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ABSTRACT 

The nonlinear coupled system of diffusion equ- 
ations are solved analytically for the transport 
and kinetics of electrons and reactant in the 
layer of a modified electrode. Analytical expres-
sions of concentrations of substrate and me-
diator are presented using He’s variational itera- 
tion method. The approximate expression of cu- 
rrent for microheterogeneous catalysis at iso-
nomer or redox polymer modified electrodes is 
also obtained. The results of the available limit-
ing cases are compared with our results and are 
found to be in good agreement. 
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1. INTRODUCTION 

Recently the electrocatalytic activity of polymer modi-
fied electrodes has been the subject of considerable 
study of many researchers. Generally most systems are 
used to require an efficient electron transfer mediator in 
addition to displaying good electrocatalytic activity. We 
can find many features for electrocatalysis in the use of 
microscopic particles of metals or metal oxides disp- 
ersed within polymeric films deposited on electrode sur-
faces. This dispersion of catalytic materials offers im-
portant catalytic advantages. We are interested in the 
design of such microheterogeneous systems for efficient 
electrocatalysis. 

A modified electrode differs from an ordinary electr- 
ode by having a thin film of some coated material which 
prevent direct contact between the metal surface and the 
bulk electrolyte. Electrochemical reactions of species in 
solution take place through that thin film. Instead of a 

direct electron transfer between the Fermi level of the 
metal and the ion in solution, the electron transfer is 
‘mediated’ by the redox groups present in the thin layer. 
A large number of different modified electrodes have 
been made and certain systems have received more at-
tention than others. 

Lyons, McCormack, and Bartlett [1] presented an 
analytical model which quantified the transport and ki-
netics in conducting polymer modified electrodes con-
taining a homogeneous distribution of spherical mi-
croparticulate catalysts. In their paper Lyons, McCor-
mack, and Bartlett [1] obtained the analytical expres-
sions of the substrate and mediator concentrations for the 
different values of parameters. Lyons and Bartlett [2] 
also presented the analytical expressions of substrate and 
mediator concentrations only for limiting values of di-
mensionless parameters. The transport  and kinetics of 
reactions in chemically modified electrodes have been 
analyzed previously by Lyons and co-workers and ap-
proximate analytical solutions are available [3-7] . 

In this paper we analyze application of catalyst com-
posites in modified electrodes. To date many researches 
have been done on the application of modified electrodes. 
To my knowledge no rigorous analytical solutions for 
substrate and mediator concentrations have been re-
ported in that application. Hence the main objective of 
this paper is to derive the analytical expressions of con-
centrations of substrate and mediator for all values of 
parameters using variational iteration method. The ap-
proximate expression of current for microheterogeneous 
catalysis at isonomer or redox polymer modified elec-
trodes is also obtained for all values of dimensionless 
parameters   and   (these parameters are defined in 
the (7)). 

2. MATHEMATICAL FORMULATION OF 
THE PROBLEM AND ANALYSIS 

Steady state boundary value problems described the tra- 
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nsport and kinetics within the film can be written in di-
mensionless form as follows [2]: 
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where ''
SA k   and   k  are electrochemical rate constant, 

0r  is the radius of an electrode, SD  is the diffusion 
co-efficient for the substrate concentration, AD  is the 
diffusion co-efficient for the mediator, N is the number 
of particles per unit volume, a  is the concentration of 
the mediator and s  is the concentration of the substrate. 
These coupled non-linear differential equations have to 
be solved by applying the following boundary condi-
tions: 

 aa    and  xdsd  x 0/,0         (3) 

and 

,       and d /d  0 x L s s a x          (4) 

The following dimensionless parameters for substrate 
concentration ,u  mediator concentration ,v and dis-
tance X  are introduced: 

KXxXaavssu /,/,/            (5) 

where kX  denotes a reaction layer thickness defined by 
the relation: 
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We also introduce the dimensionless parameters   
and   defined according to the following relations: 
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Now the Eq.1 and Eq.2 reduce to the following di-
mensionless form: 
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for the substrate, and 
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for the mediator respectively. Here we can assume that 
the reaction layer thickness LX K  . Now the boundary 
conditions may be expressed as follows: 

 xdud  and  1v    ,x 0/0        (10) 

