
Vol.5, No.5, 631-639 (2013)                                                                   Natural Science 
http://dx.doi.org/10.4236/ns.2013.55078  

Grand potential formalism of interfacial 
thermodynamics for critical nucleus 

Atsushi Mori*, Yoshihisa Suzuki 
 

Institute of Technology and Science, The University of Tokushima, Tokushima, Japan;  
*Corresponding Author: atsumshimori@tokushima-u.ac.jp 
 
Received 14 March 2013; revised 14 April 2013; accepted 22 April 2013 
 
Copyright © 2013 Atsushi Mori, Yoshihisa Suzuki. This is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

In nucleation theories, the work of formation of a 
nucleus is often denoted by W = ∆G. This con- 
vention misleads that the nucleation should be 
considered in the isothermal-isobaric system. 
However, the pressure in the system with a nu- 
cleus is no longer uniform due to Laplace’s 
equation. Instead, the chemical potential is uni- 
form throughout the system for the critical nu- 
cleus. Therefore, one can consider the nuclea- 
tion in the grand ensemble properly. Accordingly, 
W is found to be the grand potential difference 
and the interfacial tension is also turned to be an 
interfacial excess grand potential. This treat- 
ment is not entirely new; however, to explicitly 
treat in the grand potential formalism is for the 
first time. We have successfully given an over- 
whelmingly clear description. 
 
Keywords: Gibbs Interfacial Thermodynamics; 
Grad Potential; Interfacial Tension; Work of Nucleus 
Formation 

1. INTRODUCTION 

The work of formation of a nucleus is often written as 
. It leads one to understand the work of formation of 

the critical nucleus as a difference of the Gibbs energy. 
The meaning of the form of the work of formation of a 
critical nucleus (Equation (4) in the text) becomes, how- 
ever, clear straightforwardly if we deal the system in- 
cluding a critical nucleus as an isothermal-isochoric open 
system. The treatment as an isothermal-isobaric closed 
system brings confusions. The concept of the Gibbs di- 
viding surface is more clearly understood in the isother- 
mal-isochoric open system. As will be stated in the text, 
the treatments of an isothermal-isochoric open system 
appeared in literatures already. In this paper, we will give 

a clearer and direct statement in the grand potential for- 
malism for nucleation, aiming at helping researchers who 
are not specialists in thermodynamics. In other words, by 
describing with definite terminologies we will put for- 
ward understandings—some terminologies will be for 
the first time used definitely in this paper. 

G

Gibbs established the interfacial thermodynamic for- 
mula for the work of formation of a critical nucleus in 
1870s [1]. Since then, this subject was sometimes revis- 
ited and developed and/or extended [2-21]. One of true 
developments may be descriptions for the curvature- 
dependence of the interfacial tension [4,22-31]; as shall 
be described in Section 1.2, the interfacial tension   is 
assumed to be known prior to the calculation of the ra- 
dius  of the nucleus in the Gibbs formula. In other 
words, Gibbs’ treatment (Section 1.2) alone does work 
for evaluating the work of formation of the critical clus- 
ter if the interfacial tension is independent of the curva- 
ture of the interface. Later Tolman’s treatment was ex- 
tended to the binary system [32]. Clarifying the mean- 
ing of the Gibbs dividing surface as done previously 
[2,3,5,11] and shall be done in Section 1.3 is helpful for 
general readers to avoid confusions, but not entirely new. 
Also embodiment of the variation of area 

R

A  by defin- 
ing the conical system with the solid angle   around 
the center of the nucleus, such as done previously [2, 
3,5,9,11,21], is, indeed, very helpful for ones who need 
rigorous arguments, but also not entirely new. 

