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Abstract 
Medications acting as mood stabilizers work by enhancing and maintaining 
the concentration of circulating synaptic neurotransmitters, which then acti-
vate a plethora of various intracellular signal transduction and second mes-
senger cascades. Previously, we showed that two of these cascades, the PI-3K 
and MAPK pathways, are activated by cross-talk with the protein kinase A 
cAMP cascade and by brain-derived neurotrophic factor (BDNF), an imme-
diate-early gene whose expression is the result of phosphorylation of the tran-
scription factor, cAMP response element binding protein (CREB). In the cur-
rent study, we extend these findings to include the protein kinase C (PKC) 
pathway. Western blotting studies show that application of norepinephrine to 
cultured hippocampal neurons leads to increased expression of BDNF, phos-
phorylation of CREB, activation of growth-associated protein-43 (GAP-43) 
and activation of PKCμ and PKCθt538. Because GAP-43 is a putative substrate 
for PKC, the results of this study lend further support of a G-protein coupled 
receptor cross-talking to an entirely distinct intracellular pathway that is 
known to be involved in neuritogenesis. 
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1. Introduction 

Norepinephrine is a key neurotransmitter, whose actions are putatively known 
to play a critical role in several types of mood disorders, such as major depres-
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sion [1] [2] [3] [4] in which, it is presumed that anything that can boost the 
amount of circulating synaptic norepinephrine (and serotonin), such as physical 
exercise and antidepressant medications, will ameliorate depressive symptoms 
[5] [6] [7]. 

We had previously shown that application of norepinephrine to cultured hip-
pocampal neurons results in increased expression of brain-derived neurotrophic 
factor (BDNF), phosphorylation of cAMP response element binding protein 
(CREB) and activation of the PI-3K and MAPK cascades, which are known to 
promote neuronal survival [8]. However, besides these two pro-survival cas-
cades, other pathways also contribute to neuronal protection and survival by ac-
tivating proteins, such as BDNF and CREB, which play key roles in plasticity. 

The protein kinase C (PKC) family of structurally related phospholi-
pid-dependent serine-threonine kinases comprises nearly a dozen different iso-
forms, most of which are involved in neural differentiation [9] and postnatal 
neural development [10], although their developmental profile differs among 
them [11] [12] [13]. Among this rather vast array of different isozymes, a related 
enzyme, protein kinase D (PKD) or PKCμ, displays multiple unique features that 
qualify it as a distant relative of the other PKC isozymes in both its regulation 
and substrate selectivity [14]. 

Moreover, there is now much compelling evidence that several PKCs, more 
specifically PKD, play a critical role in hippocampal neuronal plasticity [15] [16] 
by maintaining the structural integrity of the Golgi and trafficking proteins in-
volved in dendritic arborization [17] and axonal elongation [18] and stabilizing 
cytoskeletal proteins in dendritic spines [19] in response to environmental or 
intracellular stimuli, such as learning [20] [21] [22] [23], memory [24] [25] and 
adaptations to pathological threats, such as developing mood disorders [26]. 
Consistently, PKD phosphorylation increased upon glutamate receptor stimula-
tion [27], which is putatively activated during long-term potentiation [28]. One 
key protein that has received much attention because of its role in such plasticity 
is GAP-43 [29], whose expression in the adult hippocampus is coincident with 
dendritic outgrowth [30] and is a substrate for PKC [31]. There is, however, no 
evidence for whether GAP-43 is also a substrate for PKD. 

Because both BDNF [32] [33] [34] and GAP-43 [35] are potent mediators of 
plasticity, there is much evidence that these two proteins are both up- or down- 
regulated, although not necessarily at the same time and place in the hippocam-
pus [36] [37]. Rather, the extent of their co-expression depends on the type of 
conditions that may cause the hippocampus to adapt to new challenges, such as 
with physical exercise [38], learning [33], aging [39] and withstanding toxic [40], 
pathological [41] [42] or traumatic [43] insult. On the other hand, neither stress 
[44] nor antidepressant-induced reversal of stress [45] changed hippocampal 
BDNF and GAP-43 levels, compared to those of untreated controls. 

