
Natural Science, 2014, 6, 528-531 
Published Online April 2014 in SciRes. http://www.scirp.org/journal/ns 
http://dx.doi.org/10.4236/ns.2014.67051   

How to cite this paper: Kafri, O. (2014) Follow the Multitude—A Thermodynamic Approach. Natural Science, 6, 528-531.  
http://dx.doi.org/10.4236/ns.2014.67051  

 
 

Follow the Multitude—A Thermodynamic 
Approach 
Oded Kafri 
Varicom Communications Ltd., Tel Aviv, Israel 
Email: oded@varicom.co.il 
 
Received 22 December 2013; revised 22 January 2014; accepted 29 January 2014 

 
Copyright © 2014 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

   
 

 
 

Abstract 
When a bit is added to a file, its entropy increases by one nat regardless of the length of the file or 
the value of the bit. However, when a node is added to a network, the entropy increase is a func- 
tion of the ratio between the links and the nodes in the network. Therefore, the thermodynamic 
incentive for a node to join a highly linked network is higher than to join a poorly linked network. 
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1. Introduction 
The propensity of networks to grow is a characteristic of life. It is observed in biological networks, i.e. blood 
vessels, neurons, fungus etc. It is also observed in sociological networks i.e. communities, companies, guilds, etc., 
and in man-made networks as electrical, transportation, communication etc. It seems that the crowded the network, 
the higher its tendency to grow. Here we argue that adding a node to a highly linked network generates more en- 
tropy than adding a node to a poorly linked network. Since the second law of thermodynamics states that entropy 
tends to increase to it maximum, we conclude that the second law yields higher incentive to a node to join to highly 
linked networks. 

Networks and files are different from gases or solutions. However, from a statistical-mechanics point of view, 
any physical system comprises of particles, states and microstates. The particles may be atoms, molecules, links, 
energetic bits, etc., correspondently, states are the possible spatial locations, nodes, bits etc. and microstates are 
the possible different configurations of the particles in the states. It should be noted that sometimes the numbers of 
particles, states and microstates are a function of energy and/or other physical quantities. The logarithm of the 
number of the microstates is the entropy that mysteriously has a propensity to grow to its maximum. 
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2. Networks Thermodynamics 
Communication and networks are the cornerstones of life. Whittaker [1] Nyquist [2] and Shannon [3] have shown 
that every kind of information can be expressed by a file comprises a sequence of “1” and “0” bits. 

A file of N bits can carry ln 2S N=  entropy, and if the bits are classical harmonic oscillators, its associated 
physical entropy is ln 2S kN=  where k is the Boltzmann constant [4]. 

In a way, networks are similar to a file. If we define a link as a unidirectional connection between two nodes, 
then a network can be described as a sequence of N nodes having each integer number links. If the total number of 
links in the net is P then the number of links per node can vary from 1 to 1P N− +  at the maximum, as we want 
any node to have at least one connection to the net. 

From a statistical-mechanics view, a file is a sequence of N states, and the particles are the “1” bit. A network is 
a sequence of N states, and the particles are the “1” link. However, there is a difference; in a file it is impossible to 
have more than one particle in a state, but in a network the number of particles can be any integer. In physics, 
particles that cannot be more than one in a state are called Fermions (i.e. atoms, molecules, quarks and leptons), 
and particles that do not have such a restriction (Pauli exclusion principle) are called Bosons (i.e. photons, pho- 
nons and particles having spin 0, 1, 2…). The fermions and bosons have obviously different statistical properties 
that are well known. In fact, the name fermion was given to particles that behave according to Fermi-Dirac sta- 
tistics, and the name Boson was given to particles that behave according to Bose-Einstein statistics. The origin of 
the differences between bosons and fermions is their different number of microstates. 

In many networks in nature the number of links is much higher than the number of nodes. For example, in a 
social network, where a person is a node and a connection to acquaintance is a link, even a loner usually has a few 
links. The distribution of links in networks nodes receives a considerable attention [5]-[7]. It was found that the 
distribution of links in nodes has the shape of a “long tail” to the right. Namely, few nodes have many links, and 
the majority of links have fewer links. In statistical-mechanics language: few states have many particles and many 
states have few particles. It should be noted that this distribution is the classic approximation of Planck’s statistics 
that was suggested by him in his famous equation for the distribution of photons in radiation modes in a black 
body [8]. The long tail distribution is substantially different from the canonic Gaussian distribution, in which most 
of the states have the average number of particles [9]. Recently it was shown that the maximum entropy distri- 
bution of a network in the limit in which the number of links is much higher than the number of nodes obeys Zipf 
law [9]. 

First we calculate the entropy ( ),S N P  of file having P fermions in N states. Than we show that adding one bit 
add a constant amount of entropy namely, 

( ) ( )1, , ln 2S N P S N P+ = + .                                 (1) 

Later we calculate the entropy of a network having P bosons in N states. Than we show that adding one state the 
entropy increase is function of n P N=  namely, 

( ) ( ) ( )1, , ln 1 .S N P S N P n+ = + +                                (2) 

We use the Boltzmann definition of entropy for fermions [10]. 

