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Abstract 
The scheme of creation of systems of the integro-differential equations for evaluation 
of Green’s function in non-uniform elastic boundless medium is described. The 
summand with singularity is allocated. The isotropic medium with constant coeffi-
cient of Poisson and unidimensional inhomogeneous isotropic medium are consi-
dered. 
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1. Introduction 

Transition from differential equations to integral equations (or to integro-differential 
equations) is an alternative possibility of the solution of the differential equations. It is 
sometimes simpler to receive the solution of the integral equation, than differential eq-
uation. 

The general scheme of such transition for one linear differential equation is de-
scribed in work [1] and this scheme easily generalizes for systems of the linear equa-
tions. In work [2] such transition is described for unidimensional inhomogeneous sys-
tem of the linear theory of elasticity. The system of equations with mass forces is not 
described by this case whereas the task about action of single force, i.e. creation of 
Green’s function, gets to this case. The purpose of article is to liquidate this lacune. 
Such work partly repeats calculations of works [2] [3], but it needs to be made in an ex-
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plicit form. 

2. General Scheme: The System of Integral Equations 

Let’s consider nonuniform non-isotropic linearly elastic medium. We enter Cartesian 
coordinate system of xi and we will designate displacements as ui. Small deformations 
are defined by Cauchy’s formulas 

( ), , 2kl k l l ku uε = +                           (2.1) 

where the comma in the inferior index means the derivative on the corresponding 
coordinate. 

Stresses are described by Hooke’s law 

,ij ijkl kl ijkl k lc c uσ ε= =                         (2.2) 

where ( )ijkl ijklc c= x  are modules of elasticity and on the repeating indexes summa-
tion is made. 

Then balance equations in displacements with single forces in the point ξ receive the 
kind 

( ) ( ), ,
0s

ijkl k l ij
c u δ δ+ − =x ξ                      (2.3) 

where s is number of force, i is number of the equation, s
iδ  are Kronecker’s symbols, 

δ  is delta function; displacements of infinity vanish. 
Let’s present elastic modules in the form 

0
ijkl ijkl ijklc c cα ′= +                       (2.4) 

Then (2.3) receives the kind 

( ) ( ) ( )0
, , ,,

0s
ijkl k l ijkl k l ijj

c u c uα δ δ′+ + − =x ξ              (2.5) 

where α is numerical parameter. 
If system 

( ) ( )0
, ,

0s
ijkl k l ij

c v δ δ+ − =x ξ                   (2.6) 

has solution ( ),s
iv x ξ  (Green’s function), then from (2.5) we receive 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,
, d , dt s

i tjkl k l i ij
u c u v V v Vα δ′= + −∫∫∫ ∫∫∫x x xξ ξ ξ ξ η ξ ξ   (2.7) 

where integration is made on all space. 
From (2.7) we have system of integro-differential equations (at s = 1, 2, 3) 

( ) ( ) ( ) ( ) ( ) ( ), ,
, d ,t s

i tjkl k l i ij
u c u v V vα ′− =∫∫∫x x xξ ξ ξ ξ         (2.8) 

For isotropic medium 

( )ijkl ij kl ik jl il jkc λδ δ µ δ δ δ δ= + +                 (2.9) 

where λ and μ are Lame’s coefficients. 
If to accept the condition 

( )0 constijkl ijklc c= =ξ                    (2.10) 
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then Green’s function (Kelvin’s tensor) in an isotropic homogeneous medium has kind 

( ) ( ) ( )
( )

,
41,

16π
s s
i i isv R

R
β

δ
β µ

 
= − 

 
x

ξ
ξ

ξ ξ
          (2.11) 

where ν is Poisson’s coefficient,  

1β ν= −  and ( ) ( ) ( )22 2
1 1 2 2 3 3R x x xξ ξ ξ= − + − + − . 