Throughout this paper we restrict ourselves to the case 
of spherical interfaces for simplicity and for the sake of 
avoiding complexity for better understanding. For exam- 
ple, two principal curvatures appear in general; this may 
bring confusion. Also, for the same sake we limit our- 
selves to unary cases. Also, for the same sake we omit 
the structure of both two phases; if at least one of the co- 
existing phases is crystalline, the interfacial tension be- 
comes, strictly speaking, crystallographic orientation de- 
pendent. 
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1.1. Issue 

One of purposes of the thermodynamics of nucleation 
is to calculate the reversible work of formation of a 
critical nucleus of a stable phase in an undercooled par- 
ent phase [1]. Through this work, , one can obtain the 
steady-state nucleation rate as 

W

0e
BW k T

s  with B  
being the temperature multiplied by Boltzmann’s con- 
stant. Not only in textbooks [34-36] but also in ad- 
vanced research papers [14,37-45] the following expres- 
sion (or essentially equivalent one) is seen for the work 
of formation of a critical nucleus: 

J J k T

,G n A                     (1) 

where  is the difference between the 
chemical potentials of the nucleating phase (

 0      
  phase) 

and the parent phase (  phase). The direct interpreta- 
tion of Equation (1) is as follows. Limiting ourselves to 
the case that the molecular volumes (volumes per mole- 
cule) of the   and   phases are equal1, let us denote 
the molecular volume mV . Hereafter, the subscript  
indicates the molecular quantities. Then, the quantity  
is defined as the number of molecule consisting the nu- 
cleus, which is equal to 

m
n

34π 3R V V Vm m  with 
34π 3V   R  being the volume of the nucleus. The first 

term in Equation (1) is the volume term, which is the 
reversible work associated with the transformation from 
the   phase to the   phase of  molecules. The 
second term in Equation (1) is the surface term, which is 
the reversible work to form a surface of area 

n

24πA R . 
Here,  is the radius of the nucleus; the rigorous defini- 
tion of  will be given later. Remembering that the 
chemical potential is equal to the molecular Gibbs energy, 
the expression of   seems at apparent appropriate. 
The question arises whether the expression of Equation 
(1) is only valid for the case that no volume change is 
associated with the 

R
R

G

-   phase transition or not. Exact 
expression for the reversible work  was already given 
and the approximation which reduces the exact expres- 
sion to Equation (1) was derived [11]. Also the expres- 
sion of  makes one understood at apparent that the 
interfacial tension 

W

G
  is defined as the superficial inter- 

facial Gibbs energy; also exact expression for   was 
already given [7,11]. Unfortunately, the previous deriva- 
tions were not so transparent. A clearer interpretation will 
be given in this paper in a framework of the grand poten- 
tial formalism. This paper aims at leading the readers to a 
clear understanding of the work of formation of a nu- 
cleus and solving the misunderstanding. The meaning of 

the interfacial free energy (or the interfacial tension)   
becomes also clear; the interfacial tesion   can be un- 
derstood as the superficial grand potential [3-5,9,11,12]. 

1.2. Gibbs Interfacial Thermodynamics 

To review the Gibbs’ formalism for evaluating W is 
not only heuristic but also ingredient for understanding 
the thermodynamic “ensemble” appropriate for the sys- 
tem of nucleation. In other words, due to this one can 
find why the grand potential formalism is appropriate; 
that is, constant VT  condition is imposed. It is suffi- 
cient to limit ourselves to the unary case; formulation for 
the multi-component system is seen, for example, in a 
previous paper [46]. 

Consider a spherical nucleus of the   phase in an 
undercooled   phase of the chemical potential    
at the temperature  The chemical potential .T   and 
temperature  are regarded as those of the reservoir. 
Along with the isothermal condition, for the critical nu- 
cleus one can regard a cluster of the 

T

  phase is in 
equilibrium with the   phase with respect to the mate- 
rial transport. One can select  , ,T V   as independent 
variables specifying the total system with  being the 
volume of the total system. The following is the proce-
dure of the calculation of the work of formation of a cri- 
tical nucleus. 

V

1) The pressure of the   phase is determined by the 
equilibrium equation with respect to the materials trans- 
port, i.e. 