However, neuronal or animal age is also an important factor in determining 
the levels of BDNF and GAP-43 upon stimulation. Seizures induced into the 
brains of young animals resulted in an increase in BDNF, although GAP-43 le-
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vels did not change, relative to that of controls [46]. More recently, low-frequency 
stimulation to cultured hippocampal neurons resulted in increased expression of 
a wide battery of synaptic proteins involved in structural changes that accompa-
ny synaptic plasticity, among them of which were BDNF and GAP-43 [47]. And 
application of norepinephrine to hippocampal astrocytes resulted in increased 
BDNF release into the culture medium [48]. 

Thus, given the relatively sparse literature on PKD, it is hypothesized that no-
repinephrine induces BDNF expression via PKD activation. We therefore extend 
our earlier findings done with the PI-3K and MAPK cascades [8] to PKD-mediated 
BDNF expression and CREB activation via the application of norepinephrine to 
cultured hippocampal neurons. 

2. Materials and Methods 
2.1. Drugs and Chemicals 

Norepinephrine and bisindoylmaleimide were purchased from Sigma Chemical 
Co. (St. Louis, MO). Dulbecco’s modified eagle medium (DMEM) was pur-
chased from ATCC (Manassas, VA). Bisindoylmaleimide (GF109203X (GF)) 
was dissolved in DMSO; at no time did the concentration of DMSO exceed 0.5% 
of the total volume of each tissue culture well. 

2.2. Antibodies 

Anti-BDNF was purchased from Santa Cruz Biotech (Santa Cruz, CA). Anti- 
phospho-PKCμ (PKD), anti-phospho-PKCμS916, anti-phospho-PKCμS744/748, anti- 
phospho-PKCα/β, anti-phospho-PKCδS643, anti-phospho-PKCδT505, anti-phos- 
pho-PKCθT538, anti-phospho-PKCζλ, anti-pan PKC, anti-phospho-GAP-43, an-
ti-GAP-43, anti-phospho-CREB and anti-CREB were purchased from Cell Sig-
naling Technology (Danvers, MA). Anti-GAPDH was purchased from Ad-
vanced Immunochemical Inc. (Long Beach, CA). Anti-rabbit IgG and anti- 
mouse IgG, were purchased from Amersham-Pharmacia Biotech (Piscataway, 
NJ). 

2.3. Animals: Ethics Statement 

All efforts were made to minimize the number of rats used. We have abided by 
the use of the ethical treatment of laboratory animals as specified in the National 
research Council’s Guide for the Care and the Use of Laboratory Animals 
(1996). The Institutional Animal Care and Use Committee (IACUC) and the In-
stitutional Review Board-Human Subjects at California State University, Los 
Angeles, approved this project. The IACUC Protocol number is AW 10-1. 

2.4. Hippocampal Dissection at Embryonic Day 18 (E18) 

Dissection of embryonic hippocampi at E18 has been described in great detail 
elsewhere [8] [49]. Briefly, four pregnant female Sprague-Dawley rats (120 - 150 
g, two months of age, Charles River, Wilmington, MA) were sacrificed by deca-
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pitation on their 18th day of gestation. The embryos (14 per mother rat) were 
then quickly placed on ice and their hippocampi excised into Ca-Mg-free me-
dium [50] and rinsed therein. Then, 0.125% trypsin was added, and the hippo-
campi placed in a 37˚C-water bath and gently shaken every several minutes for 
10 min, followed by adding 10% fetal bovine serum/DMEM to quench the reac-
tion. All medium was then drained and replaced with 5 ml DMEM in which the 
hippocampi were triturated through a siliconized glass Pasteur pipet to liberate 
individual cells. Neurons were then counted on a glass hemacytometer and then 
plated in tissue culture plates that were pre-coated with poly-l-lysine at a density 
of 50,000 cells/cm2. Neurons were then allowed to acclimate to their new envi-
ronment for three days in an incubator at 37˚, 5% CO2. 

