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Abstract 
We provide theoretical evidence for that remains far from clear in Copenhagen interpretation, and 
then try to make it further complete. Uncertainty relations are proved to be the intrinsic attri- 
butes of the position-momentum space and the time-energy space. A theoretical evidence for the 
probabilistic interpretation is given. Different meanings of the wave-particle duality for the pho-
tons and for the electron are discussed. 
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1. Introduction 
Quantum mechanics arises from the long and successful efforts of scientists to explain experimental phenomena 
such as the radiation law and the photoelectric effect, for which cannot account classical mechanics. Classical 
physics always represents our world in the relatively graphical and intuitive terms, greatly different from quan-
tum physics, which is strong on mathematical rigor but light on physical intuition. The quantum properties of 
microscopic matter imply a renunciation of the possibility of their being understood in the customary imagina-
tive sense, which is difficult to be admitted or embarrassed to be accepted for some classical physicists. The 
discussions about the principle of nonlocality of the material particles have never been stopped since quantum 
theory was developed in the 1920s [1] [2]. The argument relates mainly to two queries: uncertainty principle and 
probabilistic interpretation of wave functions. In the following we will review both issues in turn, and the first is 
uncertainty principle. All we should do is to provide added evidence and derivation for those remain far from 
clear in Copenhagen interpretation, and then make it further complete. 

In general, a prevailing perception from our daily experience is that the laws of physics should be completely 
objective, and they should not depend in any way on what dimensions and mass of a moving object has. Namely, 
there should be uniform laws of physics to describe moving objects within a common frame of reference. Eins-
tein suggested that the particle’s motion should be deterministic and realistic like classical objects rather than 
probabilistic. Copenhagen interpretation is regarded as anti-realistic because Einstein’s constant researching and 
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sever criticism. Here we first think of an example of the interrelation between Newton’s mechanism and Eins-
tein’s special theory of relativity. The physics of Newton provides an ultimate inertial frame of reference with 
both absolute space and time, in which all motion could be in principle measured accurately. Einstein’s special 
theory of relativity revised Newton’s point of view and gave us new concepts—there are only relativistic space 
and time but absolute ones. Lorentz transformation can be simplified into Galiliean transformation only if an 
object’s velocity is far smaller than light speed, which leads to the fact that an absolute space and an absolute 
time come true. Some authors mentioned without rigorous proof that the dimensions and mass of a macroscopic 
object are too great to consider uncertainty principle, that is, Plank’s constant is assigned as zero, and then the 
object’s motions are to be thought of as deterministic [3]. An essential problem is whether or not the uncertainty 
principle is intrinsically applicable to classical physics, whatever the dimensions and masses. If the principle sa-
tisfies classical physics, up to now, why cannot we get a derivation of the principle starting from the laws of 
classical physics? How should we derive the principle without the means of quantum mechanics if the principle 
is an objectively general law? So far, we have known that the noncommuting properties of the operators of ob-
servables result in uncertainty relations, and these operators only exist in a complex space where the wave equa-
tion of quantum mechanics works. In contrast, the object’s motion only undergoes in a real space where classical 
physics works. For this reason, the uncertainty principle is usually viewed as a crucial base for quantum me-
chanics rather than classical physics. In a practical sense, we can say there is no uncertainty principle and there 
is no probabilistic interpretation. In Einstein’s opinion it seems that a moving object in a real space does not 
obey the principle unless the principle is an attribute of the real space rather than a purely algebraic description 
of nature [4]. We think that there are no space and time, there are no physical laws. We should not ignore the 
properties of the space and time, which directly affect our observation and knowledge on nature. In the second 
section of this paper we will prove that uncertainty relation is an intrinsic attribute of a real space independent of 
any moving object such that the uncertainty principle is available to all objects, no matter what dimensions and 
masses they will have. Classical physics is only a peculiar consequence of the elimination of these attributes, 
like Newton’s physics is a result of neglecting the relativistic effect. As a result, quantum formalism is only 
taken as a good approximate description of microscopic particles rather than a real motion law. For example, the 
arrival of an electron at a detector in double-slit interference experiment can be rationally considered as one of 
our expecting events, just like there appeared to be a good weather sometimes on our prediction. Our derivation 
will also confirm a fact that there is not any evidence so far showing that the collapse of the wave functions is a 
real physical phenomenon. 