 ,p T  .                   (2) 

2) Presuming the interfacial tension   as known, the ra- 
dius  is determined by Laplace’s equation, R

2
,p p

R
  
                   (3) 

where p  is the pressure of the   phase correspond- 
ing to  ,T  . 

3) The work of formation of the critical nucleus of ra- 
dius R is calculated by 

  .W p p V   A              (4) 

We note that eliminating p p   using Laplace’s 
equation (Equation (3)), Equation (4) is rewritten into 

1
.

3
W A                    (5) 

We should note that the work of formation of a critical 
nucleus consists of two terms; as has been mentioned the 
first term is the volume term and, in tern, the second term 
is the surface term. The first term in Equation (4) is the 
work to replace the   phase of volume V   with the 
  phase. The second term, A , is understood as the  

1A slight consideration reveals that we are not limited to the case that 
no volume change is associated with the phase transition. If there is a 
volume change, one should account for effect of the total volume 
change in . In the main text, it is written that this situation is 
somewhat confusing. Naively thinking may impede going forward and 
result in going around three positions (Equations (3)-(5) of [33]). 

G

work associated with the formation of area A  of the 
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surface free energy   per unit area. In other words, in 
writing the work of formation of the critical nucleus we 
divide the process of nucleus formation into two. One is 
to form a hypothetical nucleus of the   phase pos- 
sessing the bulk properties throughout the entire volume 
V   in the parent   phase. The other is regarded to that 
to form a actual structure of the interface. 

1.3. Gibbs Dividing Surface and Surface of 
Tension 

For the first one of the two works of formation of a 
critical nucleus, the mathematical surface of radius  
is a key concept. This surface is called the Gibbs divid- 
ing surface. Owing to introducing the dividing surface 
one can divide the work of formation of a nucleus into 
two. The volume term is the work of formation of a hy- 
pothetical cluster as illustrated in Figure 1. The surface 
term of the form of 

R

A  is, however, not very general; 
this form is valid only for the surface of tension, which 
will be explained later. The general form includes a cur- 
vature-dependent term [7]. There are varieties of choices 
of the dividing surface. Most straightforward one is the 
equimolar surface; the total numbers of molecules of the 
hypothetical system and the real one are the same thereby. 
The dividing surface introduced in Section 1.2 is called 
the surface of tension as mentioned there. By this choice, 
the coefficient   appears in the surface term in the work 
of formation of a critical nucleus coincides with the inter- 
facial tension. The definition of the surface of tension is 
implicit; the choice so that the curvature-dependent term 
vanishes is the definition. For the choice of the surface of 
tension, Laplace’s equation (Equation (3)) holds; Laplace’s 
equation is the equation of the mechanical balance at the  
 

 

Figure 1. A schematic illustration of the profile of the order 
parameter (the density in, e.g., vapor-liquid case) with the ho- 
rizontal axis indicating the distance from the center of the nu- 
cleus. In general, the order parameter varies between two bulk 
values gradually. Dashed lines indicate the hypothetical system, 
in which inside the dividing surface, indicated by a vertical 
dashed line, is occupied with a bulk β phase and outside with a 
bulk α phase. 

curved interface possessing the mechanical tension  . 
Therefore, the interfacial free energy   is called the 
interfacial tension. 

2. WORK OF FORMATION OF CRITICAL 
NUCLEUS 

Sometimes very unnatural variables are specified 
[2,11]. That is, the internal energy , the entropy , 
and the amount of substances are selected as independent 
variable. The mass as well as the number of molecule 
can be employed as the amount of substances. Neverthe- 
less, Nishioka [11,13] derived a correct conclusion that 

E S

  is equal to the superficial grand potential through an 
entangled argument. 

As pointed in Section 1.2 the chemical potential 
throughout the system is uniform. Along with the fact 
that the system is considered as isothermal, it is appropri- 
ate to select the temperature  and the chemical poten- 
tial 

T
  as independent variables. In this case, because at 

least one extensive variable is necessary for complete de- 
scription, the total system volume  must be, in gene- 
ral, selected as one of the independent variables. We note 
that the uniformity of the chemical potential was already 
pointed out [2]; the treatment there was, however, not 
fully satisfactory. 