2.5. Application of Norepinephrine and Bisindoylmaleimide (GF) 
to Hippocampal Neurons 

On the day of drug treatment, GF (5 μM [51]) and/or norepinphrine (100 nM 
[8]) was added first to randomly selected wells in the tissue culture plates in the 
following order: GF + norepinephrine, norepinephrine alone, GF alone, vehicle 
(controls, DMSO). Returned plates to the incubator for 2 hr, at the end of which, 
cells were lysed and harvested in lysis buffer. Cells were then boiled for 5 min 
and then triturated through a 26-G needle/syringe to sheer genomic DNA. The 
volumes were measured, equal volumes of Laemmli buffer [52] added, and then 
the cells were stored at −70˚C till SDS-PAGE/Western blotting. Protein concen-
trations were determined using the method of Lowry [53]. 

2.6. SDS-PAGE/Western Blotting 

SDS-PAGE/Western blotting has been described in great detail elsewhere [49]. 
Briefly, equal volumes of cell lysates were added to 10% polyacrylamide gels, 
electrophoresed at 100 V for 2 hr, electrotransferred to nitrocellulose mem-
branes (Biorad, Hercules, CA) at 100 V for 2 hr, and then Western blotting per-
formed according to the manufacturer’s specific instructions for each respective 
antibody. Following probing with the secondary antibody, to visualize protein 
immunoreactivity, nitrocellulose membranes were incubated in enhanced che-
miluminescence reagents (Amersham Pharmacia-Biotech, Piscataway, NJ) and 
apposed to hyperfilm (Amersham Pharmacia-Biotech, Piscataway, NJ). Mem-
brane blots first exposed to anti-BDNF were then stripped (100 mM 2-mercap- 
toethanol, 2% SDS, 62.5 mM tris-HCl, pH 6.7, 55˚C, for 10 min) and then re- 
probed with anti-GAPDH; all membrane blots first probed with the phospho- 
form of an antibody were then stripped and then re-probed with the total (pan) 
form of the respective antibody. 

Optical densities of lightly exposed bands were then quantified using comput-
er-assisted densitometry (MCID, St. Catherine’s, Ontario, Canada). Optical den-
sities of BDNF and the phospho-forms were then arithmetically divided by those 
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of GAPDH and the pan forms, respectively. The linear portion of a standard 
curve was used to calibrate the range of a gray scale where all optical densities 
were taken. 

2.7. Statistical Analyses 

Western blot data of BDNF, phospho-CREB and phospho-GAP-43 were based 
on four treatment groups: controls, norepinephrine-treated, GF-treated, and 
norepinephrine-+-GF-treated. Omnibus F values were calculated using a one- 
way ANOVA, followed by Fisher’s post-hoc LSD to evaluate statistically signifi-
cant differences of pair-wise comparisons. 

3. Results 
3.1. PKCδS643 and PKCμ (PKD) Are the only PKCs That Responded 

to Bisindoylmaleimide 

Western blotting screening of the eight phospho-PKC isozymes resulted in, for 
the most part, no significant differences among the four treatments in E18 hip-
pocampal neurons. In most cases, GF did not suppress the activity of any of the 
phospho-PKC isoforms, relative to that of controls; the only exception was that 
of phospho-PKCδS643 (F(3,8) = 4.70, p = 0.0355; Figure 1), whose activity was sig-
nificantly less than that of controls as a result of GF. Likewise, application of 
 

 
Figure 1. Both norepinephrine and GF decrease phospho-PKCS643 activity. Both nore-
pinephrine (p = 0.011) and GF (p = 0.014) significantly decreased P-PKCδS643 activity, 
relative to that of vehicle controls. The combination of the two (NE + GF) increased 
phosphorylation of PKCδS643 to a level where it was statistically comparable to that of 
controls. Veh, vehicle control; NE, norepinephrine (100 nM); GF, bisindoylmaleimide (5 
μM); *Significantly different from vehicle controls. 
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norepinephrine did not result in increased activity with most PKC isoforms and 
in some cases (e.g., phospho-PKCδS643 (Figure 1)), actually resulted in less activ-
ity, compared to those of controls. Only phospho-PKCμ ((PKD) F(3,8) = 4.354, p 
= 0.0427; Figure 2(a))) and phospho-PKCθT538 (F(3,8) = 4.647, p = 0.0366, Figure 
2(b)) increased in response to norepinephrine, compared to those of controls. 
Application of norepinephrine, whether GF was present or not, resulted in a sig-
nificant increase in phospho-PKD activity, compared to those of vehicle-treated 
controls (Figure 2(a)). 

