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Abstract 
Introduction: Type 2 Diabetes Mellitus (T2DM) is a complex disorder caused by the interaction 
between genetic predisposition and environmental factors. Genetics plays an important role on li-
pid homeostasis. Many genes are involved in the lipid metabolism, such as FABP-2 and PPAR-γ. 
Aim: To evaluate the association between specific SNPs and haplotypes of the FABP-2 and PPAR-γ 
genes with T2DM and lipid profile in an Argentinean population. Methods: The FABP-2 (rs1799883) 
and PPAR-γ (rs1801282) polymorphisms were genotyped and analyzed in association with lipid 
profile and T2DM, separately and also combined in haplotypes. Results: The frequency of the rare 
Thr54 allele of the FABP-2 polymorphism in control (0.33) was not different from the frequency in 
T2DM (0.27), whereas the frequency of the rare Ala12 allele of the PPAR-γ polymorphism in con-
trol was different from the frequency in T2DM (0.26 and 0.14, respectively; p = 0.0031). Frequen-
cies of haplotypes for these two single-nucleotide polymorphisms differed significantly in control 
and T2DM. Haplotype association analysis showed the associations between ThrPro haplotype 
and TG levels (OR = 2.520; 95% CI = 1.139 - 5.575; p = 0.027) and between ThrPro haplotype and 
TC and LDL-c levels when compared to AlaPro haplotype (difference = 0.175, 95% CI = 0068 - 
0.499, p < 0.0001; difference = 0.052, 95% CI = 0.017 - 0.158, p < 0.0001, respectively). Conclu-
sions: These results from a haplotype analysis show for the first time that genetic combinations of 
alleles of the FABP-2 and PPAR-γ gene could play a role in the susceptibility to develop dyslipemia 
in T2DM. 
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1. Introduction 
According to the World Health Organization (WHO), 346 million people worldwide have diabetes [1]. The na-
tionwide prevalence of diabetes in Argentina now tops 8.5%, and is as high as 11.9% [2]. Type 2 diabetes mel-
litus (T2DM) accounts for almost 90% of all cases of diabetes in adults worldwide. 

T2DM is characterized by a cluster of metabolic dysfunctions and cardiovascular risk factors, such as obesity, 
insulin resistance, dyslipidemia, atherosclerosis, hypertension, prothrombotic state, and endothelial dysfunction 
collectively known as the metabolic syndrome [3]. Environmental factors (e.g., obesity and sedentary lifestyles) 
give rise to T2DM [4]. 

It is well-known that high LDL-cholesterol (LDL-c) and triglycerides (TG) levels and low HDL-cholesterol 
(HDL-c) levels are strong predictable factors for cardiovascular events [5]. Thus, a dysregulation of metabolic 
homeostasis, together with an inadequate diet and lifestyle habits leads to alterations in lipid and lipoprotein 
profiles. The exact cause of dyslipidemia is not known. Genetics plays an important role on lipid homeostasis. 

Many genes are involved in the regulation of exogenous and endogenous TGs [6] [7]. Some of the best de-
scribed gene products act during intestinal absorption of dietary fat [fatty acid-binding protein-2 (FABP-2)] and 
the storage of excess free fatty acids [peroxisome proliferator-activated receptor γ (PPAR-γ)]. The occurrence of 
genetic polymorphisms in genes of molecules is strictly involved in regulation of fatty acid uptake and β-oxidation 
can have influence on lipid homeostasis, acting as risk factors for metabolic disturbances [8].  

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of sev-
eral biochemical pathways such as lipid and carbohydrate metabolism, lipoprotein synthesis, adipogenesis and 
insulin sensitivity [9] [10]. PPAR-γ is a transcription factor with a key role in adipogenesis and insulin sensitiza-
tion [11]. Frequent mutations in the PPAR-γ gene have been described to be associated with obesity and di-
abetes-related phenotypes [12]-[14]. The common structural polymorphism with a proline (Pro) to alanine (Ala) 
substitution has been identified as a functional variant. Compared with the Pro allele, the Ala allele associates 
with reduced activity of PPAR-γ [12]. This polymorphism was extensively investigated for association with ob-
esity and type 2 diabetes and is considered to be one of the best replicated genetic risk factors of common type 2 
diabetes, carrying the Ala variant being protective against type 2 diabetes [15]-[17]. 

Absorption of fatty acids (FA) across the intestinal mucosa, especially long-chain FA, is carried out by the 
intestinal FA-binding protein (FABP) encoded by the FABP-2 gene [18]. A polymorphism at codon 54 of the 
FABP-2 gene, changing alanine to threonine (Ala54Thr), increases the affinity of intestinal FABP for long-chain 
FA [19]. In subjects without diabetes, the presence of the Ala54Thr polymorphism has been associated with in-
creases in serum postprandial lipids [20]-[23]. Patients with type 2 diabetes, in addition to frequently exhibiting 
increased serum fasting triglycerides and decreased high-density lipoprotein cholesterol, also have increased 
postprandial serum triglycerides [24]. 

