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Abstract 
In this paper, the main objective is to identify the parameters of motors, which includes a brush-
less direct current (BLDC) motor and an induction motor. The motor systems are dynamically 
formulated by the mechanical and electrical equations. The real-coded genetic algorithm (RGA) is 
adopted to identify all parameters of motors, and the standard genetic algorithm (SRGA) and var-
ious adaptive genetic algorithm (ARGAs) are compared in the rotational angular speeds and fit-
ness values, which are the inverse of square differences of angular speeds. From numerical simu-
lations and experimental results, it is found that the SRGA and ARGA are feasible, the ARGA can ef-
fectively solve the problems with slow convergent speed and premature phenomenon, and is more 
accurate in identifying system’s parameters than the SRGA. From the comparisons of the ARGAs in 
identifying parameters of motors, the best ARGA method is obtained and could be applied to any 
other mechatronic systems. 
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1. Introduction 
The mechanical commutator of the brushless direct current (BLDC) motor [1] is replaced by electronic switches, 
which supply current to the motor windings as a function of the rotor position. A BLDC motor is one of the 
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permanent magnetic synchronous motors, and has advantages of simple structure, product easily, and low cost 
[2]. Due to their favorable electrical and mechanical properties, high starting torque and high efficiency, the 
BLDC motor are widely used in most servo applications such as actuation, robotics, machine tools, and so on. 

Many literatures [3]-[6] have discussed motor operations. For a quality BLDC motor, proper maintenances 
and applications are important, and inherently more reliable, more efficient, and with current electronics tech-
nology, more cost effective than the standard electrical fans and controllers [3]. Therefore, the BLDC motor has 
advantages of high performance, low noise and long lifespan. The conventional dc motor can be represented by 
the mathematical model. The technicians often wanted to test the performance or measure the parameters of a 
motor, and the ordinary differential equations of a motor were solved by Runge-Kutta method [4] [5]. However, 
the precise of a BLDC motor requires its accurate parameters, which can be measured or estimated. In order to 
identify parameters of BLDC motors, the genetic algorithms were used to search for precise parameters [6]. 

Recently, due to rapid improvements in power devices and microelectronics, the field-oriented control and 
feedback linearization techniques have increased induction motor drives for high-performance applications 
possible [7]. Induction motors are the most widely used motors in industry because they are simple to build, 
rugged, reliable and have good self-starting capability. Many advanced algorithms have been investigated to 
control induction motors, especially the vector control [8]. To design controllers, nonlinear motor models must 
be used for identification and optimization. Several methods have been proposed to tackle the problem of induc-
tion machine parameter estimation [9] [10]. 

Genetic algorithm (GA) is a searching process based on natural selection, and now is used as a tool for 
searching the large, poorly understood spaces that arise in many application areas of science and engineering 
[11]. In this method, a large set of configurations forms a population with new generations created by selection, 
crossover and mutation of the current population. It is hoped that this evolution process can increase the fitness 
value of the population to a near optimal value. However, conventional GA often has slow convergent speed and 
premature phenomenon in engineering applications. In order to overcome these shortcomings, many researchers 
have made great efforts to improve the performance [12] [13] by proposing a variety of programs, such as base 
on the overall fitness value, average square deviation of population and dual species sub-population etc. 

In this paper, the real-coded encoding scheme of fixed length to randomly generate the initial population is 
used by means of roulette wheel. This standard genetic features by use of only three basic genetic operators: se-
lection operator, crossover operator and mutation operator, simplifies the process of genetic evolution, and easy 
to be understood. However, the fitness value may occur slow convergent speed and premature phenomenon in a 
traditional real-coded genetic algorithms (RGA) [14], and the adaptive genetic algorithm (ARGA) is proposed to 
solve the problems and to find a solution near to the maximum optimization of the motor system. 

This paper is organized as follows. Firstly, the BLDC and induction motors’ equations are established. Se-
condly, the algorithms in the SRGA and ARGAs are presented and discussed. Thirdly, comparisons between the 
SRGA and ARGA in numerical simulations and experimental results are discussed and it is concluded that the 
ARGAs are better than SRGA. 

2. Identification Based on the RGA 
2.1. Standard Real-Coded Genetic Algorithm (SRGA) 
The RGA [15] [16] is an optimization searching algorithm, which simulates evolution mechanism on a comput-
er-based platform in conjunction with natural selection and genetic mechanism. The chromosomes are expressed 
by vectors and each element of vectors is called a gene. The standard RGA (SRGA) has stationary crossover 
probability and mutation probability in the evolutional process. If the crossover probability and mutation proba-
bility are stationary values, the individual will be lack of diversity in each generation. 