3.2. Norepinephrine Activates GAP-43 

Application of norepinephrine to E18 hippocampal neurons resulted in a signif-
icant increase in phospho-GAP-43, compared to that of vehicle-treated controls, 
whereas GF significantly decreased phospho-GAP-43 levels (F(3,32) = 91.02 , p < 
0.001; Figure 3). 

3.3. Norepinephrine Induces BDNF 

Application of norepinephrine to E18 hippocampal neurons resulted in a signif-
icant increase in BDNF, compared to those of vehicle-treated controls, whereas 
GF significantly decreased BDNF levels, relative to those receiving norepineph-
rine (F(3,32) = 38.22, p < 0.001; Figure 4). However, although GF decreased 
 

 
(a)                                                         (b) 

Figure 2. Norepinephrine activates PKC isoforms. (a) Norepinephrine alone (p = 0.0114), GF alone (p = 0.020) and the two com-
bined (p = 0.0388) significantly increased phosphorylation of PKD above that of controls; (b) Norepinephrine alone activates 
PKCθT538 relative to that of vehicle controls (p = 0.0253). Norpinephrine activation of PKCθT538 is also significantly higher than 
that of NE + GF (p = 0.0084) and GF alone (p = 0.0288). Veh, vehicle control; NE, norepinephrine (100 nM); GF, bisindoylmalei-
mide (5 μM); *Significantly different from vehicle controls; #Significantly different from NE. 
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Figure 3. Norepineprhine increases, while GF decreases GAP-43 phosphorylation. Nore-
pinephrine significantly increased phosphorylation of GAP-43 above that of vehicle con-
trols (p < 0.001) and when combined with GF (NE + GF), was decreased, but still signifi-
cantly higher than that of vehicle controls (p < 0.001). GF, on the other hand, resulted in 
significantly lower GAP-43 phosphorylation levels, compared to that of controls (p < 
0.001). Veh, vehicle control; NE, norepinephrine (100 nM); GF, bisindoylmaleimide (5 
μM); *Significantly different from vehicle controls; #Significantly different from GF at p < 
0.001. 
 
BDNF levels, compared to that of norepinephrine, BDNF levels still remained 
significantly higher than those of controls (p < 0.001, Figure 4). 

3.4. Norepinephrine Activates CREB 

Application of norepinephrine to E18 hippocampal neurons resulted in a signif-
icant increase in phosphorylated CREB, compared to that of vehicle-treated 
controls, whereas GF significantly decreased phospho-CREB levels, relative to 
that of controls (F(3, 32) = 136.76, p < 0.001; Figure 5). 

4. Discussion 

Our previous studies conducted in cultured hippocampal neurons showed that 
application of norepinephrine resulted in increased BDNF expression, CREB 
phosphorylation and activation of two key cell survival-promoting cascades [8], 
which were also up-regulated in response to nutrient deprivation stress from the 
cultured medium [54] [55]. In the current study, we explored the effects of no-
repinephrine on PKD, a key regulator in plasticity [15] [16], and its effects on 
BDNF, CREB and GAP-43, which PKC is known to phosphorylate [31]. As be-
fore, we found that norepinephrine up-regulated BDNF and activated CREB [8]. 
However, this could also indicate that PKA [56], MAPK [57] [58] or PI-3K/Akt 
[7] [54] [57] [59] [60] are also phosphorylating CREB through pathway cross-talk 
[8] [55] [58]. And although this narrows down the list of possibilities and  
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Figure 4. Norepinephrine increases BDNF expression. Norepinephrine significantly in-
creased expression of BDNF above that of vehicle controls (p < 0.001), but when com-
bined with GF (NE + GF), was decreased only very slightly and was statistically higher 
than that of vehicle controls (p < 0.001) and GF alone (p = 0.001). GF alone, on the other 
hand, resulted in decreased BDNF expression, compared to that of norepinephrine (p < 
0.001), but significantly higher than that of vehicle controls (p < 0.001). Veh, vehicle con-
trol; NE, norepinephrine (100 nM); GF, bisindoylmaleimide (5 μM); *Significantly dif-
ferent from vehicle controls. #Significantly different from GF at p < 0.001. 
 