We review the probabilistic interpretation in the following. Its kernel is the principle of nonlocality for the 
matter particles, which has been tested and verified by experiments supported by modern technique and devices. 
It is said that Bell’s inequality is a way to distinguish between quantum mechanics and classical mechanics for 
the behavior of particles such as photons. The results of the experiments using Bell’s inequality have now come 
down in favor of quantum mechanics [5]-[7]. In fact, it is impossible to show classical physics phenomenon for 
a quantum system, no matter what a kind of experiment is taken. Because when we make an experiment not only 
the quantum system but also the measuring apparatus are placed in a position-momentum space and a time- 
energy space, both system and the apparatus are absolutely affected by the uncertainty principle belonging to the 
physical nature of these spaces. For this reason, Bell’s inequality is only an experiment showing once more the 
fundamental phenomena for quantum entities. Multiphoton experiments tests of quantum nonlocality show that 
Bell’s theorem is not sufficiently theoretical argument [8] [9]. Born’s probabilistic interpretation itself is pure 
guesswork but a result of theoretical evolution [10]. It is the guesswork that leads to occurrence of some alterna-
tives to Copenhagen interpretation such as the ever popular “Many-world” interpretation of quantum mechanics, 
“Hidden-variable” theory, “Consistent-histories” interpretation, and “Decoherenc” mechanism [11]-[14]. Fur-
thermore, there are a series of oppositional voice including the Einstein’s EPR paradox and the Schrödinger’s 
cat paradox, which directly blame Born’s interpretation [15] [16]. We think that there should be a theoretical 
proof for the nonlocality principle so as to decrease the disputation in the future. Born’s guesswork based on two 
facts: The first is Heisenberg uncertainty principle; the second is an idea of Einstein’s interpreting the square of 
the optical amplitudes as probability density for the occurrence of photons. In our opinion, the wave-particle 
duality of light is most helpful in visualizing the nature of the duality, which directly leads to their probabilistic 
distribution. It is clear that there is no photon concept prior to Plank’s quantum theory and Einstein’s photoelec-
tric effect approach. In a homogeneous medium a free electromagnetic field also is called radiation field due to 
free of charges and currents, and shows a wave character that is called light wave, and the wave functions are 
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just the field’s vector potential. The field energies are discretized by Plank’s theory, corresponding to quanta 
called photons by Einstein. Dirac first recognized that the dynamical properties of light wave functions are 
equivalent to the dynamical ones of a set of oscillators; they are just the same one looked at from two different 
points of view. One oscillator associated with each independent wave function state, which enables a function of 
the wave and corpuscular theories of light to be effected [17]. Therefore, we can say the radiation field is cha-
racterized by the simply harmonic wave, and the wave quantization results in photons. Two types of particles 
similar to photons from the quantization are phonons and magnons in solid state physics; the former results from 
the lattice wave quantization, and the latter are the products of the spin wave quantization [18]. It should be 
emphasized that there is no wave and there is no the relevant quantization. Alternatively, the quantization of a 
temperature field is not physically accepted. Hence, the terms of the wave quantization have more definite 
meaning than the terms of the field quantization. In contrast with the fact that Maxwell’s field equation is prior 
to the photon concept, the electron concept is prior to Schrödinger wave equation. Schrödinger imagined an 
electron as a wave with zero wavelength, obeying Hamilton’s principle, and the wave was directly influenced 
only by its immediate surroundings [19]. In order to make the energies discrete, he treated the Hamiltonian as an 
operator, and the relevant energies are amenable to Plank theory. Meanwhile, the wave functions determined by 
his equation turn into the eigenvector in complex space. Before further discussion about the wave-particle dual-
ity it is of enlightening meaning to reassert the concept of electric energy. Electric potential energy accounts for 
work on an electron done by electric force and gives added insight regarding energy and energy transformation 
without the necessity of dealing with the force directly. The energy does not belong to the electron alone, but 
both the electron and the electric field. For Schrödinger equation, it is an inappropriate perspective to separate 
the electron from the Hamiltonian and assign the energies only to the electron, regardless of the electric field. A 
space consisting of electron and electric field is different from vacuum, and such a space may be called a field. 
As such, it is the space (or the field) rather than the electron exhibits a wave phenomenon. The wave like light 
wave can be made quantization to give particles, none of which is the electron that is a material particle. It can 
be understood since de Broglie’s work antedated Schrödinger equation and Dirac radiation field theory, and his 
postulate was not able to ascribe the wave properties to the space containing electrons. It is the continuous mo-
tion of the electron that causes the wave. It seems that Schrödinger did not perceive that the wave originates in 
the electron’s motion, and the wave functions can change with time even if for a steady system. The wave mo-
tion requires each wave function to vibrate at its own site. The wave hence is a disturbance of the wave func-
tions in the space. A wave function at a position transfers its physical state in this way to the wave function at 
the next position. The wave as a whole is to be made quantization to produce particles to be like photons. Even 
though Schrödinger equation for single electron gives perfectly accurate solution, there is still more or less defi-
ciency of dynamical characteristics for the wave functions. His time-dependent wave equation is a second-order 
differential in the three spatial coordinates but only a first-order differential in time. Actually, the wave motion 
is a classical phenomenon satisfying a classical dynamical equation with a second-order differential in time. In 
addition, the wave function of a system of N electrons is a function in a 3N-dimensional configuration space, in 
which the Born’s probabilistic interpretation cannot be used. It is difficult to imagine that a physical reality ex-
ists in such an abstract multidimensional configuration space. The double-slit experiment is a successful exam-
ple of the probabilistic interpretation [14] [20]. The behavior of an electron in the space between the slit and the 
detector shows the characteristics of a free electron. For these reasons, in the third section of this paper, the 
wave functions for the space involving a free electron are obtained by means of a dynamical equation. Then, the 
wave quantization for such space will be made, which will give a theoretical evidence of the probabilistic inter-
pretation. In the fourth section we discuss different meanings of wave-particles for photons and for electron. The 
relativistic effect will not be discussed in this paper.  

