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Abstract 
Glaucoma is a common neurodegenerative disease that can cause blindness 
and occurs worldwide. Currently, lowering intraocular pressure is the only 
therapy available to protect retinal ganglion cells (RGCs). However, this 
therapy does not prevent RGC death in all patients. Therefore, new therapeu-
tic approaches for glaucoma are urgently required, and neuroprotection of 
RGCs is a focus for many researchers. Optineurin (OPTN) is one of the nor-
mal tension glaucoma (NTG) relative genes, while mutant OPTN can form a 
characteristic aggregation, causing RGC death. Hence, elucidation of the me-
chanism of OPTN aggregation might provide a clue to help understand RGC 
death. To examine whether non-mutant OPTN could also aggregate, we 
pharmacologically induced some glaucoma-related stresses, such as endop-
lasmic reticulum (ER) stress, glutamate toxicity, activation of TNF-α signal-
ing, mitochondrial dysfunction, and autophagic flux impairment. Our results 
showed that ER stress, TNF-α signaling, and autophagic flux are involved in 
OPTN aggregation. Furthermore, our data indicated that increased ER stress, 
activation of TNF-α signaling, and impaired autophagic flux induce OPTN 
aggregation, suggesting that OPTN aggregation might be an important the-
rapeutic target not only for familial NTG with mutated OPTN but also for 
patients with glaucoma more generally. 
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1. Introduction 

Glaucoma is characterized by the progressive loss of retinal ganglion cells (RGCs) 
and their axons, and is one of the leading causes of irreversible blindness world-
wide [1]. Primary open-angle glaucoma (POAG) is the most common type of 
glaucoma. POAG is classified into two subsets: high tension glaucoma (HTG) 
and normal tension glaucoma (NTG). The only therapy currently available for 
POAG is the lowering of intraocular pressure (IOP). However, some individuals 
develop glaucoma when their IOP is in the normal range [2] [3]. In addition, 
NTG is the major subtype that occurs in patients with glaucoma in Japan [4]. It 
has been suggested that glaucoma is caused not only by high IOP but also by 
other, unknown risk factors in its pathology [5]. 

In research undertaken to discover the complex mechanisms of glaucoma pa-
thology, genetic and genomic studies have accelerated the discovery of genes that 
contribute to glaucoma. It is reported that optineurin (OPTN) gene mutations, 
such as E50K (OPTNE50K) and M98K (OPTNM98K), are associated with NTG, and 
that patients with these mutations exhibited severe glaucoma symptoms [6]-[11]. 
The OPTN protein plays multiple roles in various processes, such as autophagic 
flux [12] [13], where it is an important regulator, and NF-κB signaling [14] [15]. 
However, it has been reported that both OPTNE50K and OPTNM98K mutations result 
in protein aggregation [16] [17], and that OPTNE50K interacts more strongly with 
TBK1 and causes autophagic flux dysregulation, leading to RGC degeneration [17] 
[18] [19] [20] [21]. Hence, we explored the use of chemical agents to reduce OPTN 
aggregation, and found that timolol has the potential to decrease OPTN aggrega-
tion and shows neuroprotective effects in familial NTG patients with OPTNE50K 
iPSC-derived RGCs (E50K-iPSCs-RGCs) [20]. This work demonstrated that OPTN 
aggregation, which is the common phenotype among OPTNE50K and OPTNM98K, 
might be an important pathology and a potentially useful therapeutic target in 
cases of familial glaucoma caused by OPTN mutation. 

Hence, we examined whether OPTN aggregation might result not only from 
OPTN mutation but also following stress associated with RGC death in some 
glaucoma pathologies. 