2.2. Adaptive Real-Coded Genetic Algorithm (ARGA) 
It is important that crossover probability and mutation probability are set for genetic algorithms, the improper 
settings will cause falling into local optimum algorithms in search and the premature convergence. Therefore, an 
efficient method for a fast setting is essential. For this point, a mechanism to adjust the crossover probability and 
mutation probability according to the algorithmic performance is considered [17]. In this paper, the multi-me- 
thod ARGA for parameters’ identification of the electrical fan system will be employed. 
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2.2.1. Method 1 of ARGA 
In Equations (4) and (5), the crossover probability will be reduced to preserve excellent chromosomes; on the 
contrary it will be added to evolutionary excellent chromosomes. And then, the mutation probability will be re-
duced to preserve excellent chromosomes; on the contrary it will increase the diversity of the population and 
avoid to falling into local optimum [18]. The overall structure of method 1 of ARGA can be described as fol-
lows. 

A. Encoding: The parameters of the BLDC motor and induction motor are composed by real-coded values. 
B. Initialization: A collection of individuals is referred to as a population. A population size of 100 is used to 

generate final segmentation boundaries. 
C. Fitness function: The fitness function is adopted as follows. 

( ) ( )
2*

1

1fitness function
n

i
i iω ω

=

=
 − ∑

                            (1) 

where n is the total number of sampling point, ( )iω  and ( )* iω  are the rotation speeds by using the identified 
and assigned parameters in Equations (14) and (15), respectively. 

D. Selection: In this stage, the expected time of an individual being selected for recombination is proportional 
to its fitness value relative to the rest of the population. This operation is to achieve a mating pool with the fittest 
individuals selected according to a probabilistic rule that allows these individuals to be mated into new popula-
tions. The selection is carried out by using the roulette wheel method. 

E. Crossover and Mutation: The crossover is the breeding of two parents to produce a single child, who has 
features from both parents and thus may be better or worse than either parent according to the objective function. 
The primary purpose of mutation is to introduce variation and help bring back some essential genetic traits, and 
also to avoid the premature convergence of entire feasible space caused by some super chromosomes [19]. 

To reduce the premature convergence and improve convergence rate of the SRGA, the adaptive probabilities 
of crossover and mutation are presented in the ARGA. The probabilities of crossover cP  and mutation mP  are 
respectively given as follows. 
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where maxf , minf  and avgf  are the maximum, minimum and average individual fitness, respectively, 0
cp  

and 0
mp  are crossover and mutation of probabilities, respectively and , , cnα β  are coefficient factors. In this 

paper, 0.3α = , 0.2β =  and 2cn =  [20] are taken. 
From Equations (2) and (3), it is known that the adaptive cP  and mP  vary with fitness functions. The cP  

and mP  increase when the population tends to get stuck at a local optimum and decrease when the population is 
scattered in the solution space. 

2.2.2. Method 2 of ARGA 
The GAs have been extensively used in different domains as a type of robust optimization method. However, the 
GA to demonstrate a more serious question is a premature convergence problem, less capable local optimization, 
the late slow convergence and can’t guarantee convergence to the global optimal solution and so on. In recent 
years, many researches [21] [22] try to improve genetic algorithms, such as improving the encoding scheme, 
fitness function, genetic operator design. For this reason, the ARGA is proposed with the crossover probability 

cP  and mutation probability mP  as follows. 
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where, maxf  is the best individual fitness, f ′  is the better individual fitness in every group, avgf  is the aver-
age fitness, and f is every individual fitness in current generation. The 1cP  means fixed maximal cross proba- 
bility; 2cP  means fixed minimum crossover probability; 1mP  and 2mP  are fixed maximal and mutation prob-
abilities, respectively. In this paper, 1 0.8cP = , 2 0.6cP = , 1 0.1mP = , and 2 0.01mP =  [23] [24] are taken. 

As a result, the adaptive cP  and mP  are able to provide the optimum cP  and mP  targets at a certain solu-
tion. The improved chromosome crossover and mutation operators ensure the convergence of the GA more than 
the diversity of population [25] [26]. 