1x , 0xdvd  and  u 1       (11) 

The flux j is given by 

j LxSxA xdsdDxdadD   )()( 0    (12) 

or in non-dimensional form: 
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The required expression of the normalized current is 

21
0 )4( Nrs D
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2.1. Case by Case Transport and Kinetics 
Analysis 

Case-1: Transport and Kinetics of the Substrate with- 
in the Layer 

We consider initially the master Eq.8 describing the 
transport and kinetics of the substrate in the layer when 

1 . Eq.8 can be written as 

   vvu
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Similarly when 11   1   (or)     , the (8) re-
duces to 
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The above equations are non-linear and only ap-
proximation solutions may be found. Using variational 
iteration method (Appendix-A), we obtain the concen-
tration of the substrate (by solving the Eq.16) 
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when 1 p . Using the boundary condition (11) 
we obtain the following relation between p  and a . 
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From the above relation we obtain the values of a for 
any given values of p << 1. The numerical values of a  
for some given values of p  are given in Table 1. 
When x is small, concentration of the substrate (when 

1 p ) Eq.18 becomes 



A. Eswari et al. / Natural Science 2 (2010) 612-625 

Copyright © 2010 SciRes.                                                                    OPEN ACCESS 

614 
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Also from the above Eq.20 1u when 0 p  
( 0a ) and 1x . When 0 , the Eq.8 or Eq.16 
becomes ud 2 / 2dx  = 0. The solution of this equation 
using the boundary conditions (10) and (11) becomes 

1u . This result is exactly equal to our result when 
0 . Similarly, the concentration of the substrate 

becomes (by solving the Eq.17 

62543

2432

23

222

033.0)4.02.0

3.0()333.025.01667.0

1667.01667.0()1(333.0

)5.05.05.05.0()1()(

x axra ra            

raxraraar            

aa xaar            

xarraaaxu









  (21) 

when 1r1  (or)    1 . Using the boundary 
condition (11), we obtain the following relation between 
r  and a .  
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From the above relation we obtain the values of a for 
any given values of r << 1. We can find the numerical 
values of a  through some specific values of r as shown 
in Table 1. When x is small, Eq.21 becomes 

]333.0)1(5.0)1()( 32 arxxraa[1 axu   (23) 

Also from the above Eq.23, 1u  when 01  r  
( a  = -1.878 or -0.195) and 1x . When  , the 
Eq.8 or Eq.17 becomes ud 2 / 02 udx . The solution 
of this equation using the boundary conditions (10) and (11) 
becomes 1u . This result is exactly equal to our result 
when  . These approximants for the concentra- 

tion of the substrate Eq.20, Eq.23 are the simplest 
closed- form of analytical approximation for 1   
and 1 . 

Case 2: Transport and Kinetics of the Mediator 
Within the Layer 

We consider the master (9) describing the transport 
and kinetics of the mediator with in the layer when 

 . 1 Now the (9) takes the form 
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Figure 1 shows our schematic representation of the 
differential equations describing the transport and kinet-
ics in a microheterogeneous system. Each of these ex-
pressions represents the approximations to the set of 
master equations outlined in the (8) and (9). Concentra-
tion of the mediator using variational iteration method 
(Appendix -A) becomes (by solving the Eq.24 
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when 1 q . Using the boundary condition (11) 
we obtain the following relation between a and q 

432 078.0099.0239.025.0 qqqqa       (27) 
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Figure 1. Our schematic representation of the differential equations describing the transport and 
kinetics in a microheterogeneous system. Each of these expressions represents approximations 
to the set of master equations outlined in the Eqs.8 and 9. 
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The numerical values of a  for some given values of 

q  are given in Table 1. When x is small, Eq.26 becomes 

22 )21(5.041)( xqaaqqaqaxxv    (28) 

Also from the above Eq.28, 1v when 0 q  
( a  = 0) and 0x . When 0 , the Eq.9 or Eq.24 
becomes 0/ 22 dxvd . The solution of this equation 
using the boundary conditions (10) and (11) becomes 