The purpose of the present study was to evaluate the association between specific SNPs and haplotypes of the 
FABP-2 and PPAR-γ genes with T2DM and lipid profile in the Santa Rosa del Conlara populations, San Luis, 
Argentina. 

2. Materials and Methods 
2.1. Study Population 
The present study was carried out in accordance to the guidelines of the Helsinki Declaration. A total of 192 vo-
lunteers (100 patients with type 2 diabetes and 92 healthy age-matched controls) participated in this investiga-
tion. Criteria published by the Report of the Committee on the Classification and Diagnostic Criteria of Diabetes 
Mellitus, were used to diagnose Type 2 Diabetes Mellitus [25]. These patients reside in Santa Rosa del Conlara, 
San Luis, Argentina. The protocol for this study was approved by the local Institutional Review Board, and a 
written informed consent was obtained from each patient to be enrolled. Exclusion criteria included renal, he-
patic or cerebrovascular disorders or endocrinal disorders, females on estrogen therapy and chronic disorders, as 
well as the use of lipid-lowering drugs, which can affect glucose metabolism and/or increase insulin resistance. 
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2.2. Anthropometric and Clinical Data 
For each subject enrolled, were sized height (meters) and weight (Kg) measurements. Height and weight were 
measured to the nearest 0.5 cm and 0.1 Kg, respectively. The body mass index (BMI) was calculated as weight 
divided by height squared (Kg/m2).  

2.3. Blood Sampling 
Blood samples were obtained from patients that had fasted overnight for a minimum of 12 h. Blood was col-
lected in tubes containing 0.1% EDTA. Plasma and blood cells were separated by centrifugation at 2400 rpm for 
20 min at room temperature. Plasma and packed blood cells were aliquoted and stored at −20˚C until use. 

2.4. Biochemical Measurement 
Fasting plasma glucose (FPG) was measured by using a glucose oxidase method with a commercial enzymatic 
kit (Wiener Laboratories, Rosario, Argentina). Glycated hemoglobin (HbA1c) concentration was measured with 
a coupled ionic-exchange chromatography/spectrophotometric assay (BioSystems, Barcelona, Spain). Total 
cholesterol (TC), triglycerides (TG) and HDL-c concentrations were measured using commercial kits by fol-
lowing manufacturer’s instructions (Wiener Laboratories). Low density lipoprotein-cholesterol (LDL-c) was 
calculated with the Friedewald formula: LDL-c = total cholesterol (mg/dL) − HDL-c (mg/dL) − triglycerides 
(mg/dL)/5 [26].  

2.5. Definitions 
The criteria for lipid and lipoprotein levels were according to the National Cholesterol Education Program [27]. 
Participants were diagnosed with dyslipidemia if they had one or more of the following criteria: a plasma con-
centration of TC of ≥6.24 mmol/L (≥240 mg/dL), plasma concentration of TG ≥ 2.26 mmol/L (≥198 mg/dL); 
plasma concentration of HDL-c of <1.04 mmol/L (<40 mg/dL) for men or <1.30 mmol/L (<50 mg/dL) for 
women; and a plasma concentration of LDL-c ≥4.14 mmol/L (≥160 mg/dL). 

2.6. Genotyping 
DNA was extracted from packed blood cells using the Qiagen QiAmp Mini Kit (Valencia, CA). PCR amplifica-
tions and genotype determinations were conducted as follows: 

FABP-2 (Ala54Thr). Ala54Thr (G/A) in exon 2 of FABP2 (rs1799883). DNA was amplified in a total vo-
lume of 20 μl containing 100 ng of genomic DNA, 20 pmol of each primer and 1 unit of AmpliTaq Gold DNA 
polymerase (Perkin-Elmer, Waltham, MA). These reactions were performed in a buffer containing 1.5 mmol/L 
MgCl2, 50 mmol/L KCl, 20 mmol/L Tris-HCl (pH 8.4), and 200 pmol/L of each deoxynucleotide triphosphate. 
The primers were as follows: forward primer: 5’ACAGGTGTTAATATAGTGAAAAG3’ and reverse primer: 
5’TACCCTGAGTTCAGTTCCGTC3’ [19]. The template DNA was denatured for 3 minutes at 95˚C before 
undergoing 30 cycles of amplification. Each amplification cycle included: denaturation for 30 seconds at 95˚C, 
primer annealing for 30 seconds at 55˚C, and extension for 45 seconds at 72˚C; followed by a final extension at 
72˚C for 3 minutes. For Restriction Fragment Length Polymorphism (RFLP) analysis, 5 μl of PCR product were 
incubated with 0.4 μl of enzyme CfoI (10 U/μl, Promega, Madison, WI) in a final volume of 10 μl for 1 hour at 
37˚C. The products were run on a 10% non-denaturing PAGE for 50 minutes at 110 V. Bands were observed 
after Ethidium bromide staining and UV light exposure. Visualization of two DNA fragments of the CfoI treated 
amplicon at 99 and 81 bp indicates a G allele (Ala54—presence of the restriction site), whereas an intact 180 bp 
indicates an A allele (Thr54—absence of the restriction site) (Figure 1). 