V

2.1. Isothermal-Isochoric Open System and 
Grand Potential 

As mentioned above the temperature and the chemical 
potential are uniform throughout the system. One can 
regard that the system is exposed to the isobaric reserver 
because if the chemical potential and the temperature are 
kept constant, the corresponding pressure, which is a 
function of  and T  , is also constant. In Figure 2 we 
illustrate an isobaric closed system and an isochoric open 
system; whereas in the former the system size changes 
after the nucleation, in the latter the system size is un- 
changed thereafter. Therefore, we should take into  

 
NPT v.s. μVT 

N, P, T                            μ(P, T), V,T 

 
(a)                             (b) 

Figure 2. Comparison of the isobaric closed system and the 
isochoric open system before and after the nucleation. For clari- 
ty we assume that the nucleating phase is more condensed than 
the parent phase. In the isobaric case the total volume varies 
due to the nucleation. Accordingly, to figure out the work of 
formation of the nucleus in the isobaric system is somewhat 
complicated. 
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where p  and p  are the pressures of respective bulk 
phases; even though there is no bulk part of the   
phase in reality such as for a small nucleus, the pressure 
p  is well defined (through Equation (2)). Due to the 

positive interfacial tension between the   and   
phases, the pressure p  of the phase inside the dividing 
surface is greater than p  (thermodynamic derivation 
of this relation will be given in Section 2.2). In this way, 
we have the first term in Equation (4), which is negative 
and corresponding to the volume bulk term in Equation (1). 

account the change of the total volume in calculation of 
the work of formation of a nucleus for the former case. 
This is somewhat complicated. Hence, it is convenient to 
treat the system as isothermal-isochoric open one. Of 
course, two ways of description are both correct. The re- 
versible work calculated as the Gibbs energy difference 
should coincide to that calculated as the grand potential 
difference. Indeed, a consideration with confusions led to 
the correct answer [33]. Unfortunately, in [33] the volume 
term and the surface term had been intertwined with each 
other; the form of Equation (5) has been eventually ob- 
tained. 2.2. Work of Formation of Critical Nucleus 

At least in Japan, a thermodynamics class does not 
teach the grand potential systematically. One can, how- 
ever, obtain isochoric open system by Legendre trans- 
formation of the isothermal-isochoric closed system, i.e., 
the independent variable is transformed from the amount 
of substances to the chemical potential to obtain this 
system [47]. The thermodynamic potential is obtained 
from the Helmholtz energy F by extracting N  (re- 
member that   ,T V

 is thermodynamic con- 
jugate variable to ); that is, 

As argued up to now, we know that the work of forma- 
tion of a critical nucleus is composed of the volume term, 
which is corresponding to the first term in Equation (1) 
and given by Equation (7), and the surface term, which is 
corresponding to the second term in Equation (1). If the 
equilibrium with respect to the materials transport holds 
between the parent phase and the nucleus, the pressure 
inside the nucleus, p , is obtained by solving 

F N   
N   , ,T p T p      ,              (8) 

,F N F G pV                (6) 
which corresponds to Equation (2) and consistent to the 
isothermal open system ( VT  ensemble). Because the 
  phase is metastable and the   phase is the stable 
phase; that is, 

where G N  is the Gibbs energy. To reach to the last 
expression we have used the definition G F . 
One may be familiar with this form in the grand canoni- 
cal ensemble (

pV 

VT  ensemble) through the bridging 
relation in this ensemble [48]. The thermodynamic po- 
tential Ω is the grand potential. We note that the grand 
potential (or merely the symbol ) already appeared in 
a thermodynamic expression for the interface in litera- 
tures[20,25,28,31,42,49-51] and a textbook [48]. In ad- 
dition, the grand potential   may be familiar in the 
fields of the density-functional theory. 



