Weak Insertion of a Continuous Function between Two Comparable α-Continuous (C-Continuous) Functions*

Majid Mirmiran

Department of Mathematics, University of Isfahan, Isfahan, Iran
Email: mirmir@sci.ui.ac.ir
Received 18 February 2016; accepted 4 March 2016; published 9 March 2016
Copyright © 2016 by author and OALib.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

A sufficient condition in terms of lower cut sets is given for the insertion of a continuous function between two comparable real-valued functions.

Keywords

Weak Insertion, Strong Binary Relation, C-Open Set, Semi-Preopen Set, α-Open Set, Lower Cut Set
Subject Areas: Topology

1. Introduction

The concept of a C-open set in a topological space was introduced by E. Hatir, T. Noiri and S. Yksel in 1996 [1]. The authors define a set S to be a C-open set if $S=U \cap A$, where U is open and A is semi-preclosed. A set S is a C-closed set if its complement is C-open set or equivalently if $S=U \cup A$, where U is closed and A is semi-preopen. The authors show that a subset of a topological space is open if and only if it is an α-open set and a C-open set. This enable them to provide the following decomposition of continuity: a function is continuous if and only if it is α-continuous and C-continuous.

Recall that a subset A of a topological space (X, τ) is called α-open if A is the difference of an open and a nowhere dense subset of X. A set A is called α-closed if its complement is α-open or equivalently if A is union of a closed and a nowhere dense set. Sets which are dense in some regular closed subspace are called semi-preopen or β-open. A set is semi-preclosed or β-closed if its complement is semi-preopen or β-open.

The concept of a set A was β-open if and only if $A \subseteq C l(\operatorname{Int}(C l(A)))$ was introduced by J. Dontchev in 1998 [2].

[^0]Recall that a real-valued function f defined on a topological space X was called A-continuous if the preimage of every open subset of \mathbb{R} belongs to A, where A was a collection of subset of X and this the concept was introduced by M. Przemski in 1993 [3]. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts, the reader might refer to papers introduced by J. Dontchev in 1995 [4], M. Ganster and I. Reilly in 1990 [5].

Hence, a real-valued function f defined on a topological space X is called C-continuous (resp. α-continuous) if the preimage of every open subset of \mathbb{R} is C-open (resp. α-open) subset of X.

Results of Katětov in 1951 [6] and in 1953 [7] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which was due to Brooks in 1971 [8], were used in order to give necessary and sufficient conditions for the strong insertion of a continuous function between two comparable real-valued functions.

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X.

The following definitions were modifications of conditions considered in paper introduced by E. Lane in 1976 [9].

A property P defined relative to a real-valued function on a topological space is a c-property provided that any constant function has property P and provided that the sum of a function with property P and any continuous function also has property P. If P_{1} and P_{2} are c-property, the following terminology is used: A space X has the weak c-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}, then there exists a continuous function h such that $g \leq h \leq f$.

In this paper, it is given a sufficient condition for the weak c-insertion property. Also several insertion theorems are obtained as corollaries of this result.

2. The Main Result

Before giving a sufficient condition for insertability of a continuous function, the necessary definitions and terminology are stated.

Let (X, τ) be a topological space, the family of all α-open, α-closed, C-open and C-closed will be denoted by $\alpha O(X, \tau), \alpha C(X, \tau), C O(X, \tau)$ and $C C(X, \tau)$, respectively.

Definition 2.1. Let A be a subset of a topological space (X, τ). Respectively, we define the α-closure, α-interior, C-closure and C-interior of a set A, denoted by $\alpha \operatorname{Cl}(A), \alpha \operatorname{Int}(A), \operatorname{CCl}(A)$ and $\operatorname{CInt}(A)$ as follows:

$$
\begin{aligned}
& \alpha C l(A)=\cap\{F: F \supseteq A, F \in \alpha C(X, \tau)\} \\
& \alpha \operatorname{Int}(A)=\cup\{O: O \subseteq A, O \in \alpha O(X, \tau)\} \\
& \operatorname{CCl}(A)=\cap\{F: F \supseteq A, F \in C C(X, \tau)\} \\
& \text { and } \\
& \operatorname{CInt}(A)=\cup\{O: O \subseteq A, O \in C O(X, \tau)\}
\end{aligned}
$$

Respectively, we have $\alpha \operatorname{Cl}(A), \operatorname{CCl}(A)$ are α-closed, semi-preclosed and $\alpha \operatorname{Int}(A), \operatorname{CInt}(A)$ are α-open, semi-preopen.