PPAR-γ (Pro12Ala). The PPAR-γ polymorphism (rs1801282) Pro12Ala (C/G) was analyzed by Tetra Primer 
AMRS-PCR [28]. Two pairs of primers were used, one which amplifies a fragment of 553 bp, common to both 
alleles (outer primers: forward 5’AGACAGTGTGGCAATATTTTCCCTGTAA3’ and reverse 5’GGTTC 
TGAACATGTTTTTAAATGAACGC3’ and another pair specific for the SNP (inner primers): forward 
5’GAAACTCTGGGAGATTCTCCTATTGTCC3’ for the C allele (Pro12) and reverse 5’GTATCAGTGA 
AGGAATCGC TTTCAGC3’ for the G allele (Ala12). Nucleotide sequence and SNP details were obtained from 
NCBI website (http://www.ncbi.nlm.nih.gob). The primers were designed “in silico” in a free access web  
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(a)                                               (b) 

Figure 1. Representative gels of polymorphisms. (a) PCR-RFLP non-denaturing PAGE gel 
after digestion with CfoI enzyme. The 180 bp band corresponds to the G allele (Ala) and the 
99 and 81 bp bands correspond to the A allele (Thr) of the FABP2 gene; (b) Results of 
PPAR-γ genotyping by Tetra Primer ARMS-PCR. The 553 bp band is the product of the 
outer primers, the 354 bp band, of an outer primer and the inner primer for allele G (Ala) and 
the 253 bp band, of the other outer primer and the inner primer for the C allele (Pro). 

 
(http://cedar.genetics.soton.ac.uk) and then checked for specificity (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Each 
PCR reaction was carried out in a total volume of 35 μL, containing 200 ng of template DNA, 10 pmol of each 
inner primer, 1 pmol of each outer primer (1:10 ratio of outer to inner primer), 200 μM dNTPs, 2.5 mM MgCl2, 
1× buffer, and 1 unit of AmpliTaq Gold DNA polymerase (Perkin-Elmer). The template DNA was denatured for 
3 minutes at 95˚C before undergoing 35 cycles of denaturation for 1 minute at 95˚C, primer annealing for 1 
minute at 61˚C, and extension for 1 minute at 72˚C, and final extension at 72˚C for 3 minutes. The resultant 
products obtained after PCR were separated by electrophoresis on 2.5% agarose gel containing GelRed. The 
image was visualized and photographed under UV transillumination. This resulted in 3 DNA fragments: one of 
553 bp, one of 253 bp for the C allele (Pro12) and one of 354 bp for the G allele (Ala12) (Figure 1). 

Randomly selected 20% of samples were re-genotyped for cross validating initial genotypes. In case of un-
clear genotyping results, the samples were repeated again in duplicates till clear genotype was available. Unclear 
genotyping results, even after repetition was excluded from the study. No genotyping error was observed during 
cross validation. 

2.7. Statistical Analysis 
Allele frequencies for SNPs were calculated by allele counting. Chi square test was used to check adjustment of 
the data to the Hardy-Weinberg equilibrium and to compare the allelic frequencies between controls and diabetic 
subjects. Comparison of allele frequencies and genotype distributions between case and control samples were 
done by Pearson’s chi-square test. To analyze the association between genotypes, clinical and biochemical pa-
rameters a Student t-test was used when variables were continuous, whereas a Fisher’s exact test was used for 
the categorical variables. Tests for association of each SNP or haplotype with T2DM were performed by using 
the SNPStat software. A p < 0.05 was considered to be statically significant. 

3. Results 
3.1. Subject Characteristics 
The anthropometric and clinical characteristics of the subjects in our study are shown in Table 1. 

Table 2 provides detailed information of the selected SNPs, including their features, allelic variants, and the 
minor allele frequencies. 