( ), lnS P N ≡ Ω  and 
( )

!Ω
! !

N
P N P

=
−

, 

is the number of microstates. We make use of Stirling formula, namely, ln ! lnN N N N= −  and obtain, 

( ) ( ) ( ), ln ln lnS P N N N P P N P N P= − − − −  

If we designate probability Pp
N

≡ , the entropy can be written as; 

( ) ( ) ( ), ln 1 ln 1S P N N p p p p= − + − −                              (3) 

It should be noted that the maximum entropy solution for Equation (1) for 1 2p =  yields, ln 2S N= . 



O. Kafri 
 

 
530 

Therefore, it is clear that Equation (1) is true. One should ask about the change in p, when we add a bit. The 
answer is that the bit is uncertainty. Since Alice does not know its value, she assumes that 1 2p = . Therefore, 
each bit carries ln 2  entropy, or in log base 2, one bit. 

For bosons, the number of microstates is given by [11], 

( ) ( )
( )

1 !
Ω ,

1 ! !
N P

N P
N P
+ −

=
−

, 

therefore, adding one node yields, 

( ) ( )( )
( ) ( )

1 !
Ω 1, Ω , .

1 ! !
N P N P N PN P N P

N N P N
+ + − +

+ = =
−

 

We designate occupation number Pn
N

≡ . 

Therefore, 

( ) ( ) ( )1, , ln 1S N P S N P n+ − = + . 

In general, networks can be described by two dimensional matrixes in which any matrix element ,i jP  desig- 
nates the number of links from a node i  to node ,j  and therefore any element ,i jP  has an opposite direction 
element ,j iP . In some networks (i.e. communication networks), the links can change their nodes and direction and 
therefore the number of microstates of the incoming links is identical to the number of the outgoing links, there- 

fore ( ) ( )
( )

2
1 !

Ω ,
1 ! !

N P
N P

N P
 + −

=  
−  

, and similarly, 

( ) ( ) ( )2Ω 1, 1 Ω ,N P n N P+ = +  

or, 

( ) ( ) ( )1, , 2 ln 1S N P S N P n+ − = + . 

In general, the entropy increase will be between ( )ln 1 n+  and ( )2ln 1 n+ . 

3. Conclusions 
We see that unlike a binary file in which the bit carries a constant amount of uncertainty that is independent in the 
file in which it is transmitted, a node has an extra entropic benefit to join high occupation number nets. 

High occupation number boson gas statistics can be applied for many phenomena in life. In the Internet, the 
sites are the states and the surfers are the particles. In the publishing market, the titles are the states and the readers 
are the particles. In text, the words are the states and their number is the particles, etc. In these examples one can 
find the long tail distributions (i.e. Planck-Benford and Zipf distributions) [12]. Our natural tendency to join the 
crowd may be viewed as the propensity of entropy to give a higher priority to be added to highly linked networks 
rather than to small ones. 

Acknowledgements 
I thank R. D. Levine for his criticism and H. Kafri for her help. 

References 
[1] Whittaker, E.T. (1915) On the Functions Which Are Represented by the Expansions of the Interpolation Theory. Pro- 

ceedings of the Royal Society of Edinburgh, Section A, 35, 181-194. 
[2] Nyquist, H. (1928) Certain Topics in Telegraph Transmission Theory. Transactions of AIEE, 47, 617-644. 
[3] Shannon, C.E. (1948) A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423, 



O. Kafri 
 

 
531 

623-656. 
[4] Kafri, O. and Kafri, H. (2013) Entropy—God’s Dice Game. Create Space. 130-136. http://www.entropy-book.com/ 
[5] Barabási, A.L. (2002) Linked: The New Science of Networks. Perseus Books Group, New York. 
[6] Barabási, A.L. and Réka, A. (1999) Emergence of Scaling in Random Networks. Science, 286, 509-512. 

http://dx.doi.org/10.1126/science.286.5439.509 
[7] Barabási, A.L. and Oltvai, Z. (2004) Network Bioloy. Nature Reviews Genetics, 5, 101-113. 

http://dx.doi.org/10.1038/nrg1272 
[8] Planck, M. (1901) Über das Gesetz der Energieverteilungim Normalspectrum. Annalen der Physik, 4, 553. 

http://dx.doi.org/10.1002/andp.19013090310 
[9] Kafri, O. (2009) The Distributions in Nature and Entropy Principle. http://arxiv.org/abs/0907.4852  
[10] Kafri O. and Kafri H. (2013) Entropy—God’s Dice Game. Creatspace, Seatle, 187. 
[11] Kafri O. and Kafri H. (2013) Entropy—God’s Dice Game. Creatspace, Seatle, 198. 
[12] Kafri O. and Kafri H. (2013) Entropy—God’s Dice Game. Creatspace, Seatle, 208. 

http://www.entropy-book.com/
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1038/nrg1272
http://dx.doi.org/10.1002/andp.19013090310
http://arxiv.org/abs/0907.4852

	Follow the Multitude—A Thermodynamic Approach
	Abstract
	Keywords
	1. Introduction
	2. Networks Thermodynamics
	3. Conclusions
	Acknowledgements
	References