The following first two definitions are modifications of conditions considered in [6] [7].
Definition 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set $P(X)$ of a topological space X is called a strong binary relation in $P(X)$ in case ρ satisfies each of the following conditions:

1) If $A_{i} \rho B_{j}$ for any $i \in\{1, \cdots, m\}$ and for any $j \in\{1, \cdots, n\}$, then there exists a set C in $P(X)$ such that $A_{i} \rho C$ and $C \rho B_{j}$ for any $i \in\{1, \cdots, m\}$ and any $j \in\{1, \cdots, n\}$.
2) If $A \subseteq B$, then $A \bar{\rho} B$.
3) If $A \bar{\rho} B$, then $C l(A) \subseteq B$ and $A \subseteq \operatorname{Int}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined [8] as follows:
Definition 2.4. If f is a real-valued function defined on a space X and if
$\{x \in X: f(x)<\ell\} \subseteq A(f, \ell) \subseteq\{x \in X: f(x) \leq \ell\}$ for a real number ℓ, then $A(f, \ell)$ is called a lower indefinite cut set in the domain of f at the level ℓ.

We now give the following main result:
Theorem 2.1. Let g and f be real-valued functions on a topological space X with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$, then there exists a continuous function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by $F(t)=A(f, t)$ and $G(t)=A(g, t)$. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \bar{\rho} F\left(t_{2}\right), G\left(t_{1}\right) \bar{\rho} G\left(t_{2}\right)$, and $F\left(t_{1}\right) \rho G\left(t_{2}\right)$. By Lemmas 1 and 2 of [7] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_{1} and t_{2} are any rational numbers with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \rho H\left(t_{2}\right), H\left(t_{1}\right) \rho H\left(t_{2}\right)$ and $H\left(t_{1}\right) \rho G\left(t_{2}\right)$.

For any x in X, let $h(x)=\inf \{t \in \mathbb{Q}: x \in H(t)\}$.
We first verify that $g \leq h \leq f$: If x is in $H(t)$ then x is in $G\left(t^{\prime}\right)$ for any $t^{\prime}>t$; since x is in $G\left(t^{\prime}\right)=A\left(g, t^{\prime}\right)$ implies that $g(x) \leq t^{\prime}$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in $H(t)$, then x is not in $F\left(t^{\prime}\right)$ for any $t^{\prime}<t$; since x is not in $F\left(t^{\prime}\right)=A\left(f, t^{\prime}\right)$ implies that $f(x)>t^{\prime}$, it follows that $f(x) \geq t$. Hence $h \leq f$.
Also, for any rational numbers t_{1} and t_{2} with $t_{1}<t_{2}$, we have $h^{-1}\left(t_{1}, t_{2}\right)=\operatorname{Int}\left(H\left(t_{2}\right)\right) \backslash C l\left(H\left(t_{1}\right)\right)$. Hence $h^{-1}\left(t_{1}, t_{2}\right)$ is an open subset of X, i.e., h is a continuous function on X.

The above proof used the technique of proof of Theorem 1 of [6].

3. Applications

The abbreviations αc and $C c$ are used for α-continuous and C-continuous, respectively.
Corollary 3.1. If for each pair of disjoint α-closed (resp. C-closed) sets F_{1}, F_{2} of X, there exist open sets G_{1} and G_{2} of X such that $F_{1} \subseteq G_{1}, F_{2} \subseteq G_{2}$ and $G_{1} \cap G_{2}=\varnothing$ then X has the weak c-insertion property for $(\alpha c, \alpha c)$ (resp. ($C c, C c)$).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are αc (resp. Cc), and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $\alpha \operatorname{Cl}(A) \subseteq \alpha \operatorname{Int}(B)$ (resp. $\operatorname{CCl}(A) \subseteq \operatorname{CInt}(B)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
A\left(f, t_{1}\right) \subseteq\left\{x \in X: f(x) \leq t_{1}\right\} \subseteq\left\{x \in X: g(x)<t_{2}\right\} \subseteq A\left(g, t_{2}\right) ;
$$