1v . This result is exactly equal to our result when 
0 . Similarly, the concentration of the mediator 

becomes (by solving the Eq.25) 
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condition (11) we obtain the following relation between 
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We can find the numerical values of a  through some 

specific values of l  as shown in Table 1. When x is 
small, Eq.29 becomes 
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Also from the above Eq.31 1v when 0 l  
( a  = 0.191 or 9.814) and 0x . When  , the 
(9) or Eq.25 becomes 0/ 22  vdxvd . The solution of 
this equation using the boundary conditions (10) and (11) 
becomes 1v . This result is exactly equal to our result 
when  . Eqs.28 and 31 represent the approxi-
mate new analytical expression of the concentration of 
the mediator when 1q   and 1l  . 
Concentration of substrate and mediator are summarized 
in Table 2 and Table 3. Using Eqs.14 and 15 the nor-
malized current I for various cases is given by 

1
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The expression of the current is summarized in Table 
4 and Table 5. 

 
Table 1. Numerical values of a for various values of p, l q r ,,  calculated using Eqs.19, 22, 27 and 30.  

Values of a  
Values of p,  q r, and l  

Eq.19 Eq.22 Eq.27 Eq.30 

0 0 -0.1950 0 0.1910 

0.01 -0.00246 -0.1931 0.0025 0.1901 

0.25 -0.0462 -0.1520 0.0463 0.1616 

0.5 -0.0587 -0.1056 0.0577 0.1240 

 
Table 2. Concentration of substrate )(xu  when 1  and 1 . 
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Table 3. Concentration of mediator )(xv when 1  and 1 . 
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s.no Conditions 
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Table 4. Current I  when 1  and 1 . 

Current I  
s.no Conditions 

This work Lyons and Bartlett [2] 
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Table 5. Current I  when 1  and 1 . 

Current I  

s.no Conditions 
This work Lyons and Bartlett [2] 

Figures 

1. 

1  

(or) 
1 q  

  aI 4                   (33) qI         (45) 
Figure 9 

Figure 17 

2. 

1  

(or) 
1 l  

  aI 4                 (35) tanhI        (46) 
Figure 10 
Figure 18 

 
3. COMPARISON WITH LYONS AND 

BARTLETT [2] WORK 

Lyons and Bartlett [2] takes the (8) in the form 
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whereas when    

022  vdxvd                  (39) 

The third term in the Eqs.24 and 25 is not present in 
the Eqs.38 and 39. Figure 2 shows the schematic repre-
sentation of the differential equations describing the 
transport and kinetics in a microheterogeneous system 
by (Lyons and Bartlett [2]). Each of these expressions 
represents the approximations to the set of master equa-
tions outlined in the Eqs.8 and 9. Lyons and Bartlett [2]) 
obtained the concentration of the substrate as 

 4)1(2887.01)( xpxu   if 1 p  (40) 

hxxu sec)cosh()(         if     1 p  (41) 

Similarly, mediator concentration as 

1)sinh(tanh)cosh()(  l  if           xxxv  (42) 

But a definite solution for mediator concentration is 
not arrived upon in the case of  q 1  . The 
Eqs.40 and 41 derived by Lyons and Bartlett [2] satisfy 
the boundary condition (11), but the Eq.40 does not sat-
isfy the boundary condition (10). In the same way Eq.41 
is independent of the parameter 1  whereas our 
Eqs.20 and 23 satisfy the boundary conditions (10) and 
(11). Similarly Eq.42 is independent of the parameter 

  whereas our Eqs.28 and 31 satisfy the boundary 
conditions (10) and (11). Lyons and Bartlett [2] obtained 
the corresponding dimensionless current I  as follows. 

pI        if    1 p       (43) 

 

tanhI      if   11  r       (44) 

qI          if 1 q       (45) 

tanhI       if   1 l       (46) 

Eqs.44 and 46 are independent of the parameters 1  
and   whereas our Eqs.34 and 35 depend on the 
parameters 1  and  . 