2.2.3. Method 3 of ARGA 
An important problem in usage of the RGA is premature convergence, and the searching process may trap in a 
local optimum before the global optimum is found. This section employs an ARGA which adjusts mutation 
probability dynamically based on average square deviation (ASD) of population fitness value, which shows the 
population diversity to solve the premature problem. From compared analysis, it is shown the proposed ARGA 
efficiently avoid the premature problem [27]. Premature convergence can also be blamed in [28] by avoiding the 
loss of critical alleles due to selection and the schemata disruption due to crossover. 

The selection operation reduces the diversity of population, the crossover operation does not decrease the di-
versity of population, and the mutation operation can advance the diversity. Mainly, all these issues produce two 
effects, the lack of diversity in the population and a disproportionate exploitation or exploration relationship, 
cause the premature problem [29]. When the ASD becomes smaller or less, it shows that many individuals are 
becoming as the same, so the mutation probability should be increased to advance the diversity of population for 
getting global optimal solutions. 
A. Selection operator: The selection is carried out using the roulette wheel method in this paper. 
B. Crossover operator: The crossover operation does not decrease the diversity of population, and the cros-

sover probability is fixed. 
C. Mutation operator: This section employs an adaptive method to adjust mutation probability dynamically 

based on the ASD value. When the ASD decreasing, mutation probability will be increased to advance the 
population diversity. The relationship between mutation probability and ASD is given as follows. 
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where maxf  is the maximum individual fitness, aM  is mutation probability originally, and ASDt  is the ASD 
of population in the tht  generation, and is described as: 

( )1

1 N i
t t viASD f f

N =
= −∑ ,                             (7) 

where i
tf  is the fitness value of the thi  individual of the tht  generation, vf  is the average fitness of the tht  

generation, and N  is the number of population. 

2.2.4. Method 4 of ARGA 
In this section, a new GA with two species is proposed for the ARGA. The dual-specie GA composes of two 
sub-populations that constitute of same size individuals. The sub-populations have different characteristics, such 
as crossover probability and mutation operator. In one sub-population, the parents with higher similarity are 
cross with higher probability, and mutate with general mutation operator. In the other sub-population, the par-
ents with smaller similarity are cross with higher probability and mutate with big mutation probability. There-
fore, the new algorithm can obtain good exploitation and exploration ability [30]. 

Multi-population GA [31]-[33] is an extension of traditional single population GA by dividing a population 
into several isolated sub-populations, within which the evolution proceeds and individuals are allowed to mi-
grate from one sub-population to another [34], and the flow chart is shown as follows (Figure 1).  
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Figure 1. The GA of the dual-populations. 

 
For the dual-population GA, one has the following operators: 
A. Selection operator: The proposed algorithm establishes two separate sub-populations by random initiali-

zation, and then carries on evolution inside single sub-population and migration between two sub-populations. 
Here, the roulette selection is employed. 

B. Crossover operator: The crossover probability is correlated with parents’ similarity. The similarity be-
tween two individuals is defined as: 

( ) ( ), 1 ,i i iiS X Y w dist x y= −∑                                 (8) 
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where ix  and iy  are two individuals, ( ),i idist x y  is the distance between ix  and iy , maxf  and minf  are 
the maximum and minimum individual fitness values, respectively, 

ixf  and 
iyf  are the fitness values of ix  

and iy , respectively. 
The crossover1 emphasized local search ability, and crossover probability 1cP  is positive correlated with the 

parents’ similarity; the crossover2 emphasized global search ability, and crossover probability 2cP  is negative 
correlated with the parents’ similarity. It defines: 
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C. Mutation operator: Mutation1 is the normal mutation which proceeds with constant probability. Mutation 
2 needs to have ability to robustly explore the solution space and to escape from local peak. The probability  
of mutation 2 is adaptive mutation probability, and the probability value 2mP  is considerably large and correlate 
with 1mP  and the diversity of two sub-populations. The 2mP  is defined as: 

1 fixedmutation probabilitymP =                               (12) 

1 max 2 2 max1 1
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where max1f  and max 2f  are the maximal fitness values; 1avgf  and 2avgf  are the average fitness values of 
population 1 and population 2, respectively. 

3. Examples 
The different four ARGAs will be applied to the BLDC and induction motors. At first, it is needed to show the 
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governing equations of the motor system, and find out what are parameters to be identified. 