2. Materials and Methods 
2.1. Ethical Considerations 

The research followed the tenets of the Declaration of Helsinki. Informed con-
sent was obtained from all participants after explaining to them the nature and 
possible consequences of the study. The procedures used for the pathological 
analyses and establishment of patient-derived iPSCs, including human gene 
analyses, were approved by the Ethics Review Committee of the National Hos-
pital Organization, Nagara Medical Center, Gifu University and Gifu Pharma-
ceutical University, Japan. The established human iPSCs were handled according 
to the Revisions of the Guidelines for Clinical Research using Human Stem Cell 
from the Ministry of Health, Labor, and Welfare of Japan. 
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2.2. Differentiation of Induced Pluripotent Stem Cells (iPSCs) into 
Retinal Ganglion Cells (RGCs) in Culture 

In this study, we used the 201B7 iPSC line. This line was provided by Kyoto 
University [22]. The culture of isolated iPSCs and the production of embryoid 
bodies using the quick reaggregation (SFEBq) method was performed as pre-
viously described [22] [23] [24]. To create mimics of normal RGCs, we used a 
previously described, modified protocol [20] [25]. Briefly, the day after the culture 
was started, the culture medium was changed to a differentiation medium consisting 
of Dulbecco’s Modified Eagle Medium/F12 (Invitrogen), 1% N2 supplement (Invi-
trogen), B27 supplement, L-glutamine, 500 U/ml penicillin/streptomycin (Invitro-
gen), 2 μM dorsomorphin (Sigma-Aldrich), 10 ng/ml human Dickkopf 1 (R & D 
Systems, Minneapolis, USA), 10 ng/ml insulin-like growth factor-1 (R & D Sys-
tems), and 10 ng/ml bFGF (R & D Systems), and cultured for 7 days in 5% CO2 at 
37˚C. Neuronal precursor cells were cultured in differentiation medium containing 
10 μM N-[(3][5-Difluorophenyl)acetyl]-L-alanyl-2-phenylglycine-1,1-dimethyl 
ester (DAPT; Tocris Bioscience, Avonmouth, UK) for a further 7 days to retinal 
ganglion cell lineage as previous report [26]. For the final stage, the neuronal 
precursor cells were cultured with the addition of 2 ng/ml acidic fibroblast 
growth factor (R & D Systems) to the differentiation medium for 11 days. The 
medium was changed every 2 or 3 days for all differentiation stages. Finally, all 
cells except the embryoid bodies were reseeded onto Matrigel-coated plates. 

2.3. Western Blot Analyses 

At the end of the culture period, samples were washed with PBS and lysed in ra-
dioimmunoprecipitation assay (RIPA) buffer containing 50 mM tris hydrochlo-
ride, 150 mM sodium chloride, 0.5% sodium deoxycholate, 0.1% sodium dodecyl 
sulfate (SDS), 1% Igepal CA-630, and protease (Sigma-Aldrich) and phosphatase 
inhibitor (Sigma-Aldrich) cocktails. The lysates were centrifuged at 12,000 g for 
10 min at 4˚C. The protein concentration was determined using a bicinchoninic 
acid assay protein assay kit (Pierce Biotechnology, Rockford, IL, USA) with bo-
vine serum albumin as the standard. Equal volumes of the lysate and sample 
buffer containing 20% 2-mercaptoethanol (Wako) were mixed, and the proteins 
were separated using 5% - 20% SDS-polyacrylamide-gel electrophoresis (Wako). 
The separated proteins were then transferred onto a polyvinylidene difluoride  

 
Table 1. Antibodies: All antibodies for the biochemical analysis were purchased from the 
following companies and used at the following dilutions. 

Antibody Source Dilution 

anti-OPTN Cayman 1:200 

anti-TBK1 Cell Signaling Technology 1:1000 

anti-β-actin Sigma Aldrich 1:2000 

anti-LC3B Cell Signaling Technology 1:1000 

Anti-p62 Cell Signaling Technology 1:1000 

https://doi.org/10.4236/nm.2019.102010


S. Inagaki et al. 
 

 

DOI: 10.4236/nm.2019.102010 153 Neuroscience & Medicine 
 

membrane (PVDF, Immobilon-P; Merck KGaA, Darmstadt, Germany). The 
immunoreactive bands were made visible using ImmunoStar® LD, and the in-
tensities of the bands were determined by ImageQuant LAS 4000. For the OPTN 
aggregation assay, we followed a previously reported protocol [17]. Briefly, we 
lysed cells using TNE buffer and centrifuged the lysates at 15,000× g for 15 min. 
Then, we separated the supernatant and precipitated the insoluble pellet fraction 
(TNE insoluble fraction), and equal volumes of the lysate were used for the assay. 
Finally, we used appropriate antibodies (Table 1). 