4. DISCUSSION OF STEADY STATE 
PROBLEM 

The comparison of concentration of substrate )(xu  
between the Eqs.20 and 23 (This work) and Eqs.40 and 
41 (Lyons and Bartlett [2]) are represented in Figure 3, 
Figure 4 for various values of  . From these Figures 
it is understood that the value of the concentration de-
creases when   increases. Concentration is slowly 
increasing when 5.0x  for all values of  . Then the 
concentration of )(xu  becomes 1 when 1x  for all 
values of  . The comparison of concentration media-
tor )(xv  between the Eqs.28 and 31 (This work) and 
Eq.42 (Lyons and Bartlett [2]) are represented in Figure 
5 and Figure 6 for various values of  . From these 
figures, it is deducted that the value of the concentration 
of )(xu decreases when   increases. Concentration 
is slowly decreasing when 6.0x  for all values of 

 . From these Figures 3-6, it is constructed that 
Eqs.20, 23, 28 and 31 satisfy their boundary conditions 
(10) and (11). 
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Figure 2. Schematic representation of the differential equations describing the transport and kinetics in 
a microheterogeneous system by Lyons and Bartlett [2]. Each of these expressions represents approxi-
mations to the set of master equations outlined in the Eqs.8 and 9. 
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Figure 3. Profiles of the dimensionless substrate concentration 

,u for various values of   when .1  The curve is 
plotted using Eqs.20 and 40. 
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Figure 4. Profiles of the dimensionless substrate concentration 

,u  for various values of   when 1  .The curve is 
plotted using Eqs.23 and 41. 
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Figure 7 shows the comparison of dimensionless cur-

rent I between the Eqs.32 and 43 for various values of 
  when 1 . Figure 8 shows the comparison of 
dimensionless current I between the Eqs.34 and 44 for 
various values of   when 1 . Figure 9 shows the 
comparison of dimensionless current I between the Eqs.33 

and 45 for various values of   when 1 . 
Figure 10 shows the comparison of dimensionless cur-
rent I between the Eqs.35 and 46 for various values of 

  when 1 . In all case diagrams as shown in 
figures, there is a vast variation in the current curves. 

Figures 11 and 12 show the comparison of our di-
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mensionless concentration u  evaluated using Eqs.20 
and 23 (This work) together with the simulation results 
(This work) and Eqs.40 and 41 (Lyons and Bartlett [2]) 
for the case of 1  and 1 . Figures 13 and 
14 indicate the comparison of our dimensionless con-
centration v calculated using Eqs.28 and 31 (This work) 
together with the simulation results (This work) and 
Eq.42 (Lyons and Bartlett [2]) for the case of 1  
and 1 . In all cases, there is a good match be-
tween our analytical and simulation results. 

Figures 15 and 16 show the comparison of our di-
mensionless current I versus   evaluated using Eqs.32 
and 34 (This work) together with the simulation results 
(This work) and Eqs.43 and 44 (Lyons and Bartlett [2]) 
for the case of 1  and 1 . Figures 17 and 
18 indicate the comparison of our dimensionless current 
I versus   calculated using Eqs.33 and 35 (This 
work) together with the simulation results (This work) 
and Eqs.45 and 46 (Lyons and Bartlett [2]) for the case 
of 1  and 1 . In all cases, there is a good 
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Figure 7. Plot of dimensionless current versus p . Cur-
rent is calculated in the Eqs.32 and 43. 
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Figure 8. Plot of dimensionless current versus r1 . Cur-

rent is calculated in the Eqs.34 and 44. 
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Figure 9. Plot of dimensionless current versus q . Cur-

rent is calculated in the Eqs.33 and 45. 
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rent is calculated in the Eqs.35 and 46. 
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Figure 11. Comparison of our dimensionless concentration u  
using Eq.20 (This work), Eq.40 (Lyons and Bartlett [2]) and 
simulation results using Scilab ( This work). Here the value of 

15.0  . 
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Figure 12. Comparison of our dimensionless concentration u  
using Eq.23 (This work), Eq.41 (Lyons and Bartlett [2]) and 
simulation results using Scilab (This work). Here the value of 
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Figure 13. Comparison of our dimensionless concentration v 
using Eq.28 (This work) and simulation results using Scilab 
(This work). Here the value of 15.0  . 
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Figure 14. Comparison of our dimensionless concentration v 
using Eq.31 (This work), Eq.42 (Lyons and Bartlett [2]) and 
simulation results using Scilab (This work). Here the value of 
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match between our analytical and simulation results. 