3.1. Equation of a BLDC Motor 
The BLDC motor [35] is one kind of permanent magnet synchronous motor, and has permanent magnets on the 
rotor and trapezoidal-shape back EMF. The BLDC motor employs a dc power supply switched to the stator 
phase windings of the motor by power devices, and the switching sequence is determined from the rotor position. 
The phase current of BLDC motor, in typically rectangular shape, is synchronized with the back EMF to pro-
duce constant torque at a constant speed.  

A commonly used second-order linear model for a BLDC motor [36] can be expressed mathematically as 
d da a a a b aL i t R i K vω+ + =                                (14) 
d dm m f t aJ t B T K iω ω+ + =                                (15) 

where aL  is armature inductance, ai  is motor armature current, aR  is resistance, bK  is back-EMF constant, 
ω  is angular speed of the motor shaft, av  is armature voltage: mJ  is inertia of the motor, mB  is viscous 
damping coefficient, fT  is the frictional torque, and tK  is torque constant of the motor. In Equations (14) and 
(15), a the rotational speed and electric current are the state variables and the electrical voltage is an input. 

3.2. Equation of an Induction Motor 
The field-oriented induction motor drive can be applied for high-performance industrial applications, and the 
controllers implemented in induction motor drives are generally based on the system mathematical model. The 
parameter identification in a rotation rotor is very useful in monitoring and testing a high-power induction motor 
drive, and then its performance depends heavily on the motor parameters [37] [38]. In the decoupling condition, 
main parametric uncertainties of induction motors are the mechanical parameters and load torque disturbances, 
which are slowly time-varying in general [39]. Measurements of the rotational angular speeds and input elec-
trical voltages are required for the system identification procedure [40]. Model-based methods of rotation-speed 
estimation are characterized by their simplicity, but sensitivity to parameter variations is considered as the major 
problem [41].  

The complete electrical and mechanical models [42] are combined, and its electro-mechanical equation can be 
expressed as follows: 
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where dsi  is the d-axis stator current, qsi  is the q-axis stator current, drλ  is the d-axis rotor flux linkage, qrλ  
is the q-axis rotor flux linkage, rω  is the angular speed of the rotor, sR  is the stator resistance, sL  is the sta-
tor inductance, rR  is the rotor resistance, rL  is the rotor inductance, eω  is the electrical angular speed, pn  
is the number of pole pairs, mL  is the magnetizing inductance, mB  is the motor damping coefficient, mJ  is 
the motor moment inertia, dsv  is the d-axis stator voltage, qsv  flux linkage is the q-axis stator voltage and LT  
is the load torque. In equation (16), the rotational angular speed, electric currents and flux linkages are the  
state variables and the electrical voltages ( ),ds qsv v  are the inputs. 

4. Numerical Simulation 
4.1. For the BLDC Motor 
In the numerical simulations, the input voltage is defined as follows: 

( ) 0
1

1

, 0a
v

v t t t T
T

= ≤ < ,                                (17) 

( ) 0 1 1sin ,a pv t v v t T t Tω= + ≤ <                             (18) 

where ( )0 1 0 pt Tω ω ω ω= + − , 0ω  and 1ω  represent the minimum and maximum frequencies, respectively. 

0V  and 1V  are the base voltage and bias amplitude. 1T  is the time for increasing voltage and pT  is the total  
time. In this paper, 0 12 Vv = , 1 2 Vv = , 0 5 rad secω = , 1 20 rad secω = , 1 1.5 secT =  and 10 secpT =  are 
taken. The input voltage is shown in Figure 2(a). 

 

    
(a)                                                   (b) 

   
(c)                                                        (d) 

Figure 2. The comparisons of the ARGAs and SRGA. (a) The input voltage; (b) The rotation speed; (c) The er-
rors of rotation speeds between the assigned and identified parameters; (d) The fitness values.                   
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In order to investigate the ARGAs, compare them and find the best one for system identification of the elec-
trical fan, the parameters ( )0.001 N m s radmB = ⋅ ⋅ , ( )20.001 N m s radmJ = ⋅ ⋅ , ( )2 ΩaR = , ( )4 HaL = ,  

( )0.15 V rpmbK = , ( )0.15 N m AtK = ⋅  and ( )5 210 m N m rpmα −= ⋅ ⋅  are assigned. Substituting these pa-
rameters into Equations (14) and (15) and using the electrical input voltages (17, 18), the rotation speed is ob-
tained as shown in Figure 2(b). 