2. Uncertainty Relations as Attributes of Spaces 
In a 3-dimensional flat real space of coordinates x , y , and z  there is a cotangent space with its natural bases, 
dx , dy , and dz , together with which there is a tangent space with natural bases x∂ ∂ , y∂ ∂ , and z∂ ∂ . The 
two vector spaces are dual to each other in terms of mathematics, and their dual bases obey the following for-
mula [21]: 

d 1,     d 1,     d 1x y z
x y z
∂ ∂ ∂

= = =
∂ ∂ ∂

                               (1) 
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where 
x
∂
∂

, 
y
∂
∂

, and 
z
∂
∂

 are also known as partial differential operators. Equation (1) is a restriction relation 

between dual bases. Suppose that there is a linear momentum space with its bases C
x
∂
∂

, C
y
∂
∂

, and C
z
∂
∂

, 

where C  is a proportional constant and makes these bases have a momentum dimension. In physical sense, 

C
x
∂
∂

 is parallel to 
x
∂
∂

 because a velocity associated with C
x
∂
∂

 is along the tangent direction. At the same 

time, C
y
∂
∂

 and C
z
∂
∂

 are parallel to 
y
∂
∂

 and 
z
∂
∂

, respectively. From Equation (1), we get further 

d ,     d ,     dC x C C y C C z C
x y z
∂ ∂ ∂

= = =
∂ ∂ ∂

                           (2) 

According to differential geometry [21], a complex structure on a vector space tantamount to multiplying the 
basis of the vector space by an imaginary number i , which represents the square root of 1− . Such procedure is  

called map in mathematics sense. Thus, a complex basis corresponding to C
x
∂
∂

 is iC
x
∂
∂

, which complex 

conjugational basis is iC
x
∂

−
∂

. Compared with the momentum operator i
x
∂

−
∂
  of quantum mechanics, we  

right now understand the constant C  does be Plank’s constant due to the map is one-to-one. Equation (2) then 
becomes  

,     ,     dx dy dz
x y z
∂ ∂ ∂

= = =
∂ ∂ ∂
                                 (3) 

A natural basis of a vector space is different from a unit vector. There is no a specific length definition for a 
natural basis in mathematics, its length is uncertain. In the special theory of relativity the length of a basis dx  
is considered as a distance or an interval, represented as dX , and 2 2d dX g x= , where g  is Riemannian me-
tric [22]. In a region where Galilea transformation is valid the Riemannian metric equals to a unit of length. In  
terms of mathematics, the length of dx  can be written as dx , which is its module, so 22d dX x= . The dX   
is a measurable quantity equivalent to x∆  of quantum mechanics. We then have 