5. MATHMATICAL FORMULATION OF 
THE PROBLEM AND ANALYSIS 
(NON-STEADY STATE) 

The initial boundary value problems which has to be 
solved for the case of non-steady state can be written in 

dimensionless form as follows 
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Figure 15. Comparison of our dimensionless current I versus 
p  using Eq.32 (This work), Eq.43 (Lyons and Bartlett 

[2]) and simulation results using Scilab (This work). Here the 
value of 1 . 
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Figure 16. Comparison of our dimensionless current I versus 
r/1  using Eq.34 (This work), Eq.44 (Lyons and Bartlett 

[2]) and simulation results using Scilab (This work). Here the 
value of 1 . 
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Figure 17. Comparison of our dimensionless current I versus 

q  using Eq.33 (This work), Eq.45 (Lyons and Bartlett 

[2]) and simulation results using Scilab (This work). Here the 
value of 1 . 
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Figure 18. Comparison of our dimensionless current I versus 
l  using Eq.35 (This work), Eq.46 (Lyons and Bartlett 

[2]) and simulation results using Scilab (This work). Here the 
value of 1 . 

 
for the mediator respectively. These equations must obey 
the following initial and boundary conditions 

1v and 1u   ,t 00.00             (49) 

0/0  dxdu  and  1v  ,x          (50) 

1x , 0dxdv  and   u 1         (51) 

To my knowledge no rigorous analytical (or) numeri-
cal solutions for the transient problems have been rep- 
orted. Numerical simulation of substrate concentration 

and mediator concentration can be evaluated using Sci-
lab software (Appendix-B) . 

6. DISCUSSION OF NON-STEADY 
STATE PROBLEM 

The normalized numerical simulations of three dimen-
sional substrate concentration )(xu  is shown in Figure 
19, Figure 21 and Figure 23. As shown in Figures 19,  
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Figure 19. The normalized numerical simulation of three di-
mensional substrate concentration )(xu . The plot was con-

structed using Eq.47 for 01.0,01.0   . 
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Figure 20. The normalized numerical simulation of three di-
mensional mediator concentration )(xv . The plot was con-

structed using Eq.48 for 01.0,01.0   . 
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Figure 21. The normalized numerical simulation of three di-
mensional substrate concentration )(xu . The plot was con-

structed using Eq.47 for 1,1   . 
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Figure 22. The normalized numerical simulation of three di-
mensional mediator concentration )(xv . The plot was con-

structed using Eq.48 for 1,1   . 
 
Figure 21 and Figure 23 give the calculated response 
curve at different  and   values in our diagrams. 
The time dependent concentration )(xu  using Eq.47 is 
represented in Figure 19, Figure 21 and Figure23 for 
various values of  and  . Concentration is slowly 
decreasing when  and   is increasing. Then the con-
centration of )(xu  = 1 when 1x  and also for all 
values of  ,   and t . The normalized numerical si-
mulation of three dimensional mediator concentration 

)(xv is shown in Figure 20, Figure 22 and Figure 24. 
These figures show the calculated curve at different 
 and   values in our diagrams. The time dependent 
curve )(xv using Eq.48 is represented in Figure 20, Fi-  

gure 22 and Figure 24 for all values of  ,   and t .   
and   larger than 1 may be appropriate because the slope 
of the curves corresponding to 1  and 1  are al-
most identical although the analytical ranges are different. 
The slope of the curves decreases dramatically and the 
concentration is identical range when  and   is high. 