From the electrical input voltages and rotation output speed, by using the ARGAs and SRGA the identified 
parameters and fitness values can be obtained as shown in Table 1. It is seen that the fitness value is largest for 
method 1 of ARGA, and is smallest for the SRGA. The errors of rotation speeds, which are solved by using the 
assigned parameters and identified parameters as shown in Table 1, are shown in Figure 2(c). It is seen that the 
errors of rotation speeds are smaller by the ARGAs than that by the SRGA. The fitness values of the ARGAs 
and SRGA are compared in Figure 2(d), it is seen that the fitness value of multi-ARGA are not only larger than 
SRGA, but also the errors of rotation speed are smaller in Figure 2(c). 

From comparisons in Figure 2(d), it is demonstrated that the ARGAs are more efficient to identify system’s 
parameters than the SRGA in generation numbers. It means that the ARGAs do not fall into local optimum and 
prevent the premature convergence, and the fitness values of ARGAs are bigger than the SRGA. The number 
simulations are compared,and the fitness value of method 1 of ARGA is 2.54. It is the biggest value than the 
other ARGAs. Moreover, its error percentages are small not only in parameters but also in the rotation speeds. 
That means that the method 1 of ARGA is the best algorithm to identify system’s parameters. 

4.2. For the Induction Motor 
In an induction motor, any vector in a rotating coordinate can be described as follows: 

( )
2 4π π
3 3e e e

j jj
s as bs cs ds qsf f f f f jf

θ θθ
   − −   −    = + + = +                            (19) 

According to Euler’s formula, the three-phase part can be rewritten as: 

( ) ( ) 2 2cos sin cos sin
3 3

4 4cos sin
3 3
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f f j f j

f j

θ θ θ θ

θ θ

    = − + − + − + −            
    + − + −        

                  (20) 

Therefore, the relation formula can be obtained as follows: 
 

Table 1. The assigned and identified parameters of a BLDC motor by numerical simulations.                             

Parameters Assigned Feasible 
Domains 

Identified Values / Error Percentages 

SRGA ARGA (M1) ARGA (M2) ARGA (M3) ARGA (M4) 

( )ΩaR  2 0 - 4 2.78/39.90% 1.92/4.20% 1.49/25.37% 1.53/23.41% 1.77/11.59% 

( )HaL  4 0 - 8 3.64/8.91% 4.11/2.85% 3.94/1.41% 3.59/10.32% 4.80/19.88% 

( )3 210 N m s radmJ × ⋅ ⋅  1 0 - 2 0.80/20.50% 0.68/31.60% 0.52/47.90% 0.69/31.50% 0.39/60.90% 

( )310 N m s radmB × ⋅ ⋅  1 0 - 2 1.18/18.00% 1.00/0.00% 1.02/1.90% 1.23/23.40% 0.81/19.90% 

( )N m AtK ⋅  0.15 0 - 0.3 0.14/8.80% 0.15/1.05% 0.16/3.79% 0.15/2.15% 0.16/4.15% 

( )5 210 m N m rpmα × ⋅ ⋅  1 0 - 2 0.80/20.00% 1.00/0.00% 1.10/10.00% 1.00/0.00% 0.90/10.00% 

Fitness value   1.658 2.540 2.314 2.249 2.391 

Error % of Rotation Speed   0.51% 0.20% 0.29% 0.31% 0.30% 

Convergence Generation   994 626 812 790 864 
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( ) 2 4cos cos π cos π
3 3ds as bs csf f f fθ θ θ   = − + − + −   

   
                      (21) 

( ) 2 4sin sin π sin π
3 3qs as bs csf f f fθ θ θ   = − + − + −   

   
                       (22) 

The stator transformation formula between the three-phase coordinate and d-q axis is shown as follows: 

0

2π 4πcos cos cos
3 3

2 2π 4πsin sin sin
3 3 3

1 1 1
2 2 2
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f f
f f
f f
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θ θ θ

    − −           
       = − − −                  
 
 

                      (23) 

If there is a voltage amplitude ( )mv t  with a frequency f , the three-phase voltage is  
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                                 (24) 

The input electrical voltages ( ),ds qsv v  in the d-q axis are as follows: 
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2π 4πcos cos cos
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3 3 3

1 1 1
2 2 2
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v v
v v
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                      (25) 

The input voltage is with alternative current (AC) and is shown as Equation (24). If the fixed frequency is de-
fined as 50 Hzf = , its amplitude ( )mv t  is: 

( ) 0
1

1

, 0m
v

v t t t t
T

= ≤ <                                  (26) 

( ) ( )0 1 1sin ,m pv t v v t t t tω= + ≤ <                             (27) 

where ( )0 1 0 pt tω ω ω ω= + − , 0ω  and 1ω  represent the minimum and maximum frequencies, respectively. 

