holds 

true whenever the likelihood belongs to the regular case. It is interesting to see 
that the variance parameter does depend on the sampling distribution. Test sta-
tistics based on evaluating the variance parameter at the null value are not inva-
riant to the sampling scheme. An example of such a test statistic is the score sta-
tistic. Some prefer the score statistic in hypothesis testing because its error rate 
properties better approximate the stated levels [7]. However, a score statistic 
does not satisfy the likelihood principle. Under the Fisher viewpoint, the goal of 
hypothesis testing is to provide a statistical measure of evidence for the case at 
hand. Error rates for (hypothetical) repeated trials hold no sway under this phi-
losophy. The Wald statistic would thus be preferable under the evidentiary view. 

The arrangement which binds a p-value with the likelihood principle is bene-
ficial to both schools of thought. As mentioned previously, the likelihood ratio 
scale for evidence lacks the familiarity of the p-value scale. The approximation in 
(1) allows one to more easily interpret a likelihood ratio. Translating z  to p  
to LR  leads to an evidential equivalence displayed in Table 2. 

A likelihood ratio near 0.15 is the evidential equivalent of a two-sided p-value 
near 0.05. The 1 in 20 rule applied to the likelihood ratio ( )0.05LR <  would 
translate to a more stringent rule than the 0.05p <  rule prevalent throughout 
much of statistical practice. Table 2 is our link between two seemingly disparate 
approaches to quantifying evidence. 

We still need a way to unambiguously connect the p-value to the likelihood 
ratio for problems outside of the regular case. Evidence measured on the like-
lihood ratio scale is interpreted the same, whether from the regular case or not. 
Thus, we have an unambiguous measure of evidence against a null hypothesis 

:o oH θ θ=  on the likelihood ratio scale. We can read this in Table 2 as the 
right most column. The answer we are looking for can be found by reading Ta-
ble 2 from right to left. For any likelihood ratio statistic, there exists a translated 
z  statistic. Note that such a z  statistic need not actually exist. We are only 

interested in the equivalence to some value on the evidence scale. We can then 
translate this z  into a p-value measure of evidence. In other words, any like-
lihood ratio can be uniquely translated into a p-value. We thus have a p-value, or 
at least an evidential measure on the p-value scale, which satisfies the likelihood 
principle. 

 
Table 2. LR scale of evidence. 

p (one-sided) p (two-sided) z LR 

0.05 

0.025 

0.005 

0.0025 

0.10 

0.05 

0.01 

0.005 

1.645 

1.960 

2.326 

2.576 

0.258 

0.146 

0.067 

0.036 
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Let’s demonstrate the computation of a likelihood based p-value by returning 
one last time to the simple binomial example. The likelihood function is not of 
the regular case, but that does not matter. Earlier in this section, we computed 

( ) 0.208.oLR θ =  We can connect a likelihood ratio to a z  statistic by solving 
(1) as 

( )2ln .oz LR θ= −  

For our problem, we get 1.77.z =  We can easily connect a z  statistic to a 
p-value. Since the alternative hypothesis is one-sided, we can compute 

0.0384.LRp =  No matter the frequentist intention for the experiment, the cal-
culations for LRp  remain the same. The result is an unambiguous p-value cal-
culation. One can use a p-value measure of evidence while adhering to the like-
lihood principle. 

Any testing problem where evidence can be quantified through the likelihood 
function can also be quantified through a uniquely defined measure on the 
p-value scale. We can think of this measure as defining a p-value which does in-
deed satisfy the likelihood principle. 

4. Bayes Factors 

A second deficiency to be addressed is that the p-value as an assessment of evi-
dence accounts only for the direction of the alternative hypothesis, and not for a 
specified alternative value. We will explore this issue further by studying the 
Bayes factor. Let’s demonstrate the use of Bayes factors for quantifying evidence 
through a development analogous to the regular case of the likelihood function. 
Consider a test statistic Z  distributed conditional on parameter δ  as 

( ),1 .Z Nδ δ∼  Under this parameterization, δ  is interpreted as n  times a 
dimensionless measure of effect size. So, the mean of Z  grows with the sample 
size when the effect size is nonzero. 