  ,T p T p ,                  (9) 

holds, one can derive p p 
d dmS T V

. Recalling the Gibbs- 
Duhem relation mdp    , we draw schema- 
tically the chemical potentials as functions of the pres- 
sure in Figure 3; the larger the slope is, the larger the 
molecular volume m  is. In Figure 3(a), we illustrate V

  and   for a normal case  m m V V  . Because 
the   phase is metastable (Equation (9)), the location 
of p  is in the side . Therefore, from Equation 
(8) one can find the location of 

eqp p
p  as illustrated in Fig- 

ure 3(a). An illustration for an abnormal case  m mV V   
such as the case of water-ice phase transition is given in 
Figure 3(b). The interpretation is logically the same. 

By virtue of the last expression of Equation (6), we 
obtain the volume term of the work of formation of a 
critical nucleus, as the grand potential difference between 
the system including the hypothetical nucleus and the ho- 
mogeneous   phase, as 

  ,p p V                      (7) 

 

 
(a)                             (b) 

Figure 3. The -p  relations are plotted for (a) a normal case  m mV V   and (b) an 

abnormal case  mVmV   . Therefrom, one can confirm inequality p p  . 
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In this way, the negativity of the volume term is un- 

derstood. The criterion for the dividing surface has not 
been given yet. The surface term, in general, take a form 
[7,9,11] 

  d .R A C R               (10) 

Here,  denotes that this coefficient depends on 
the criterion for the dividing surface. The surface of ten- 
sion is defined by . Only for this choice of , 
the coefficient  coincide with the interfacial ten- 
sion. In other words, the surface term consist of, in gen- 
eral, the interfacial area dependent term and the curva- 
ture dependent term. The surface of tension is defined for 
which the curvature dependent term vanishes. We note 
that  takes the minimum for the surface of tension 
[7]. 

 R

 R

  0C R 
 R

R




In this way, we have obtained Equation (4) for the 
work of formation of a critical nucleus. We give a note 
here. The work for the formation of the critical nucleus 
takes, however, the same value if the physical condition 
is unchanged; that is, it is not dependent on the criterion 
of the dividing surface. Therefrom, one can derive the 
relation between the general  and the interfacial 
tension. This was done by Kondo [7]. 

 R

Noting 34π 3V R   and 24πA R , let us solve the 
equation that the derivative with respect to  of Equa- 
tion (4) vanishes. By a simple calculation we have La- 
place’s equation (Equation (3)). This is a mechanical ba- 
lance equation. Namely, in a case that two phases are co- 
existing via an interface of a curvature radius  with 
an interrfacial tension 

R

R
 , the force acting from the inside 

of the interface due to the pressure p  balances with 
the composed force of the force due to the outside pres- 
sure p  and that due to the interfacial tension (corre- 
sponding to 2p R ). The quantity   defined as 
the interfacial free energy per unit area of the interface is, 
if one chooses the surface of tension as the dividing sur- 
face, coincides with the mechanical interfacial tension. 
Readers can readily confirm the coincidence between the 
unit of the energy per area and the tension. 

Now, let us derive the form of the first term in Equa- 
tion (1), following Nishioka and Kusaka [13]. We start 
with the relation 

,m

T

V
p

 
  

               (11) 

which is nothing other than the Gibbs-Duhem relation 
for the isothermal case. We consider a case that an in- 
compressible   phase nucleus is nucleated in the   
phase. Let us integrate Equation (11) for the   phase 
for  from p p  to p . 

    , , d
p

m m

p

T p T p V p V p p





           

Eliminating p p   in Equation (4) using the equa- 
tion derived by dividing Equation (12), we have an equa- 
tion corresponding to Equation (1): 

=
m

V
W

V



 ,A                   (13) 

where 

  
  

, ,

, ,

T p T p

T p T p

   

   

  

 

  

 


.