0v  and 1v  are the base voltage and bias amplitude, respectively. 1t  is the total time for increasing voltage and  

pt  is the total time for input voltages. In this paper, ( )0 90 Vv = , ( )1 20 Vv = , 0 5ω = , 1 20ω = , 1 2 sect =  
and sec15pt =  are assigned. The input voltage is shown in Figure 3(a). 

In order to investigate the ARGAs for system identification of the electrical fan, the parameters 
( )0.83sR = Ω , ( )0.53rR = Ω , ( )0.086 HsL = , ( )0.086 HrL = , ( )0.082 HmL = ,  

( )20.033 N m s radmJ = ⋅ ⋅  and ( )0.055 N m s radmB = ⋅ ⋅  are assigned. Substituting these parameters into 
Equation (16) and using the electrical input voltages (26, 27), the rotation speeds are obtained and shown in 
Figure 3(b). 

From the electrical input voltages and rotational output speed, the identified parameters and fitness values by 
using the ARGAs and SRGA can also be obtained and shown in Table 2. It is seen that the fitness value is the 
biggest one for method 1 of ARGA, and is the smallest one for the SRGA. The errors of rotation speeds, which 
are solved by using the assigned parameters and identified parameters as shown in Table 2, are compared in 
Figure 3(c). It is seen that the errors of rotation speeds are smaller by the ARGAs than that by the SRGA. The  
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(a)                                                     (b) 

   
(c)                                                     (d) 

Figure 3. The comparisons of the ARGAs and SRGA. (a) The input voltage; (b) The rotation speed; (c) The errors of ro-
tation speeds between the assigned and identified parameters; (d) The fitness values.                                  

 
Table 2. The assigned and identified parameters of an induction motor by numerical simulations.                        

 Assigned Feasible 
Domains 

Identified Values/Error Percentages 

SRGA ARGA (M1) ARGA (M2) ARGA (M3) ARGA (M4) 

( )210sR × Ω  83 82 - 84 82.41/0.71% 83.30/0.36% 83.61/0.74% 82.74/0.31% 83.64/0.77% 

( )210rR × Ω  53 52 - 54 52.30/1.32% 52.00/1.88% 53.87/1.54% 52.17/1.56% 53.99/1.86% 

( )310sL × Ω  86 70 - 90 72.82/15.33% 86.51/0.59% 84.81/1.85% 86.65/0.76% 85.49/0.59% 

( )310rL × Ω  86 70 - 90 75.00/12.82% 85.28/0.83% 84.85/1.34% 87.28/1.49% 84.81/1.38% 

( )310 HmL ×  82 70 - 90 79.71/2.79% 83.11/1.35% 81.76/0.29% 79.62/2.90% 80.81/1.45% 

( )3 2N m1 s ra0 dmJ × ⋅ ⋅  33 20 - 40 33.96/2.91% 33.83/2.52% 34.18/3.57% 32.14/2.58% 33.25/0.77% 

( )3 N s10 m radmB × ⋅ ⋅  55 40 - 60 56.40/2.55% 55.16/0.28% 54.47/0.96% 55.50/0.91% 53.95/1.91% 

Fitness value . . 392.37 1178.70 1049.55 1098.13 1085.16 

Error % of rotation speed . . 0.1463% 0.0248% 0.0758% 0.0956% 0.0204% 

Convergence Generation . . 368 130 317 291 271 
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fitness values of the ARGAs and SRGA are compared in Figure 3(d), it is seen that the fitness values of AR-
GAs are not only larger than the SRGA, but also the errors of rotation speed are smaller in Figure 3(c). 

From comparisons in Figure 3(d), it is demonstrated that the ARGAs are more efficient to identify system’s 
parameters than the SRGA in generation numbers. It means that the ARGAs do not fall into local optimum and 
prevent the premature convergence, and the fitness values of ARGAs are bigger than the SRGA. The fitness 
value of method 1 of ARGA is the biggest one in all the ARGAs. Moreover, its error percentages are smaller not 
only in parameters but also in the rotation speeds. It means that the method 1 of ARGA is the best algorithm 
among the four ARGAs. 