( ) 222 dx x x∆ = ∆ =                                        (4) 

Likewise,  

( )
2

22
x xp p

x
∂

∆ = ∆ =
∂
                                       (5) 

Using Equations (3)-(5), we get 
2 2 2

xx p∆ ⋅∆ =                                          (6) 

Clearly, we do not know the individual values of 2x∆  and 2
xp∆ , except their mutual restricting relation Eq-

uation (6). We can consider the lengths of the bases at a particular point  ( ), xx p  in a 2-dimensional posi- 

tion-momentum space (called a phase space in statistical mechanics), where x  and xp  are statistical av-
erage values of x  and xp , respectively. The starting point of the basis dx  positions at the x , and its end  

point arrives at the x , and the length is x∆ . The basis 
x
∂
∂
  starts from the xp , and ends at the xp , its  

length is xp∆ . In a measurable sense, 2x∆  and 2
xp∆  can be expressed by 

( )22x x x∆ = −                                     (7) 
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( )22
x x xp p p∆ = −                                     (8) 

where the symbol   represents making average calculation. Equations (6)-(8) manifest uncertainty relation  
about position and momentum. With the same reason, we can get other uncertainty relations about 

2y∆ , 2
yp∆ , 

2z∆ , and 2
zp∆ . The above derivation is as simple as the Heisenberg’s derivation in quantum mechanics. 

Although the time-energy uncertainty relation is consistent with experiment, it is not derived from the non-
commuting property of relative operators since there is no time operator in quantum theory. We think that this 
relation should be an intrinsic attribute for the time-energy space. When mentioned the space-time Feynman 
pointed out [23]: “We have discovered four quantities which transform like x , y , z , and t , and which we 
call the four-vector-momentum, …, it can be represented on a space-time diagram of a moving particle as an 
“arrow” tangent to the path. This is an arrow has a time component equal to the energy”. According Feynman, 
energy and time are dual to each other. At first, we get a dual relation for a cotangent basis dt  and tangent ba- 

sis 
 t
∂
∂

, and d 1t
t
∂

=
∂

. An energy basis can be represented by
 t

∂
∂
 , which correspondingly mapping com-

plex basis is
 

i
t
∂
∂
 , called energy operator in terms of quantum mechanics. We then get dt

t
∂

=
∂
  . At a point 

( ),E t  in a 2-dimensional time-energy space, we obtain the uncertainty relation: 2 2 2E t∆ ⋅∆ =  , where  

( )
2

22E E E
t
∂

∆ = = −
∂
                                   (9) 

( )222 dt t t t∆ = = −                                    (10) 

The relative Riemannian metric equals one unit length due to the flat space.  
The above derivation indicates that uncertainty relations are really the attributes of the real space, but belongs 

to microscopic particles. When we want to describe an object’s motion, no matter whether the object is macros-
copic or microscopic, we need to set up the space-time coordinate system in a reference frame, which means that 
the uncertainty relations are available for both classical physics and quantum physics, and affect a whole process 
of the motion. It is the intrinsic attributes that limit our ability to reach an underlying physical reality of the par-
ticles. Quantum mechanics is only an artificial description resulting from our perception of microscopic particles 
behavior. Just as Aage Petersen, Bohr’s assistant pointed out [3]: “There is no quantum world. There is an ab-
stract quantum physical description. It is wrong to think that the test of physics is to find out how nature is. 
Physics concerns what we can say about nature.” 