3. General Scheme: The Series Expansion of Solution 

We look for the solution of system (2.5) in shape 

( )

0

mm
i i

m
u uα

∞

=

= ∑                      (3.1) 

Then (2.5) takes the form 

( )( ) ( )( ) ( )0 1
, ,, ,0 0

0m mm m s
ijkl k l ijkl k l ij jm m

c u c uα α δ δ
∞ ∞

+

= =

′+ + − =∑ ∑ x ξ        (3.2) 

or 

( )( ) ( ) ( )( ) ( )( )0 10 0
, , ,, , ,1

0m ms m
ijkl k l i ijkl k l ijkl k lj j jm

c u c u c uδ δ α
∞

−

=

 ′+ − + + =  ∑x ξ      (3.3) 

From (3.3) at identical degrees α we come to the following set of systems of equations 
at zero boundary conditions 

( )( ) ( )
( )( ) ( )( )

00
, ,

10
, ,, ,

0

0, 1

s
ijkl k l ij

m m
ijkl k l ijkl k lj j

c u

c u c u m

δ δ

−

+ − =

′+ = ≥

x ξ
             (3.4) 

By means of (2.7) and (2.8) of (3.4) we have 
( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )

0

1 , ,

,

, d , 1

s
i i

m s t
i tjkl im k l j

u v

u c u v V m−

=

′= ≥∫∫∫

x x

x x

ξ

ξ ξ ξ
       (3.5) 

In essence, (3.1) and (3.5) is the solution of the equation (2.8) by method of succes-
sive iterations. 

4. Special Case: The Isotropic Medium with  
Constant Coefficient of Poisson 

In these conditions of the balance equations in displacements has the kind 

( ), 0s
i i i iu Qµ θ µ δ δ

ω
+ ∆ + + − =x ξ                  (4.1) 

where ,k kuθ = , 1 2 constω ν= − =  and 

( ) ( )
( ) ( )
( ) ( )

1 ,1 ,1 1,1 ,2 1,2 2,1 ,3 1,3 3,1

2 ,1 1,2 2,1 ,2 ,2 2,2 ,3 2,3 3,2

3 ,1 1,3 3,1 ,2 2,3 3,2 ,3 ,3 3,3

2

2

2

Q u u u u u

Q u u u u u

Q u u u u u

λ θ µ µ µ

µ λ θ µ µ

µ µ λ θ µ

= + + + + +

= + + + + +

= + + + + +

        (4.2) 
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If to rewrite system (4.1) without iQ , then we will receive 

( ), 0s
i i iuµ θ µ δ δ

ω
+ ∆ + − =x ξ                   (4.3) 

The system (4.3) at ν = const has Green’s function 

( ) ( ) ,
1 4,

16π
s s
i i isg R

R
β δ

βµ
 = − 
 

x ξ
ξ

              (4.4) 

It is easy to be convinced of it. If to divide the equations of system (4.3) on μ, then we 
receive 

( ) ( ),
1 1 0s

i i iuθ δ δ
ω µ

+ ∆ + − =x
x

ξ                (4.5) 

and then the solution (4.4) becomes obvious. 
Remark. Expressions (2.11) and (4.4) formally match up, but between them there is 

the important difference. The formula (2.11) is the consequence of the assumption 
(2.10), and the formula (4.4) is the solution of system of equations. 

Now for (4.1) by analogy with (2.5)-(2.8) it is possible to write the system of the in-
tegro-differential equations 

( ) ( ) ( ) ( ) ( ), d ,t s
i t i iu Q g V g− =∫∫∫x x xξ ξ ξ ξ             (4.6) 

5. Some Data on Fourier’s Transformation 

Let’s note some properties of Fourier’s transformation which will be used further. In 
this section and further we will designate Cartesian axials (x, y, z) and Fourier’s trans-
formation by the sign “~” or by the arrow ⇒ . We will determine direct and inversion 
Fourier’s transformations by formulas 

( ) ( ) ( ) ( )1e d , e d
2π

pxi xpif p f x x f x f p p
∞ ∞

−

−∞ −∞

= =∫ ∫          (5.1) 

Transformation of the derivative on x leads to multiplication of the transform on 
( )pi− . 