5. Experimental Setup 
5.1. For the BLDC Motor 
In experiments, the electrical input voltage and rotation output speed of a real motor are to be measured, and the 
ARGAs are to be employed to obtain system’s parameters. Figure 4 shows the experimental setup, where the 
computer command is transformed by the driver to a BLDC fan. The input DC voltage and the rotation speed is 
measured and transformed by the D/A card to computer for the identification computation. The desktop com-
puter edits C language to control microchips, and the inverter will give signal to power supplier, which drives 
electric fan. At first, the voltage is controlled into the microchips, and the voltage frequency is converted as a 
sinusoidal function. Secondly, the system is stimulated by the voltage frequency, and the signals of the rotation 
speeds can be obtained by inverter, and the data is the target to be identify by the ARGAs. At last, the identifia-
ble parameters are substituted into Equations (14) and (15) to obtain the rotation speeds by C language. 

5.1.1. Comparisons between the Experimental and Identified Results 
In experimental results, three different input voltages are given to the BLDC motor for system’s identification. 
From numerical simulations, the method1 of ARGA, which not only accurately search for parameters, but also 
has small generation number inquick convergence, is the best method to identify parameters, and is also applied 
to the experimental system.  

In order to compare experimental results, three different input voltages are employed by hand. The input vol-
tages are ascendant before 1.5 sec and the stable after 1.5 sec, and shown in Figure 5(a) with steady-state vol-
tages: 10.6 V, 11.5 V and 12 V. The rotation speeds for various voltage are comparing in Figure 5(b), where the  

 

 
Figure 4. Experimental setup.                                                                              
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(a)                                                       (b) 

  
(c)                                                       (d) 

Figure 5. (a) The input voltages; (b) The comparisons in rotation speeds; (c) The errors of rotation speeds; (d) The conver-
gences of the fitness values for three different input voltages.                                                       

 
curves of the experimental and identified speeds are compared. In Figure 5(b), the identified rotation speeds are 
approximate with the experimental rotation speeds. The error percentages of rotation speeds are very small when 
the voltages are stable. The identified and experimental parameters are very approximate. The speed errors of 
the identified speeds with respect to the experimental ones are shown in Figure 5(c). For the BLDC motor sys-
tem, the fitness values with respect to total number of generations is shown in Figure 5(d) and all the fitness 
values converge near the 650th generation. 

5.1.2. Comparisons of Identified Parameters 
The feasible domains and identified parameters by method1 of ARGA are shown in Table 3. For the three dif-
ferent input voltages, the identified parameters are little different, and the rotation speeds are analogous as show 
in Figure 5(b). It is noted that the wide feasible domains may affect the identified values of system parameters, 
and their settings need numerical experience for rapid convergence. It is concluded that the identified parameters 
will be better if the feasible domains are smaller. 

5.2. For the Induction Motor 
The electrical input voltages and rotation output speeds of a real induction motor are measured, and the ARGAs 
are employed to identify system’s parameters in experiments. The experimental setup is shown in Figure 6, 
where the computer command is transformed by the driver to the induction motor. The input AC voltages and 
the rotation speeds are measured and transformed by the D/A card to numerical computation. The induction 
motor is three-phase with the rated specifications: 220 V, 60 Hz, 7 A, and 1720 rpm. 
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Figure 6. Experimental setup.                                                                             

 
Table 3. The identified parameters of a BLDC motor for different input voltages.                                     

Parameters Feasible domains 
Identified values for a BLDC motor 

10.6V 11.5V 12V 

( )aR Ω  1 - 2 1.12 1.06 1.13 

( )HaL  4 - 5 4.06 4.03 4.65 

( )5 2N m1 s ra0 dmJ × ⋅ ⋅  1 - 10 1.83 2.77 2.79 

( )5 N s10 m radmB × ⋅ ⋅  1 - 10 1.67 1.07 1.58 

( )210 N m AtK × ⋅  2.5 - 5.5 4.07 4.61 4.09 

( )7 210 m N m rpmα × ⋅ ⋅  0 - 2 0.00 1.14 0.50 

Fitness Values . 1.26 1.67 1.18 

5.2.1. Comparisons between the Experimental and Identified Results  
The input voltages are given to the induction motor for system’s identification in experimental results. From 
numerical simulations, the method 1 of ARGA, which not only accurately search for parameters but also has 
small generation number in quick convergence, is the best method to identify parameters, and is also applied to 
the experimental identification. 