The frequencies of the Ala54Ala, Ala54Thr and Thr54Thr genotypes in the whole population of the FABP-2 
polymorphism were 47.92%, 44.79% and 7.29%, respectively, while the frequencies of Pro12Pro, Pro12Ala and 
Ala12Ala genotypes of the PPAR-γ polymorphism were 66.67%, 27.08% and 6.25%, respectively. The distribu-
tion and the allele frequency of the 2 polymorphisms followed the Hardy-Weinberg equilibrium. 

3.2. Inheritance Model 
When genotypes of FABP-2 were associated with T2DM according to all possible genetic models, no associa-
tion of FABP-2 Ala54Thr polymorphism was found with T2DM according to any genetic model used (Table 3).  
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Table 1. General characteristics of the studied subjects. 

 Control subjects (n = 92) Diabetic subjects (n = 100) p 

Age (years) 55.45 ± 12.16 59.12 ± 8.41 0.1808 

BMI (kg/m2) 27.11 ± 5.31 33.35 ± 8.70 <0.0001 

FPG (mg/dL) 87.52 ± 15.65 209.13 ± 125.24 <0.0001 

HbA1c (%) 5.41 ± 0.66 8.78 ± 2.95 <0.0001 

TC (mg/dL) 197.93 ± 28.74 257.84 ± 61.18 <0.0001 

HDL-c (mg/dL) 44.87 ± 5.49 39.34 ± 6.94 0.0093 

LDL-c (mg/dL) 113.98 ± 31.27 140.12 ± 49.50 0.0023 

TG (mg/dL) 154.52 ± 53.25 250.74 ± 86.89 0.0001 

Data are shown as mean ± SD. Abbreviations used: BMI, body mass index; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; TC, total 
cholesterol; HDL, high density lipoprotein; LDL, low density lipoprotein; TG, triglycerides. 
 
Table 2. Description of the selected SNPs for FABP-2 and PPAR-γ genes. 

SNP ID Chromosome Position Exon/Intron Substitution Functional  
Consequence MAFa 

FABP-2 rs1799883 4 120241902 Exon 2 G/A Missense 0.30 

PPAR-γ rs1801282 3 12393125 Exon A1 C/G Missense 0.25 
aMAF in the total group of this study. MAF, minor allele frequency; SNP, single nucleotide polymorphism. 
 
Table 3. Frequencies of FABP2 genotypes according to Type 2 Diabetes Mellitus. 

Modela Genotypeb Control subjects  
n (%)c 

Diabetic subjects  
n (%)c p Hom ORd (95% CI) 

Codominant 

AlaAla 42 (45.6) 50 (50.0) 

0.31 

1 

AlaThr 40 (43.5) 46 (46.0) 0.94 (0.41 - 2.20) 

ThrThr 10 (10.9) 4 (4.0) 0.27 (0.05 - 1.60) 

Dominant 
AlaAla 42 (45.6) 50 (50.0) 

0.60 
1 

AlaThr/ThrThr 50 (54.4) 50 (50.0) 0.80 (0.36 - 1.81) 

Recessive 
AlaAla/AlaThr 82 (89.19 96 (96.0) 

0.12 
1 

ThrThr 10 (10.9) 4 (4.0) 0.28 (0.05 - 1.56) 

Overdominant 
AlaAla/ThrThr 52 (56.5) 54 (54.0) 

0.80 
1 

AlaThr 40 (43.5) 46 (46.0) 1.11 (0.49 - 2.51) 

Log-additive - - - 0.29 0.70 (0.36 - 1.36) 

aInherintance models; bGenotypes and their groupings for the FABP-2 polymorfism (rs1799883); cGenotype frequency expressed as number of indi-
viduals, n-values in parentheses indicate percentage; dOR = odds ratio, 95% CI = 95% confidence interval. 
 

For the PPAR-γ polymorphism, no association was found with T2DM according to any genetic model used 
(Table 4). 

As shown in Table 5, the frequency of the rare Thr54 allele of the FABP-2 polymorphism in control (0.33) 
was not different from the frequency in T2DM (0.27), whereas the frequency of the rare Ala12 allele of the 
PPAR-γ polymorphism in control was different from the frequency in T2DM (0.26 and 0.14, respectively; p = 
0.0031). 

Due to very low frequencies of the homocygotes genotypes, the Thr54Thr of the FABP-2 and the Ala12Ala of  
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Table 4. Frequencies of PPAR-γ genotypes according to Type 2 Diabetes Mellitus. 