7. CONCLUSIONS 

We have presented a simple analysis of reaction/diff- 
usion within a conducting polymer film which is depos-
ited on a microelectrode. The transport and kinetics are 
quantified in terms of a fundamental reaction/diffusion 
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Figure 23. The normalized numerical simulation of three di-
mensional substrate concentration )(xu . The plot was con-

structed using Eq.47 for 10,10   . 
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Figure 24. The normalized numerical simulation of three di-
mensional mediator concentration )(xv . The plot was con-

structed using Eq.48 for 10,10   . 
 
parameters  ,   and the analytical expression of 
the substrate concentration and mediator concentration 
within the polymer film are thus derived. An analytical 
expression for the steady state current response is also 
presented. A non linear time independent partial differ-
ential equation has been formulated and solved using 
He’s variational iteration method. The primary result of 
this work is first approximate calculation of substrate 
concentration and mediator concentration for all values 
of   and  . It gives good agreement with previ-
ous published limiting case results. The extension of the 
procedure to other two-dimensional and three-dimen- 
sional geometries with various complex boundary condi-
tions seems possible. 
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APPENDIX  A 

In this appendix, we derive the general solution of non- 
linear reaction (8), (9), (10), (11) using He’s variational 
iteration method. To illustrate the basic concepts of vari-
ational iteration method (VIM), we consider the follow-
ing non-linear partial differential equation [8-12] 

    )()()( xgxuNxuL              (A1) 

where L is a linear operator, N is a non-linear operator, 
and g(x) is a given continuous function. According to the 
variational iteration method, we can construct a correct  

 

functional as follows [11] 
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Where   is a general Lagrange multiplier which can 
be identified optimally via variational theory, nu  is the 
nth approximate solution, and 

~

nu denotes a restricted 
variation, i.e., 0

~

nu . In this method, a trial function 
(an initial solution) is chosen which satisfies given 
boundary conditions. Using the above variational itera-
tion method we can write the correction functional of 
Eqs.16, 17, 24 and 25 as follows 
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Taking variation with respect to the independent variables nn v and u , we get 
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where  is general Lagrangian multipliers, u0 and v0 are 
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initial approximations or trial functions    ,vn
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restricted variations i.e. 0~0~  nn v  ,u   and 0~~ nnvu . 

Making the above correction functional (A7) to (A10) 
stationary, noticing that 0)0(0)0(  nn v  ,u   and 

0)0()0( nn v u . 
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The above equations are called Lagrange-Euler equa-
tions. By solving the above equations the Lagrange mul-
tipliers, can be identified as 

)()( x      (A14) 

substituting the Lagrangian multipliers and n = 0 in the 
iteration formula (A3, A4, A5, A6) we obtain, 
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Assuming that its initial approximate solutions which 
satisfies the boundary conditions (10), (11) have the 
form 

 xaxu 22
0 )]1(1[)(             (A19) 

22
0 ]21[)( axaxxv             (A20) 

By the iteration formula (A15) to (A18) we have the 
Eqs.18, 21, 26 and 29 in the text. 

 
APPENDIX  B 

Scilab Program to find a solution of the Eqs.47-51. 
function pdex4 
m = 0; 
x = linspace(0,1); 
t=linspace(0,1); 
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1 = sol(:,:,1); 
u2 = sol(:,:,2); 
figure 
surf(x,t,u1) 
title('u1(x,t)') 
xlabel('Distance x') 
ylabel('Time t') 
figure 
surf(x,t,u2) 
title('u2(x,t)') 
xlabel('Distance x') 
ylabel('Time t') 
% -------------------------------------------------------------- 
function [c,f,s] = pdex4pde(x,t,u,DuDx) 

c = [1; 1];  
f = [1; 1] .* DuDx;  
y = u(1) * u(2); 
gamma=0.01; 
beta=0.01;                       % parameters 
F =(gamma*beta*sqrt(y))/(1+gamma*beta*(sqrt(u(2)/ 

u(1)))); 
F1=(gamma*sqrt(y))/( beta+gamma*(sqrt(u(1)/u(2)))); 

% non linear terms 
s=[-F;-F1]; 
% -------------------------------------------------------------- 
function u0 = pdex4ic(x); %create a initial conditions 
u0 = [1; 0.001];  
% -------------------------------------------------------------- 
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t) %create 

a boundary conditions 
pl = [0; ul(2)-1];  
ql = [1; 0];  
pr = [ur(1)-1; 0];  
qr = [0; 1];  