We are interested in testing the null hypothesis of no effect, : 0.oH δ =  
Taking a Bayesian approach, define ( )0o Pπ δ= =  as the prior probability on 
the null. For now, we take a point prior on the alternative as well; 

( )1 1 ,Pπ δ δ= =  where 1 1.oπ π+ =  The posterior probability on the null con-
ditional on observing Z z=  becomes 

( ) ( )
( ) ( )1 1

o o
o

o o

f z
P H z

f z f z
π

π π
=

+  
where 1,of f  are the null and alternative densities, respectively, for .Z  The 
Bayes factor, ,BF  is introduced by writing the posterior odds as 

( )
( ) 01

11

o o
P H z

BF
P H z

π
π

= ⋅
 

where ( ) ( )01 1 .oBF f z f z=  The Bayes factor is an evidence measure closely re-
lated to likelihood inference. A goal of quantifying evidence is to isolate the data 
information from any prior scientific knowledge on the nature of the phenome-
non under investigation. Within the Bayesian framework, it is reasonable to 
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quantify evidence by the change in probability from the prior (before data) to 
the posterior (after data). The Bayes factor measures this change as the ratio of 
the posterior odds to the prior odds. If 01 1,BF <  the odds in favor of the null 
have decreased, so the data evidence is against the null hypothesis. If 01 1,BF >  
the odds in favor of the null have increased after data observation. The evidence 
from the data is then in favor of the null. (Bayes factors, unlike p-values and li-
kelihood ratio statistics, can be used to determine when evidence favors a null 
hypothesis.) 

Let’s consider a simple example to show why the specification of an alterna-
tive hypothesis matters when defining a measure of evidence. Suppose we are 
testing : 0oH δ =  against the specific alternative 1 : 2.H δ =  Suppose further 
that we observe 1.645.z =  The one-sided p-value of 0.05p =  represents 
moderate evidence against the null according to the Fisher scale. The Bayes fac-
tor is computed to be 01 0.275.BF =  As 01 1,BF <  the data evidence is against 
the null, consistent with the information from the p-value. Now, consider testing 

: 0oH δ =  against the specific alternative 1 : 4.H δ =  Recall that δ  depends 
on the sample size. We can imagine a test here similar to the first, but with a 
larger sample size. Suppose we again observe 1.645.z =  On the surface, it 
would appear that we have replicated the result from the first experiment. Once 
again, there is evidence against the null as judged by the p-value. The Bayes fac-
tor tells us a different story. For the replicated data, we compute 01 4.1.BF =  
Since 01 1,BF >  the data evidence is actually in favor of the null hypothesis. 
Neither hypothesis is particularly compatible with the observed data, but the null 
model provides a better fit than the specified alternative. A small p-value is only 
an indication of the null fit. To properly quantify evidence, one needs an assess-
ment under the alternative hypothesis as well. This idea is summarized in [8]: 
“The clear message is that knowing the data are rare under oH  is of little use 
unless one determines whether or not they are also rare under 1.H ” 

Let’s make the problem more general by taking a continuous prior over the 
alternative values for .δ  Write ( )0 .δ δ π δ≠ ∼  The Bayes factor is now writ-
ten as 

( ) ( )

2

01
2

1exp
2 .

1exp d
2

z
BF

z δ π δ δ

 − 
 =

 − − 
 ∫

                (2) 

It is worth noting that ( )π δ  must be a proper prior in order for the integral 
in (2) to exist. A Bayesian cannot fall back upon objective or noninformative 
priors for testing problems involving a precise null hypothesis. That one must 
specify a proper alternative prior also follows intuitively from our discussion on 
how the Bayes factor as a measure of evidence requires a characterization of the 
alternative. 