Modela Genotypeb Control subjects 
n (%)c 

Diabetic subjects 
n (%)c p Hom ORd (95% CI) 

Codominant 

ProPro 52 (56.5) 76 (76.0) 

0.19 

1 

ProAla 32 (34.8) 20 (20.0) 0.46 (0.18 - 1.18) 

AlaAla 8 (8.7) 4 (4.0) 0.38 (0.06 - 2.25) 

Dominant 
ProPro 52 (56.5) 76 (76.0) 

0.069 0.44 (0.18 - 1.08) 
ProAla/AlaAla 40 (43.5) 24 (24.0) 

Reccesive 
ProPro/ProAla 84 (91.3) 96 (96.0) 

0.41 0.48 (0.08 - 2.83) 
AlaAla 8 (8.7) 4 (4.0) 

Overdominant 
ProPro/AlaAla 60 (65.2) 80 (80.0) 

0.14 
1 

ProAla 32 (34.8) 20 (20.0) 0.50 (0.20 - 1.28) 

Log-additive - - - 0.078 0.53 (0.26 - 1.09) 
aInherintance models; bGenotypes and their groupings for the PPAR-γ polymorfism (rs1801282); cGenotype frequency expressed as number of indi-
viduals, n-values in parentheses indicate percentage; dOR = odds ratio, 95% CI = 95% confidence interval. 
 
Table 5. Genotypes and allele frequencies for the FABP-2 and PPAR-γ polymorphisms in control and Type 2 Diabetes 
Mellitus. 

SNP Allele Control 
subjects Fa 

Duabetic 
subjects Fa Genotype 

Control  
subjects 
n (%)b 

Diabetic  
subjects 
n (%)b 

Allelic ORc 

(95% CI) 

rs1799883 
(FABP-2) 

Ala 
 

Thr 

0.67 
 

0.33 

0.73 
 

0.27 

AlaAla 
AlaThr 
ThrThr 

42 (45.65) 
40 (43.48) 
10 (10.87) 

50 (50.0) 
46 (46.0) 
4 (4.0) 

p = 0.263 
0.76 

(0.76 - 1.18) 

rs1801282 
(PPAR-γ) 

Pro 
 

Ala 

0.74 
 

0.26 

0.86 
 

0.14 

ProPro 
ProAla 
AlaAla 

52 (56.52) 
32 (34.78) 

8 (8.69) 

76 (76.0) 
20 (20.0) 
4 (4.0) 

p = 0.0031 
0.45 

(0.27 - 0.76) 

aF = Allele frequency; bGenotype frequency expressed as number of individuals, n-values in parentheses indicate percentage; cOR = odds ratio, 95% 
CI = 95% confidence interval. 
 
the PPAR-γ were analyzed in the same category as the corresponding heterozygotic genotype, namely as non 
Ala54Ala (Thr carriers) and non Pro12Pro (Ala carriers), respectively. 

The anthropometric and clinical characteristics of controls and T2DM for the Ala54Thr polymorphism 
(rs1799883) of the FABP-2 gene are shown in Table 6. There were no differences between control patients with 
Ala54Ala and non-Ala54Ala genotypes, whereas in T2DM the presence of the non-Ala54Ala genotype was as-
sociated with an increase in BMI compared with the Ala54Ala homocygotes. 

The comparison of the anthropometric and clinical characteristics by the polymorphism PPAR-γ (rs1801282) 
in controls and T2DM are shown in Table 7. No statistically significant associations with anthropometric and 
clinical characteristics were observed for this polymorphism in controls. However, in diabetic subjects, there 
were statistically significant differences in total cholesterol (TC) values, with carriers of the Ala12 allele (non 
Pro12Pro) having higher TC values than Pro12 homozygotes (p = 0.0056). 

3.3. Haplotype Analyses of PPAR-γ and FABP-2 SNPs 
To further evaluate the role of these SNPs with T2DM, we sought to determine whether these SNPs demon-
strated any evidence of association when examined together by performing haplotype analysis. 

The two SNPs (rs1799883 and rs1801282) defined four haplotypes. Estimated frequencies of the four com-
mon haplotypes with respect to the presence of T2DM are shown in Table 8. The haplotypes that consisted of 
two common alleles at SNP rs1799883 and rs1801282 (Ala-Pro) were more frequent in T2DM subjects than in 
control subjects. Conversely, the haplotypes carrying one of the minor alleles at SNP rs7903146 or rs12255372  
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Table 6. Anthropometric and clinical characteristics by the FABP-2 polymorphism in controls and Type 2 Diabetes Mellitus.  