3. A Theoretical Evidence of Born’s Guesswork 
We try to discuss a wave that propagates freely. Our demonstration starts in classical fashion of the wave avail-
able to Newton’s law. For brevity, we consider a case of one dimensional configuration space. The points on 
x-axis have the same nearest neighbor space denoted by a number ε , which is sufficiently small but zero. Such 
division resembles the approach used in the path integral [24], which mathematical significance is that the space 
is a metric space, in which two distinct points can always be surrounded by disjoint domains [25]. The identical 
interval is due to the space is homogeneous. A space contains only single free electron, and there is not any ex-
ternal force. As Kubo’s theorem states that the fluctuation in the space will decay [26], but vanish due to uncer-
tainty principle. Thus, the fluctuation force is weak. Let ( ),x tψ  denote a wave function at position x  at time 
t , the domain of x  be x−∞ < < +∞ . ( ),x tψ ε−  and ( ),x tψ ε+  are the nearest neighbors of ( ),x tψ , re-
spectively. We get 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

d ,
, , , ,

d
                  , , 2 , .

x t
C x t x t C x t x t

t
C x t x t x t

ψ
µ ψ ε ψ ψ ε ψ

ψ ε ψ ε ψ

= ⋅ + − + ⋅ − −      

= ⋅ + + − −  

                (11) 

where µ  is equivalent mass and C  is a force constant. This is a difference equation in the deviation of wa-
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vefunctions, and the fluctuation force is linear in the deviation of the function values. The equation of motion is 

( ) ( )
2

2
2

d ,
,

d
x t

x t
t

ψ
ω ψ= −                                 (12)  

where angular frequency is ω . By Equations (11) and (12), we have 

( ) ( ) ( ) ( )2 , , , 2 ,x t C x t x t x tµω ψ ψ ε ψ ε ψ− = ⋅ + + − −                        (13) 

Equation (13) has a traveling-wave solution in the form 

( ) ( ) ( ), exp expx t u i x k iwtψ ε ε± = ± −                             (14) 

where i  is imaginary, the k  is wave vector, u  is a real constant. Inserting Equation (14) in Equation (13) 
yields 

( ) ( )2 exp exp 2C ik ikω µ ε ε= − ⋅ + − −                              (15) 

Using identity ( ) ( )2cos exp expk ik ikε ε ε= + − , we obtain a dispersion relation between ω  and k   

( )( )2 2 1 cosC kω µ ε= −                                  (16) 

Since the frequency ω  depends on the magnitude of the wave vector k , it is rewritten as kω , and 
k kω ω−= . The wave function then becomes ( ),k x tψ  for a special mode k . The period of the function 

coskε  is determined by the total number N  of possible vibration modes, and the range of underlying values 
of k  is specified by 

π πkε− < ≤                                         (17) 
We put ( )1L N ε= − , which means that an identical mode repeatedly appears at the same time every propa-

gating distance L  relative to a periodic boundary condition. The following discussion is limited to the region 
L  because of the periodic space. Therefore, the solution of Equation (12) is 

( ) ( ), expk kx t u i kx tψ ω = −                                 (18) 

The de Broglie relation gives the momentum p k=  , inserting which in Equation (18), we get 

( ), expk k
pxx t u i tψ ω  = −    

                               (19) 

It is well known the wave function of an eigenvalue equation in the momentum representation for free particle 
is 

( ) exp ipxxψ  =  
 

                                     (20) 

Clearly, Equation (20) is just a special form of ( ),k x tψ  at 0t =  in Equation (19). Note that there is only 
an energy which is just the electron’s one, and the position x  is the where the electron possibly appears. If we  
substitute the electron kinetic energy of ( )2 2 e kp m ω=   in Equation (19), we obtain 

( )
2

, exp
2k

e

i ipx t u px t
m

ψ
 

= − 
  

                                (21) 

where em  is the electron mass. This is consistent with the function given by Feynman in the path integral [24], 
which is explained in terms of the probability amplitude for free electron to arrive at the point x  at the time t . 
It is certain that the wave functions of the free electron in quantum mechanics and path integral satisfy the equa-
tion of motion, which justifies that the space involving a free electron shows wave property. Since the wave mo-
tion is analogous to the simply harmonic oscillation, the subsequent wave quantization is expected. We make 
Fourier transformation for ( ),x tψ  

( ) ( ) ( ) ( )1, , expk k
k k

x t x t Q t ikx
N

ψ ψ
µ

= =∑ ∑                           (22) 
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Let d dk kP Q t= . The following treatment is familiar in quantum mechanics [27]. We introduce operators 
1 2 1 2

ˆ ˆˆ ˆˆ ˆ,     
2 2

k k
k k k k k k

k k

i iQ P Q P
µω µω

α α
µω µω

+
− −

      = + = −      
       

                 (23) 