2.4. Evaluation of Various Compounds That Induce Stress in 
WT-iPSCs-RGCs 

All compounds tested were purchased from the companies and used at the dilu-
tions shown (Table 2). In this assay, the vehicle group contained 0.1% DMSO. 
We treated WT-iPSCs-RGCs with each chemical or protein for 24 h. 

2.5. Statistical Analyses 

Data are presented as means ± standard error of the means (SEMs). Unpaired 
Student’s t-tests were used to determine if there were significant differences be-
tween two samples. ANOVA, followed by Dunnett’s test or the Bonferroni test, 
was used to compare means in multigroup analyses. The level of statistical signi-
ficance was set at P < 0.05. 

3. Results 

Identification of Stresses That Induce OPTN Aggregation 
To evaluate whether OPTN might aggregate in WT-iPSCs-RGCs following the 

induction of pharmacological stresses related to RGC degeneration, we evaluated 
OPTN protein levels in the TNE buffer insoluble fraction, as previously de-
scribed [17]. RGC death in patients with glaucoma or experimental animal mod-
els is related to elevated endoplasmic reticulum (ER) stress [27] [28] [29], in-
creased excitatory glutamate [30] [31], TNF-α signaling [32] [33] [34] [35], oxida-
tive stress [36], mitochondrial dysfunction [21] [36] [37], and abnormal auto-
phagic flux [38] [39] [40]. Based on this knowledge, we treated WT-iPSCs-RGCs 
with one of six compounds (Table 2) for 24 hours to explore if any of the agents  

 
Table 2. Compounds that induce stress in WT-iPSCs-RGCs. 

Compound Source Dilution 

Tunicamycin FUJIFILM Wako 2 µg/ml 

Glutamate FUJIFILM Wako 200 µM 

TNF-α Merck KGaA 12.5 ng/ml 

Rotenone FUJIFILM Wako 0.1 µM 

H2O2 FUJIFILM Wako 100 µM 

Bafilomycin Tocris Bioscience 100 ng/ml 
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induced OPTN aggregation. In this assay, we evaluated tunicamycin (an ER stress 
inducer), glutamate, tumor necrosis factor α (TNF-α), rotenone (a mitochondri-
al dysfunction inducer), H2O2, and bafilomycin (an autophagolysosome inhibitor). 
Our previous study demonstrated that bafilomycin induces OPTN aggregation 
[20], therefore we used it as a positive control. Their concentration is determined as 
inducing about 20% - 30% of cell death [29] [41] [42] [43] [44]. Tunicamycin, 
TNF-α, and bafilomycin increased OPTN aggregation in WT-iPSCs-RGCs (Figure 
1(a) and Figure 1(b)), suggesting that OPTN aggregation occurs following ER 
stress, impairment of autophagolysosomes, and in the presence of TNF-α. 

Identification of the Mechanism Involved in OPTN Aggregation 
To investigate the mechanism underlying OPTN aggregation, we first evaluated 

autophagic flux and TBK1 expression, because OPTNE50K impairs autophagolyso-
some and interacts strongly with TBK1, leading to aggregation of OPTN [45]. We 
found that bafilomycin increased the ratio of LC3B-II/LC3B-I (autophagosome 
markers, Figure 2(a) and Figure 2(b)) and the expression of p62 (an autopha-
golysosome marker, Figure 2(a) and Figure 2(c)), suggesting that bafilomycin 
impaired autophagic flux, leading to OPTN aggregation (Figure 4). However, 
tunicamycin and TNF-α had no influence on the LC3B-II/LC3B-I ratio or p62  

 