 
Control subjects (n = 92) 

p 
Diabetic subjects (n = 100) 

p 
Ala54Ala Non Ala54Ala Ala54Ala Non Ala54Ala 

BMI (kg/m2) 27.67 ± 4.75 26.64 ± 5.79 0.2948 30.12 ± 5.28 36.59 ± 10.23 0.0161 

FPG (mg/dL) 90.10 ± 15.01 85.36 ± 16.15 0.4203 218.84 ± 148.43 198.57 ± 96.19 0.9506 

HbA1c (%) 5.29 ± 0.61 5.54 ± 0.72 0.3960 7.28 ± 2.06 9.13 ± 3.06 0.2263 

TG (mg/dL) 167.14 ± 58.73 143.92 ± 46.76 0.1637 246.16 ± 80.18 255.32 ± 94.57 0.7123 

TC (mg/dL) 214.14 ± 41.84 201.92 ± 33.95 0.3748 244.92 ± 78.87 235.92 ± 72.60 0.8158 

HDL-c (mg/dL) 44.86 ± 5.31 44.88 ± 5.75 0.9824 38.12 ± 6.02 40.56 ± 7.21 0.346 

LDL-c (mg/dL) 120.05 ± 35.97 108.88 ± 26.37 0.1402 147.28 ± 51.16 132.96 ± 47.73 0.1301 

Data are shown as mean ± SD. Abbreviations used: BMI, body mass index; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; TC, total 
cholesterol; HDL, high density lipoprotein; LDL, low density lipoprotein; TG, triglycerides. 
 
Table 7. Anthropometric and clinical characteristics by the PPAR-γ polymorphism in controls and Type 2 Diabetes Mellitus.  

 
Control subjects (n = 92) 

p 
Diabetic subjects (n = 100) 

p 
Pro12Pro Non Pro12Pro Pro12Pro Non Pro12Pro 

BMI (kg/m2) 25.99 ± 4.86 28.56 ± 5.63 0.1106 33.59 ± 9.03 32.58 ± 7.85 0.8469 

FPG (mg/dL) 82.92 ± 14.76 93.50 ± 15.06 0.0198 202.46 ± 126.12 231.55 ± 125.48 0.4692 

HbA1c (%) 5.22 ± 0.60 5.66 ± 0.69 0.1642 9.32 ± 2.47 8.61 ± 3.14 0.3634 

TG (mg/dL) 143.00 ± 44.56 169.50 ± 60.72 0.1457 243.55 ± 85.68 273.50 ± 90.55 0.2705 

TC (mg/dL) 191.96 ± 24.70 205.70 ± 32.27 0.1702 244.92 ± 54.92 298.75 ± 64.21 0.0056 

HDL-c (mg/dL) 44.08 ± 4.97 45.90 ± 6.08 0.2713 39.79 ± 7.15 37.92 ± 6.33 0.3627 

LDL-c (mg/dL) 114.85 ± 35.10 112.85 ± 26.30 0.3847 133.21 ± 47.29 162.00 ± 52.00 0.0709 

Data are shown as mean ± SD. Abbreviations used: BMI, body mass index; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; TC, total 
cholesterol; HDL, high density lipoprotein; LDL, low density lipoprotein; TG, triglycerides. 
 
Table 8. Estimated frequency of common haplotypes and their associations with Type 2 Diabetes Mellitus.                

Haplotype 
Control subjects Fa Diabetic subjects Fa OR (95% CI)b p Ala54Thr  

(rs1799883) 
Pro12Ala  

(rs1801282) 

Ala Pro 0.4712 0.6831 1 - 

Ala Ala 0.2028 0.0469 0.14 (0.04 - 0.53) 0.0045 

Thr Pro 0.268 0.1769 0.42 (0.18 - 0.97) 0.045 

Thr Ala 0.0581 0.0931 1.31 (0.30 - 5.73) 0.72 

aF = haplotype frequency; bOR = odds ratio, 95% CI = 95% confidence interval were calculated by comparing each haplotype to the more common 
haplotype. 
 
were more frequent in the control group.  

We further examined the potential associations between dyslipidemia and haplotypes of rs1799883 and 
rs1801282 in T2DM patients. Haplotype association analysis showed the associations between ThrPro haplotype 
and TG levels (OR = 2.520; 95% CI = 1.139 - 5.575; p = 0.027) and between ThrPro haplotype and TC and 
LDL-c levels when compared to AlaPro haplotype (difference = 0.175, 95% CI = 0068 - 0.499, p < 0.0001; dif-
ference = 0.052, 95% CI = 0.017 - 0.158, p < 0.0001, respectively; Table 9). 
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Table 9. Haplotypes of FABP-2 rs1799883 and PPAR-γ rs1801282 polymorphisms and association with dyslipidemia in 
diabetic patients. 