We have some useful formulas. The Fourier’s transformation of product of functions 
is 

( ) ( ) ( ) ( )1 1d
2π 2π

f x g x f p g f gτ τ τ
∞

−∞

⇒ − = ∗∫  

           (5.2) 

Differentiating the first formula (5.1) on p, we receive 

( ) ( ) ( )d
d

n
nn

n

f p
x f x i

p
⇒ −



                   (5.3) 

We have also formula 

( ) ( ) ( )2 πn nnx i pδ⇒ −                    (5.5) 
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We will determine Fourier’s double transformation by formulas 

( ) ( ) ( )

( ) ( ) ( )
2

, , e d d ,

1, , e d d
4π

px qy i

xp yq i

f p q f x y x y

f x y f p q p q

∞ ∞
+

−∞ −∞

∞ ∞
− +

−∞ −∞

=

=

∫ ∫

∫ ∫





                 (5.6) 

In the axisymmetric case from (5.6) we receive Hankel’s transformation 

( ) ( ) ( ) ( ) ( ) ( )0 0
0 0

d , df rf r J r r f r f J rρ ρ ρ ρ ρ ρ
∞ ∞

= =∫ ∫           (5.7) 

where 2 2r x y= + , 2 2p qρ = +  and 0J  is the Bessel’s function. 

6. Unidimensional Inhomogeneous Medium 

Let’s consider unidimensional inhomogeneous on the axis z medium. Such problems 
matter in sciences of the Earth. Let’s designate displacements on axes (x, y, z) as (u, v, 
w). In these conditions of the balance equations in displacements has the kind 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

, , , , , , 1

, , , , , , 2

, , , , , , , , , 3

0

0

2 0

s
xx xy xz z x z

s
xy yy yz z y z

s
xz yz zz z x y z z z

u v w u w u z

u v w v w v z

u v w w u v w w z

µ µ µ δ δ
ω
µ µ µ δ δ
ω
µ µ λ µ δ δ
ω

+ + + ∆ + + + =

+ + + ∆ + + + =

+ + + ∆ + + + + + =

   (6.1) 

where 1 2ω ν= − , 2λ νµ ω=  and Δ is the Laplacian operator. 
It is possible to apply the general methods stated in Sections 2 and 3 to the solution 

of system (6.1). However, it is better to make double Fourier’s transformation on (x, y) 
according to Section 5. Then (6.1) takes the form 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
, , , , 1

2 2
, , , , 2

2
, , , , , , , , 3

0

0

2 0

s
z zz z z

s
z zz z z

s
z z zz zz z z z z

p u pqv ipw u u ipw u z

pqu q v iqw v v iqw v z

ipu iqv w w w ipu iqv w w z

µ µ ρ µ δ δ
ω
µ µ ρ µ δ δ
ω
µ µ ρ λ µ δ δ
ω

− − − + − + + − + + =

− − − + − + + − + + =

− − + + − + + − − + + + =

      

      

        

 

(6.2) 

Application of the general methods to (6.2) is more reasonable as in this case we re-
ceive system of the one-dimensional integro-differential equations. For the system 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2
, , 1

2 2
, , 2

2
, , , , 3

0

0

0

s
z zz

s
z zz

s
z z zz zz

p u pqv ipw u u z

pqu q v iqw v v z

ipu iqv w w w z

µ µ ρ δ δ
ω
µ µ ρ δ δ
ω
µ µ ρ δ δ
ω

− − − + − + + =

− − − + − + + =

− − + + − + + =

    

    

    

           (6.3) 

with constant elastic moduli Green’s function is Calvin’s tensor (2.11) transformed by 
Fourier’s transformation. 
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As in Section 4, it is possible to investigate the case of constant coefficient of Poisson. 
In this case the system (6.2) can receive other form if to divide the Equations (6.2) on 
( )zµ  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
, , , 1

2 2
, , , 2

2
, , , , , , 3

1 1 0

1 1 0

1 12 0

s
z zz z

s
z zz z

s
z z zz zz z z

p u pqv ipw u u ipw u z

pqu q v iqw v v iqw v z

ipu iqv w w w ipu iqv w w z

ρ κ δ δ
ω µ

ρ κ δ δ
ω µ

ρ ψ κ δ δ
ω µ

− − − + − + + − + + =

− − − + − + + − + + =

− − + + − + + − − + + + =

      

      

        

 

(6.4) 

where ( ),ln zκ µ=  and , 2zψ λ µ νκ ω= = . 

7. Conclusion 

Formulas (2.11) and (4.4) can be considered as zero-order approximation of Green’s 
function for the inhomogeneous medium. These formulas allocate part of the formula 
of Green with singularity. For the half-space it is necessary to apply Mindlin’s tensor [3]. 
It is possible to consider two-dimensional heterogeneity. In Section 6 it is possible to 
apply Fourier’s transformation on the final interval to finite bodies. 
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