The requirement that one must know something specific about the alternative 
hypothesis is not just a consequence from Bayesian testing. An analysis of type II 
error probabilities is also based on a specified alternative. But suppose we resist 
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setting a specific alternative hypothesis. This idea is not new, nor is it without 
merit. Fisher did not consider the specification of an alternative to be an impor-
tant aspect of a testing problem. The feud between Fisher and Neyman was in 
part over the Neyman-Pearson reliance on error rates [9]. One could argue, as 
Fisher did, that the goal of a testing problem should be to identify any evidence 
which contradicts a null hypothesis. Where does this leave us in our attempt to 
link these contrasting philosophies for quantifying evidence? While we will not 
find a complete success in this regard, it does happen that one can partially 
bridge the gap between p-values and Bayes factors. 

As with p-values and likelihood ratio statistics, smaller values of Bayes factor 

01BF  represent greater evidence against the null hypothesis. An evidence scale 
for interpreting a Bayes factor was initially proposed by Jeffreys, then modified 
slightly [10] (see Table 3). 

Let’s continue with our discussion on the regular case. The Bayes factor in (2) 
requires specification of an alternative; a p-value does not. The p-value philoso-
phy is consistent with the idea of searching for evidence across the entirety of the 
alternative space. This idea can be put into play by determining the specific al-
ternative best supported by the observed data. In our problem, that idea trans-
lates into an alternative prior placing full weight at 1 .zδ =  The maximum de-
nominator value of 1 is achieved for this use of a prior. The result is a lower 
bound for the Bayes factor, given by 

2
01

1exp .
2

BF z ≥ − 
 

                      (3) 

We further recognize the right hand side of the inequality in (3) as the like-
lihood ratio statistic from our discussion in Section 3. In fact, one can show that 
the inequality ( )01 oBF LR θ≥  holds for the general problem of testing 

: .o oH θ θ=  We showed how to link the p-value, and z  statistic, to the like-
lihood ratio statistic. We then extend this link to the (minimum) Bayes factor 
through inequality (3). 

An extended discussion of the positive implications which may arise from a 
shift to thinking about p-values in conjunction with Bayes factors is provided in 
[11]. We add to this discussion by noting how the relationship between a p-value 
and a Bayes factor puts the results from Section 3 in a different light. Let’s return 
to the coin spinning example. The p-value for testing the hypothesis of a fair 
coin was computed to be 0.056.p =  The corresponding likelihood ratio statis-
tic, ( ) 0.16,oLR θ =  represents a lower bound on 01.BF  Since small values in- 

 
Table 3. BF scale of evidence. 

BF01 evidence against oH  

0.3 to 1 

0.05 to 0.3 

0.005 to 0.05 

0 to 0.005 

not worth a bare mention 

positive 

strong 

very strong 
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dicate stronger evidence, the likelihood ratio serves as an upper bound on the 
strength of evidence against the null. A Bayes factor 01 0.16BF =  would consti-
tute positive evidence against the null on the Jeffreys scale, similar to a descrip-
tion of moderate evidence as determined from the p-value on the Fisher scale. 
But since the actual Bayes factor 01BF  cannot be reconstructed precisely, a 
bound on the evidence measure is the best one can achieve from the p-value. An 
interpretation of a p-value as a measure of evidence must be tempered by the 
realization that such a measure is computed under the best case scenario for the 
alternative. This is a good reminder for an investigator to be careful about over-
stating evidence summarized through a p-value. 

5. Concluding Remarks 

An understanding of what can be implied from hypothesis testing results is a 
necessary obligation for a conscientious scientist. There is much debate as to the 
role of the p-value in scientific reasoning and discussion. Criticism over the use 
of the p-value tends to focus on its deficiencies in comparison to more rigorous-
ly defined evidential measures. We have seen, however, that a p-value measure 
of evidence can be defined under the likelihood principle. Furthermore, we have 
seen that the information from a p-value is related to a measure of evidence pro-
vided by a Bayes factor. The connection between p-values and likelihood based 
measures of evidence broaden the use of the p-value in statistical hypothesis 
testing. Even if one desires a quantification of evidence through the likelihood 
principle, or through a Bayes factor, the p-value can still be a useful instrument. 
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