 Ala54Thr 
(rs1799883) 

Pro12Ala 
(rs1801282) 

Haplotype 
Frequency OR (95% CI) p 

TC 

Ala Pro 0.570 1  

Ala Ala 0.055 0.272 (0.053 - 1.396) 0.146 

Thr Pro 0.259 0.175 (0.068 - 0.499) <0.0001 

Thr Ala 0.111 0.544 (0.209 - 1.414) 0.2368 

LDL-c 

Ala Pro 0.488 1  

Ala Ala 0.036 0.680 (0.155 - 2.983) 0.693 

Thr Pro 0.360 0.052 (0.017 - 0.158) <0.0001 

Thr Ala 0.097 0.612 (0.233 - 1.611) 0.312 

TG 

Ala Pro 0.701 1  

Ala Ala 0.052 0.209 (0.012 - 3.732) 0.207 

Thr Pro 0.130 2.520 (1.139 - 5.575) 0.027 

Thr Ala 0.017 0.400 (0.08 - 1.822) 0.371 

OR = odds ratio, 95% CI = 95% confidence interval were calculated by comparing each haplotype to the more common haplotype. 

4. Discussion 
The FABP-2 gene has been proposed as a candidate gene for diabetes because the protein is involved in fatty 
acids absorption and metabolism and may, therefore, affect insulin sensitivity and glucose metabolism. The most 
extensively studied variant is the missense Ala54Thr variation, which is common in diverse populations and re-
sults in increased fatty acid absorption in vivo.  

There are no previous reports about the prevalence of the Thr54 FABP-2 variant in our region. In the sample 
tested, the observed Thr54 frequency (0.30) is similar to that reported in most populations [29], but the Thr54 
allele frequencies were slightly higher than those reported in different European countries (0.276) [30]. It must 
be stated that the study group is mostly of colonizing European populations origin, mainly from Italy and Spain, 
and a 2% of this group population have aboriginal ethnic ancestries suggesting that the original European allele 
frequency in this area has not conserved. The fact that the polymorphism is in Hardy Weinberg equilibrium 
suggests that there is no significant natural selection pressure acting against individuals with the Thr54 FABP-2 
variant living in Santa Rosa del Conlara, San Luis, Argentina. Other South American frequency analysis of 
Thr54 were reported by an Argentinean group, who observed a Thr54 frequency of 0.277 in subjects belonged to 
an ongoing Regional Cardiovascular Prevention Program (RCP program), organized by the Public Health Care 
Program for Government Employees (OSEP) of Mendoza (Argentina) [31]. 

In our sample of patients with type 2 diabetes, the frequency of the Thr54 allele was 0.27 who was similar to a 
Brazilian study that reported a Thr54 frequency = 0.25 in diabetes type 2 individuals [32]. In the other hand, the 
frequency of the Thr54Thr genotype was 4.00% in our T2DM patients, whereas the frequency of the Thr54Thr 
genotype is 6.25% in Brazilian diabetic patients [32] and 4.00% in American patients with type 2 diabetes [33]. 

To investigate the hypothesis that defects in the FABP-2 gene could be associated with type 2 diabetes melli-
tus and their related metabolic traits, we studied the effects of Ala54Thr variant in Santa Rosa del Conlara pop-
ulation.  

Studies examining the association of FABP-2 A54T polymorphism with T2DM are contradictory. Several 
studies have reported the association between the Ala54Thr polymorphism of FABP-2 with insulin resistance 
and diabetes [19] [34]-[39]. Other studies have reported no association between this polymorphism and T2DM 
[19] [31] [40]-[45]. There are differences among studies on the design as well as the genetic models used to as-
sess associations of FABP-2 Ala54Thr polymorphism with this disease. We looked at the association of FABP-2 
Ala54Thr polymorphism with T2DM according to all possible genetic models. No association of FABP-2 
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Ala54Thr polymorphism was found with T2DM according to any genetic model used, a finding shared by other 
studies that examined such an association [46]. 

In the present study we have not found differences in glycemia, HbA1c and serum lipids between FABP-2 
genotype groups although significant differences in BMI were attained in Diabetic group carriers of the Thr al-
lele. The results from studies published on the association of FABP-2 Ala54Thr polymorphism with body mass 
index (BMI) are conflicting, but the conclusions from the meta analysis carried out by Zhao et al. [47] showed 
no evidence that the FABP-2 Ala54Thr polymorphism is significantly associated with BMI in overall popula-
tions. It is possible that carriers of the Thr allele in our T2DM patients confers some degree of susceptibility to 
obesity, associated with an influence of gene/environment interactions such as diet, exercise, body composition 
and life style modification [46] [48]. 

In this study, the frequency of the Ala allele of the PPAR-γ polymorphism in participants with and without 
diabetes were 1.4% and 2.6%, respectively. The frequency of the Ala allele appears to vary greatly by the ge-
netic background of the populations [49]. In general, the frequency of the Ala allele has been reported to be 
highest in Caucasians [50]. Variations in the allelic frequency of the Pro12Ala polymorphism across different 
ethnicities and regions could be attributed to genetic variations and to different environmental and lifestyle ex-
posures [51]. 