 
Figure 1. Identification of the stress of OPTN aggregation in WT-iPSCs-RGCs. (a) Typi-
cal images showing western blotting analysis of TNE-buffer insoluble (aggregated) OPTN 
protein levels; (b) Quantitative data showing OPTN protein levels. Data are means ± 
SEMs, n = 7 (**P < 0.01, *P < 0.05 vs. vehicle, Student’s t-test). 
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Figure 2. Autophagic flux assay with tunicamycin, TNFα, and bafilomycin. (a) Typical 
images showing western blotting analysis of LC3B-II, LC3B-I, and p62 protein levels; (b) 
Quantification of protein expression of LC3B-II, LC3B-I ratio, and p62. Data are means ± 
SEMs, n = 7 (**P < 0.01, *P < 0.05 vs. vehicle, Student’s t-test). 

 
expression, suggesting that they had no influence on autophagic flux in this as-
say (Figures 2(a)-(c)). Therefore, we next evaluated the influence of stress on 
TBK1 expression (Figure 3). Although tunicamycin and bafilomycin had no ef-
fect on TBK1 expression, TNF-α had the potential to increase TBK1 expression 
(Figure 3(a) and Figure 3(b)), suggesting that TNF-α increased TBK1 expres-
sion, leading to OPTN aggregation (Figure 4). 

4. Discussion 

A previous study found that OPTNE50K, a mutated form of OPTN, aggregates, 
and that this aggregation might cause the death of RGCs [45]. In this study, we  
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Figure 3. TBK1 protein assay with tunicamycin, TNFα, and bafilomycin. (a) Typical im-
ages showing western blotting analysis of TBK1 protein levels; (b) Quantification of pro-
tein expression of TBK1. Data are means ± SEMs, n = 7 (*P < 0.05 vs. vehicle, Student’s 
t-test). 

 

 
Figure 4. The scheme of OPTN aggregation formation. OPTN aggregation was produced 
by tunicamycin-induced ER stress, TNFα-induced increased TBK1 expression, and bafi-
lomycin-induced autophagic flux impairment. In this figure, the arrows showing broken 
line means speculation based on the previous reports Ref. [48] and [49]. 
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demonstrated that OPTNWT aggregation was also caused by ER stress, TNFα 
signaling activation, and autophagy dysfunction. Considering that these stresses 
have been linked with glaucoma pathology, in both patients and experimental 
models, we suggest that OPTN aggregation might occur in RGCs without OPTN 
mutation. This could be a very important finding, as it implies that OPTN ag-
gregation might possibly be involved not only in patients with familial glaucoma 
with OPTN but also patients with glaucoma who lack OPTNE50K. Based on this, it 
is important to elucidate the mechanism by which OPTN aggregates. Our pre-
vious study suggested that promoting autophagic flux decreased OPTN aggrega-
tion [20]. Thus, the promotion of autophagic flux could be a therapeutic target. 
TNFα also stimulated OPTN aggregation by increasing the expression of TBK1. 
A previous report suggested that TBK1 is present downstream of the TNFα re-
ceptor [46]. Thus, attenuation of TNFα signaling-induced increases in TBK1 ex-
pression might also be a therapeutic target to prevent OPTN aggregation. We 
were unable to identify the mechanism behind tunicamycin-induced OPTN ag-
gregation because autophagic flux and TBK1 expression did not change. Tuni-
camycin induces ER stress via the inhibition of protein glycosylation. However, 
it has been reported that OPTN is not glycosylated [47]. Hence, tunicamycin 
might not directly influence OPTN conformation. Tunicamycin is also known to 
induce protein aggregation of SOD1 without its mutation [48]. In addition, OPTN 
has the potential to bind aggregated proteins such as mutant SOD1 and hunting-
tin, and OPTN deficiency accelerates the aggregation of these proteins [49]. 
Therefore, when tunicamycin treatment produces aggregated proteins, such as 
SOD1 and huntingtin, OPTN might interact with these proteins, causing their 
aggregation (Figure 4). However, further studies are needed to demonstrate this 
hypothesis. 

Our study demonstrated that glaucoma-related stresses can lead to aggrega-
tion of non-mutated OPTN. This knowledge might be important to elucidate 
novel pathologies of glaucoma. 
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