In order to obtain experimental results, 0 90 VV = , 1 35 VV = , 0 5 rad secω = , 1 20 rad secω = , 1 3 secT =  
and 15 secpT =  are taken in Equations (26) and (27) as the input AC voltages and shown in Figure 7(a). It is  
seen the rotation speeds of the induction motor obtained from LabVIEW are low before 10 sec, and the induc-
tion is unstable during this interval. Therefore, the identification is performed after 10 sec when the system is 
stable. Figure 7(b) compares the curves of the experimental and identified rotation speeds. It is seen that the 
identified rotation speeds are close to the experimental ones. The comparisons of the identified speeds by the 
SRGA and ARGA with respect to the experimental ones are shown in Figure 7(c). It is seen that the error per- 
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(a)                                                       (b) 

   
(c)                                                       (d) 

Figure 7. (a) The input voltages; (b) The comparisons in rotation speeds; (c) The errors of rotation speeds; (d) The 
convergences of the fitness values for the SRGA and ARGA.                                                 

 
centages are very small, and the errors of the ARGA are smaller than the SRGA. The fitness value with respect 
to total number of generations is shown in Figure 7(d). The SRGA converges near the 200th generation. It is 
seen that the ARGA has faster convergence near the 50th generation and higher fitness value. 

In order to validate the identified parameters by the SRGA and ARGA in Equation (16), the input voltage as 
an exponential function in experiments is taken as follows: 

( ) ( )1 e t
mv t V α−= × −                                     (28) 

where 5α =  and V = 95, 150, 210 V, respectively. The input voltages ( )mv t  are shown in Figure 8(a). Subs-

tituting (28) into (25), the input electrical voltages ( ),ds qsv v  are obtained, and then substituting the electrical  

voltages into (16), the rotation speeds are obtained. The rotation speeds for these three voltages are shown in 
Figures 8(b)-(d), respectively. 

The electric currents ( ),ds qsi i  can also be obtained from (16), and the input electrical current si  can be ob-

tained by ( )1 22 2
s ds qsi i i= +  in Equation (19), and shown in Figures 9(a)-(c) for different voltages. It is seen that 

the electric currents by the SRGA and ARGA are similar, and the ARGA are better than SRGA. 

5.2.2. Comparisons of Identified Parameters  
The feasible domains and the identified parameters between the SRGA and method 1 of ARGA are compared in 
Table 4. It is seen the identified parameters are similar in experiments. However, the fitness value of the ARGA  
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(a)                                                      (b) 

    
(c)                                                       (d) 

Figure 8. (a) The input voltages; (b) The rotation speeds for 95 V; (c) The rotation speeds for 150 V; (d) The rotation 
speeds for 210 V.                                                                                      

 
Table 4. The identified parameters for the SRGA and ARGAs.                                                    

 Feasible domains 
Identified values for an induction motor 

SRGA ARGA 

( )sR Ω  0.0 - 1.5 0.507 0.489 

( )rR Ω  0.0 - 1.5 0.689 0.720 

( )HsL  0.0 - 0.5 0.186 0.202 

( )HrL  0.0 - 0.5 0.302 0.276 

( )HmL  0.0 - 0.5 0.218 0.215 

( )2N m s radmJ ⋅ ⋅  0.0 - 0.5 0.061 0.085 

( )N m s radmB ⋅ ⋅  0.0 - 0.5 0.021 0.020 

Fitness value . 0.0088 0.0097 

Convergence generation . 191 53 
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(a) 

   
(b)                                                       (c) 

Figure 9. (a) The electric current for the input voltage 95 V; (b) The electric current for the input voltage 150 V; (c) The 
electric current for the input voltage 210 V.                                                                     

 
is bigger than the SRGA, and it means the ARGA parameters are more accurate and correct. For the conver-
gence in generations, the ARGA converges at the 53thgeneration, and is faster than the SRGA. 

6. Conclusion 
This paper attempts to improve crossover and mutation operators in the traditional genetic algorithm by the 
adaptive technique. Effectiveness of the algorithm in identifying system’s parameters is verified by the BLDC 
motor and induction motor. It is found that the SRGA and ARGA methods are feasible to system identification. 
The results show that the ARGA is found to have the faster convergence and the larger fitness value than the 
SRGA. In numerical simulations, the ARGAs with the identified parameters’ errors percentages are less than 5% 
with respect to the assigned parameters. In this paper, method 1 of ARGA is found to be the best one to identify 
parameters of the BLDC and induction motors, and some experimental results are also compared. 
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