 
Figure 5. Norepinephrine increases, while GF decreases CREB phosphorylation. Norepi-
nephrine alone (p < 0.001) or when combined with GF (p = 0.026) significantly increased 
phosphorylation of CREB above that of vehicle controls. GF, on the other hand, resulted 
in decreased CREB phosphorylation, compared to that of vehicle controls (p < 0.001). 
Norepinephrine significantly reversed the suppressing effects of GF, being significantly 
higher than that of GF alone (p < 0.001). Veh, vehicle control; NE, norepinephrine (100 
nM); GF, bisindoylmaleimide (5 μM); *Significantly different from vehicle controls. #Sig-
nificantly different from GF at p < 0.001. 
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implicates PKD as also responsible for phosphorylating CREB [61]. Other path-
ways/enzymes, such as CaMKII, which we did not evaluate, can still phosphory-
late the transcription factor. Just as prior use of the PKA inhibitor, Rp-cAMPs, 
verified PKA involvement [55], our current use of the specific PKC/PKD inhibi-
tor, bisindoylmaleimide, implicates PKC/PKD in the current study. Moreover, 
our results of increased phosphorylation of GAP-43 as a result of norepinephrine 
as a stimulator indicate that neurite outgrowth may be partially G-protein-coupled 
receptor (GPCR)-dependent (Figure 3); likewise, GF inhibition of both GAP-43 
(Figure 3) and PKCδS643 (Figure 1) phosphorylation lends support to the hypo-
thesis that PKCδS643 is a mediator of neurite outgrowth. At the same time, nore-
pinephrine stimulated GPCR-mediated increase in PKD activity, whether GF is 
present or not. Ultimately, norepinephrine via PKCδS643/PKD/PKCθT538 led to 
increases in CREB activation and BDNF expression. Although CREB is a mole-
cular [62] [63] [64] [65] [66] and behavioral [67] substrate for so many con-
verging and cross-talking pathways, our findings that GF alone suppressed 
CREB phosphorylation (Figure 5) to a much greater statistical extent than it did 
in suppressing BDNF expression (Figure 4) could seem to defy explanation. 
However, it is possible that other protein kinase c isoforms that we did not eva-
luate (e.g., PKCε) were also sensitive to GF and consequently participated in 
suppressing CREB phosphorylation. 

Herein, GF had no inhibitory effect on most of the other PKC isozymes, ex-
cept for phospho-PKCδS643. Developmentally, this isozyme reaches its peak ex-
pression at 2 - 3 days in culture [13], which corresponds to the incubation period 
used in the current study. PKCα and PKCβ show maximal expression only after 
10 days in culture, while PKCε (which was not evaluated in the current study) 
and PKCλζ are maximal after only 1.5 - 2 days in culture [13]. Therefore, one 
possible limitation of the current study would be that the effects of norepineph-
rine and/or GF were not evaluated when some of the isoforms (e.g., PKCα, β, ε, 
λζ, μ) were at its peak expression in culture. This is the post plausible explana-
tion for the negative findings regarding some of these isoforms. Another possi-
ble limitation of the study is that antidepressant drugs were not evaluated for 
any effects on the various PKC isoforms. Neurotransmitter-specific antidepres-
sants, such as serotonin- or norepinephrine-selective re-uptake inhibitors, as 
previously done [8], would make this study more clinically applicable. Because 
PKC inhibition by GF has been shown to interfere with BDNF action [68] and 
excitatory neurotransmission [69], future studies should strive to determine 
which of the many PKC isozymes are most heavily involved in psychiatric, neu-
rodevelopmental and neurodegenerative disorders. 
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