The k  and k−  in the subscripts mean there may be both forward and backward waves simultaneously.  
Since the square ( ) 2

,x tψ  is a real number, the operators ˆ
kQ−  and ˆ

kQ+ , ˆ
kP−  and k̂P+  obey relations 

ˆ ˆ ˆ ˆ,     k k k kQ Q P P+ +
− −= =                                     (24) 

k̂P  and ˆ
kQ  as the solutions of Equation (23) take the forms 

( ) ( )
1 2 1 2

ˆ ˆ ˆˆ ˆ ˆ ˆ,     
2 2

k k
k k k k k k k kP P i P P i

µω µω
α α α α+ + + +

− − − −
   = = − = = −   
   

               (25.1) 

( ) ( )
1 2 1 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ,     
2 2k k k k k k k k

k k

Q Q Q Qα α α α
µω µω

+ + + +
− − − −

   
= = + = = +   

   

               (25.2) 

The operators ˆkα  and ˆkα
+

 satisfy a commutation relation 

,ˆ ˆ,k k k kα α δ+
′ ′  =                                        (26) 

The Hamiltonian is 

1ˆ ˆ ˆ
2k k k

k
H ω α α+ = + 

 
∑                                   (27) 

Comparing with the harmonic oscillator’s Hamiltonian in quantum mechanics, we see that the wavefunction 
vibration amounts to the independent harmonic oscillators with the total number N , each of which corresponds 
to a mode k . In the particle- number representation the oscillator eigenvalue equations are 

( ) ( )1 2 1 2ˆ ˆ1 1 ,     1k k k k k k k kn n n n n nα α+ = + + = −                  (28) 

where kn  is the quantum number with mode k . Equation (28) states that the ˆkα
+  is a creation operator, the 

ˆkα  an annihilation one; and the eigenvalue equation is  

ˆ ˆk k k k kn n nα α+ =                                     (29) 

Therefore, the total energy is given by 

( )1 2k k
k

E nω= +∑                                    (30) 

Equations (29) and (30) claim that an individual wave motion with frequency kω , as a whole, is equivalent 
to boson particles of kn , each of which has energy kω , where 2kω  is zero-point energy. The µ  and   
are constant. Using Equations (18), (22), (25.2), we get a correspondence relation 

( ) 2 1 ˆ ˆ, ~k k k kx t
N

ψ α α ω+ 
 
 

                             (31.1) 

For a given state ( ),k x tψ  with definite position x  and wave vector k  the kω  in this equation is a con-
stant determined by Equation (16). Thus, Equation (31.1) is a link between the square of the amplitude of the  
wavefunction ( ),k x tψ  and the ratio ˆ ˆk k Nα α+ . The eigenvalue of the operator ˆ ˆk kα α+  on the right side of  
Equation (31.1) is ( )kn x , which is the number of the boson particles with wave vector k  at the position x  
due to the locality of the square of the wavefunction amplitude. The ( )kn x  differs from the kn  which is the 
total number of particles with the wave vector k  in the space; the former is local, the latter is not so. Equation  
(31.1) is an one-to-one correspondence relation between ( )kn x N  and ( ) 2

,k x tψ , the ( )kn x N  is a ratio of  

the number of  boson particles with a wave vector k  at the position x  against the total number of boson 
particles. The meanings of the number N  should be emphasized here. First, there are N  different positions 
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in the region L  to be provided for the electron to occupy. Second, the total number of the individual modes (or 
wave vectors) is N , equaling to the total number of the boson particles, since one specific mode (or wave vec-
tor) relates to one of the particles. The meaning of Equation (31.1) is explained as the following. For a uniform 
distribution the associated relative probability of finding the electron at each position equals to 1 N , which 
amounts to that one boson particle resides in one position because there are N  boson particles in total. In a 
nonuniform distribution, there are ( )kn x  times opportunities for the electron to occupy a location x , the cor-
respondingly relative probability of finding the electron with the wave vector k  at the location x  is ( )kn x N  tantamount to that there are ( )kn x  boson particles with wave vector k  to lie in the same site x . 
From Equations (18), (22), (25.2), and (31.1), we have a corresponding relation further 