We found that the Ala allele of the Pro12Ala polymorphism was associated with a significantly lower risk of 
type 2 diabetes in our population. Consistent with our results, Altshuler et al. [15] found a significant decrease in 
diabetes risk associated with the Ala allele in a Caucasian population. In Finnish subjects, the Ala12 variant of 
the PPAR-γ gene was associated with protection against T2DM [51]. Meta-analyses [4] [52] also showed a sig-
nificant effect of the Ala allele on lower development of T2DM. 

In the present study we have not found differences in glycemia, HbA1c, LDL-c, HDL-c, TG and BMI be-
tween PPAR-γ genotype groups although significant differences in TC were attained in Diabetic group carriers 
of the Ala allele. Mori et al. [53] found that carriers of the Ala12 allele had higher total cholesterol than those 
without the allele among diabetic subjects. One study in an Italian population [54] found that this polymorphism 
was not associated with anthropometrical and biochemical parameters among normoglycemic and diabetic sub-
jects. Ethnic differences, study design, and effects of BMI may contribute to discrepancies in these results. 

The substitution from proline to alanine at codon 12 has been shown to regulate transcriptional activity [12] 
[55]. Because this polymorphism is next to the amino-terminus of the protein in the ligand-independent activa-
tion domain, its activity is induced by insulin through phosphorylation. Alanine helps the formation of helices, 
but proline prevents it. Thus, it is possible that this amino acid change affects the structure and consequently the 
function of the protein [49]. The alanine isoform contributes to less efficient stimulation of PPAR-γ target genes 
and predisposes people to reduce levels of adipose tissue mass accumulation. This in turn may improve insulin 
sensitivity. It is known that decreased insulin sensitivity plays an important role in the pathogenesis of type 2 
diabetes. 

Although abundant data on individual gene variants affecting lipid and lipoprotein metabolism are present in 
the literature, their usefulness for identifying individual profiles for T2DM risk and its altered lipid profile is 
fairly limited. This is attributable to the small effect that a single gene has, which in addition can vary depending 
on factors such as life style, environmental stimuli, and other genes. 

Further, we aimed to investigate the haplotype association of the variant at the FABP-2 (rs1799883 polymor-
phisms) and PPAR-γ (rs1801282) polymorphisms) locus with Type 2 Diabetes Mellitus and the characteristic 
dyslipidemia of this disease. Haplotype association analysis showed the associations between ThrPro haplotype 
and TG levels (OR = 2.520; 95% CI = 1.139 - 5.575; p = 0.027) and between ThrPro haplotype and TC and 
LDL-c levels when compared to AlaPro haplotype (difference = 0.175, 95% CI = 0068 - 0.499, p < 0.0001; dif-
ference = 0.052, 95% CI = 0.017 - 0.158, p < 0.0001, respectively; Table 9). There are no studies that associated 
haplotypes of these two polymorphisms with lipid metabolism alterations. So far, the haplotype analysis regard-
ing rs1799883 and rs1801282 polymorphisms for dyslipidemia has not been reported yet. 

Our study found that Thr-Pro haplotype of FABP-2 and PPAR-γ was associated with dyslipidemia. PPAR-γ 
plays an indispensible role in the regulation of adipocyte differentiation, lipid storage, glucose metabolism and 
the transcriptional regulation of a number of genes involved in these metabolic processes. The key target genes 
of PPAR-γ include the fat-specific AP2 gene, LPL (lipoprotein lipase), fatty acid transport protein, fatty acid 
binding protein, ABC-A1 [ATP-binding cassette, sub-family A (ABC1), member 1] and so on [56]. 

We thought that rs1801282 polymorphisms (Pro12 alelle) may influence the receptor activity, the ability to 
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transactivate responsive promoters and so on to regulate the key target genes of PPAR-γ which could influence 
the lipid metabolism. But the specific biological mechanism needs to be further studied.  

In the other hand, FABP-2 is involved in the transport and metabolism of saturated and unsaturated long- 
chain fatty acids (FAs). The missense Ala54Thr variation results in increased activity. Thus, subjects with the 
Thr54 allele may increase intestinal absorption of cholesterol, and this is associated with the higher cholesterol 
and LDL cholesterol levels in those with Thr54 allele among diabetic. 

5. Conclusions 
In conclusion, our study has tested the gene-gene interaction between common polymorphisms within FABP-2 
and PPAR-γ gene and dyslipidemia based on haplotype analyses. These results may help to evaluate their hap-
lotypes as being characterized as genetic risk factors for dyslipidemia in Type 2 Diabetes Mellitus. 

In conclusion, we report that in T2DM the additive effects of Thr-Pro haplotype of FABP-2 and PPAR-γ 
genes altered lipid metabolism.  
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