       (14) 

To reach to the last expression, Equation (8) has been 
used. One can integrate Equation (11) for the   phase 
to obtain the form of Equation (1) in a case that the   
phase is incompressible. This is, however, not the present 
concern. It should be noted that for a case that no volume 
change is associated with the -   phase transition, a 
form far form Equation (1) is obtained [52], although in 
this case one has intuitively  n n    with 

m mn V V V V     . 

3. GIBBS ADSORPTION ISOTHERM 

In this section, we derive the Gibbs adsorption iso- 
therm 

,
T




 
   

               (15) 

where   represents the chemical potential of the mate- 
rials reservoir, which is equal to  , and  is the su- 
perficial number density per unit area of the interface, 
sometimes referred to as the excess number density or 
the interfacial adsorption quantity. A rigorous definition 
of 



  will be given later. 

3.1. Conical System and Superficial 
Quantities 

We define the system as a spherical cone as illustrated 
in Figure 4. In this definition, there are two variables de- 
scribing the extent of the system; through the solid angle 
  we can apply Euler’s theorem for the homogeneous 
equation. Unlike previous papers [9,11,13], we define the 
system as open with the chemical potential  . In those 
papers, the arguments were started with selecting the 
entropy , the number of molecule , the radius 0 , 
and the solid angle 

S N R
  as independent variables. How- 

ever, the argument becomes simplified with the selection 
of independent variables  and T  , instead of  and 

. We note that  is selected enough larger than . 
S

N

.  (12) 

0

For the hypothetical system, because of the bulk prop- 
erties, the following fundamental equations (Gibbs rela- 
tions) hold for two parts of the system: 

R R

, , , ,d d d dE T S p V N , .                  (16) 
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Figure 4. Conical system with 
the solid angle ω around the cen- 
ter of the nucleus. The system is 
defined as isochoric with the so- 
lid angle ω and the radius R0. 
The system is exposed to the re- 
servoir of the temperature T and 
the chemical potential μ. 

 
Here, according to a convention  is used to repre- 

sent the internal energy. This equation is rewritten in terms 
of the grand potentials 

E

E T, , ,S N ,       
, ,   

 
,  



d

 as 
, ,

, , , ,

d d d

d d

p V V p

S T p V N

   

        

   

   
     (17) 

Those equations hold for both systems with the solid 
angle .  and the entire sphere . In those ex- 
pressions 

 4π  

3 3,V R                    (18) 

 3 3
0 3,V R R               (19) 

and we should note that  and 0R   are independent 
variables. 

Let us denote quantities for the entire spherical system 
by symbols with a superscript  and those for the 
system with the solid angle 

4π
  by symbols without a 

superscript. For a while, let us consider again a general 
dividing surface. Denoting the contribution due to the 
nucleus by…, the fundamental equation 

4π 4π 4π 4πd d d dS T p V N      ,    (20) 

holds. Here, 4π 3
04π 3V R  and because the  is an in- 

dependent variable, . Let us rewrite Equ- 

0R
4π 2

0 0d 4π dV R R

ation (20) using    4π 4π4π , 4π ,S S V   V  and 

  4π= 4πN  N . Because  2 3
0 0 0d d 3V R R R d    

(from 3
0 3V R ), we have 

 2 3
0 0 0

2
0 0

d d d 3 d d

d d d d .

S T p R R R N

S T p R R N

 

 

  

   

       
    

 (21) 

Here, we express the contribution of the nucleus by 
introducing the coefficient   defined by 

   
0 0, , , ,T R S R

E  
               (22) 

as previously done [2,3,5,9,11,13]. In those previous 
papers, the expression in the square brackets was given. 

Differentiating   4π4π    and using Equation 

(20), we have 

   
 

4π 4π

2
0 0

d 4π d 4π d

d d dS T p R R N 

 

d .   