( ) ( ) ( )2 2
, ~ , ~k

k

N x
x t x t

N
ψ ψ∑                               (31.2) 

where ( ) ( )k
k

N x n x= ∑  is the total number of boson particles in the position x  including the magnitudes of  

all possible wave vectors. As with Equation (31.1), the ratio ( )n x N  on the right side of Equation (31.2) 
represents the relative probability of finding the electron with all kinds of k  at the position x . The particle’s 
numbers N , ( )N x , kn , and ( )kn x  obey the following formula: 

( ) ( )d dk kL L
k k

N n n x N x= = =∑ ∑∫ ∫                              (32) 

The normalization condition is 

( ) ( )2 1, d d 1
L L

x t x N x
N

ψ = =∫ ∫                                (33) 

The integral is taken in the region ( )1L N ε= − ⋅ , and the number ε  tends to infinitesimal such that the 
distribution of the wavefunction is continuous. Equation (31) is a theoretical evidence of the probabilistic inter-
pretation suggested by Born. The probabilistic interpretation transfers the nonlocality of an electron to the local-
ity of the square of the wavefunction amplitude, and the wave quantization makes the locality of the square be 
equivalent to the locality of the boson particles. 

4. Different Meanings of Wave-Particle Duality for Photons and for Free Electron 
Double-slit interference experiment shows that the particle’s behaves and the wave characteristics occur simul-
taneously [14] [20]. By equation (12), we get the wavefunction in the three dimensions:  

( ) ( ) ( ), expk k kt i tψ ψ ω= −r r  

where ( ) expk u ikψ =r r , satisfying Holmholtz equation: 

( ) ( )2 2 0kk ψ∇ + =r                                     (34) 

Using Equation (34) and Kirchhoff’s law, with the same reason as the radiation field [28], we can confirm 
that the wave, like the light wave, will demonstrate single-slit diffraction, because of which the double-slit in-
terference seems to proceed through the space containing free electron. A homogeneous wave equation is set up 
using the wavefunction: 

2 2
2

2 2 0k
t
ψψ

ω
∂

∇ − =
∂

                                    (35) 

If we put k cω= , where c  is the light velocity, this equation becomes 
2

2
2 2

1 0
c t

ψψ ∂
∇ − =

∂
                                    (36) 

This is just the light’s wave equation in classical theory [28]. Equations (12), (34), (35), and (36) tell us that 
the radiation field and the space containing a free electron show some similar wave properties. Note that the 
wavefunctions are obtained by the classical dynamical equation, and the Equation (34) and (35) are also classic-
al, which explicitly shows that the wave that refers to the space involving a free electron does be a classical 
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phenomenon. For light, its wavefunction is the vector potential of the electromagnetic field, which can bring us 
vision effect, different from the wavefunction of the space containing a free electron. Therefore, a photon is not 
equivalent to a particle coming from the wave quantization of the space involving the electron, although both are 
bosons. In addition, double-slit interference experiment shows that these boson particles associated with the 
electron do not interact with the detector, except the electron. For light, the wave-particle duality refers to the 
same object: the light exhibits wave characteristics and the wave quantization leads to photons. For the free 
electron, however, the wave belong to the space containing the electron, but the electron alone, and the wave 
quantization leads to the boson particles distinguishable from the electron, the former are immaterial and the 
latter is material. The same probabilistic interpretation has different meanings for the light and for the electron. 
In the discussion of the probability of finding photons at a position, the wave quantization theory tells us that the 
number of photons at the position is usually greater than one photon, since there are N  photon s in the space 
where the light propagates, and the number N  tends to infinity. When the probabilistic interpretation describes 
the probability of finding a free electron at a position, the number of particles at the position is not the electron’s 
number but the number of boson particles, which only represent the potential opportunities of the electron to 
occupy the position, since there is a single electron. That the huge number of the boson particles can be de-
scribed by statistical theory is the reason why the probabilistic interpretation is applicable to a single electron.  

5. Concluding Remark 
Uncertainty relations are the intrinsic attributes of the real spaces. The bosons turning out from the wave quan-
tizations are local in the position space because of the locality of the square of the wavefunction amplitude. 
These particles are immaterial and called as pseudo particles, which means that the pseudo particles may be of 
locality. In this sense, the Einstein’s memorable remark “God does not play dice” is correct. In contrast, electron 
as a material particle is of nonlocality. 
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