since $\left\{x \in X: f(x) \leq t_{1}\right\}$ is an α-closed (resp. C-closed) set and since $\left\{x \in X: g(x)<t_{2}\right\}$ is an α-open (resp. C-open) set, it follows that $\alpha \operatorname{Cl}\left(A\left(f, t_{1}\right)\right) \subseteq \alpha \operatorname{Int}\left(A\left(g, t_{2}\right)\right) \quad$ (resp. $\left.\operatorname{CCl}\left(A\left(f, t_{1}\right)\right) \subseteq \operatorname{CInt}\left(A\left(g, t_{2}\right)\right)\right)$. Hence $t_{1}<t_{2}$ implies that $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$. The proof follows from Theorem 2.1.
Corollary 3.2. If for each pair of disjoint α-closed (resp. C-closed) sets F_{1}, F_{2}, there exist open sets G_{1} and G_{2} such that $F_{1} \subseteq G_{1}, \quad F_{2} \subseteq G_{2}$ and $G_{1} \cap G_{2}=\varnothing$ then every α-continuous (resp. C-continuous) function is continuous.

Proof. Let f be a real-valued α-continuous (resp. C-continuous) function defined on the X. Set $g=f$, then by Corollary 3.1, there exists a continuous function h such that $g=h=f$.

Corollary 3.3. If for each pair of disjoint subsets F_{1}, F_{2} of X, such that F_{1} is α-closed and F_{2} is C-closed, there exist open subsets G_{1} and G_{2} of X such that $F_{1} \subseteq G_{1}, F_{2} \subseteq G_{2}$ and $G_{1} \cap G_{2}=\varnothing$ then X have the weak c-insertion property for $(\alpha c, C c)$ and ($C c, \alpha c$).

Proof. Let g and f be real-valued functions defined on the X, such that g is $a c$ (resp. $C c$) and f is $C c$ (resp. $a c$), with $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $\operatorname{CCl}(A) \subseteq \alpha \operatorname{Int}(B)$ (resp. $\alpha \operatorname{Cl}(A) \subseteq \operatorname{CInt}(B)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
A\left(f, t_{1}\right) \subseteq\left\{x \in X: f(x) \leq t_{1}\right\} \subseteq\left\{x \in X: g(x)<t_{2}\right\} \subseteq A\left(g, t_{2}\right) ;
$$

since $\left\{x \in X: f(x) \leq t_{1}\right\}$ is a C-closed (resp. α-closed) set and since $\left\{x \in X: g(x)<t_{2}\right\}$ is an α-open (resp.
C-open) set, it follows that $\operatorname{CCl}\left(A\left(f, t_{1}\right)\right) \subseteq \alpha \operatorname{Int}\left(A\left(g, t_{2}\right)\right) \quad$ (resp. $\alpha \operatorname{Cl}\left(A\left(f, t_{1}\right)\right) \subseteq \operatorname{CInt}\left(A\left(g, t_{2}\right)\right)$). Hence $t_{1}<t_{2}$ implies that $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$. The proof follows from Theorem 2.1.

Acknowledgements

This research was partially supported by Centre of Excellence for Mathematics(University of Isfahan).

References

[1] Hatir, E., Noiri, T. and Yksel, S. (1996) A Decomposition of Continuity. Acta Mathematica Hungarica, 70, 145-150. http://dx.doi.org/10.1007/BF00113919
[2] Dontchev, J. (1998) Between α - and β-Sets. Mathematica Balkanica, 12, 295-302.
[3] Przemski, M. (1993) A Decomposition of Continuity and α-Continuity. Acta Mathematica Hungarica, 61, 93-98. http://dx.doi.org/10.1007/BF01872101
[4] Dontchev, J. (1995) The Characterization of Some Peculiar Topological Space via α - and β-Sets. Acta Mathematica Hungarica, 69, 67-71. http://dx.doi.org/10.1007/BF01874608
[5] Ganster, M. and Reilly, I. (1990) A Decomposition of Continuity. Acta Mathematica Hungarica, 56, $299-301$. http://dx.doi.org/10.1007/BF01903846
[6] Katĕtov, M. (1951) On Real-Valued Functions in Topological Spaces. Fundamenta Mathematicae, 38, 85-91.
[7] Katětov, M. (1953) Correction to, "On Real-Valued Functions in Topological Spaces". Fundamenta Mathematicae, 40, 203-205.
[8] Brooks, F. (1971) Indefinite Cut Sets for Real Functions. The American Mathematical Monthly, 78, 1007-1010. http://dx.doi.org/10.2307/2317815
[9] Lane, E. (1976) Insertion of a Continuous Function. Pacific Journal of Mathematics, 66, 181-190. http://dx.doi.org/10.2140/pjm.1976.66.181

[^0]: *This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).