    

     
  (23) 

By comparing Equations (21) and (23), we obtain 

  .E TS N                 (24) 

In previous papers [2,3,5,9,11,13], the last expression 
was given, despite that the mid expression is conceptu- 
ally meaningful. This equation is the equation obtained 
from the relation on the basis of the fact that when the 
solid angle is multiplied by  , the grand potential  

 0, , ;T R    is transformed as  

  0 0, ,  ; , ,  ;T R T R           

(Euler’s theorem). We note that Nishioka [11] derived the 
same equation by applying Euler’s theorem to . E

3.2. Interfacial Tension 

In Equation (21), existence of d   is due to the nu- 
cleus. Therefore, one can write 

d d d dp V p V A C R          d ,     (25) 

(pay attention on the independent variables). The first 
two terms are of the hypothetical system defined in Sec- 
tion 3.1. The last two terms are for forming interfacial 
structure after the formation of the hypothetical system. 
As mentioned above, we note that a term depending on 
the derivative of the curvature radius, , appears. This 
term, also as mentioned above, vanishes if the surface of 
tension is taken as the dividing surface. 

dR

Let us go forward the argument by taking the surface 
of tension as the dividing surface. Using the equation 
obtained by putting 0C   in Equation (25), we rewrite 
Equation (21) into 

2
0 0d d d

d d d

S T p R R N

p V p V A



   

d

.

 



    

  
          (26) 

The fundamental equation for the hypothetical system 
is just the addition of both of Equation (17): 

   
 

d d

d d

S S T p V

p V N N

d

.

    

   





     

  
     (27) 

Subtracting Equation (27) from Equation (26), we 
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have the fundamental equation for the superficial grand 
potential  s      

s s s

: 

2

d d d d

d d ds s

S T N A

S T N R





 

,  

    

   
        (28) 

where  sS S S S     and sN N N N    

2dp R R

0 0R
R R

 
are, respectively, the superficial entropy and the superfi- 
cial number of molecules. In this equation 0 0  
has been eliminated because the state of the interface is 
independent of the selection of ; in other words,  
has been fixed at the position . 

R
0

Euler’s relation obtained from the fact that s  is 
transformed as   , ; , ;T T          when   
is multiplied by   as    is 

.s s s sA E TS N               (29) 

To derive this equation, one can use the same method 
to derive Equation (24). From Equation (29), the interfa- 
cial tension   is revealed to be the superficial grand 
potential per unit area of the interface. Introducing the 
superficial quantities per unit area of the interface, 

,s s ss se E A S A  , and sN A  , we have 

.s s sA e Ts                 (30) 

The last expressions in Equations (29) and (30) have 
already be given in previous papers [3,4,5,9,11-13,15,20, 
21,31]. In those papers, except for [12,20,21,31]—Ru- 
sanov et al. [20] explicitly stated, however, the word of 
the superficial grand potential did not appear. 

3.3. Gibbs-Duhem Relation for Interface 

A general way to obtain the Gibbs-Duhem relation is 
to take differential of Euler’s relation and subtract the 
fundamental equation. For the interface, the same pro- 
cedure is possible; we can have the Gibbs-Duhem rela- 
tion for the interface 

d d dss T ,                (31) 

by taking differential of Equation (29) and subtract the 
first equation of Equation (28) and dividing by A . We 
can, also, obtain Equation (31) by direct differentiation 
of Equation (30) and using the fundamental equation for 

se . From Equation (31) we have Equation (15) or 
d d    . This is the Gibbs adsorption 
isotherm. 

 const.T  

4. SUMMARY 

We have given a grand potential formalism for the in- 
terfacial thermodynamics. It is revealed that the work of 
formation of a critical nucleus is equal to the grand po- 
tential difference. This makes a point of view clearer 
overwhelmingly than regarding the work of formation of 
the nucleus as the Gibbs energy difference. Also, the 

interfacial tension is revealed to be defined as the super- 
ficial grand potential per unit area of the interface. Al- 
though equivalent form was given previously [3-5,9,11, 
13], this paper has explicitly closed up the grand poten- 
tial property for the first time. 
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