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ABSTRACT 

Into the study of quasi-relaxation, in the past researches it has been concluded that the condition of meta-stability in the 
metallic specimen is given by the plasticity explained by the plastic energy in the process of the quasi-relaxation. It is 
calculated through quasi-relaxation functional of this energy to obtain a spectra in the space D(σ – ε; t), that induces the 
existence of functions φ(t), and Ψ(t), related with the fundamental curves of quasi-relaxation given by σ(t), with their 

poles in 
 0 1

1
t

k  
  , which is got in the maximum of stress given by σ0 = σ1. Also the tensor of plastic deformation 

that represents the plastic load during the application of specimen machine, cannot be obtained without poles in the 
space D(σ; t), corresponding the curves calculated into the space D(σ – ε; t), by curves that in the kinetic process of 
quasi-relaxation are represented by experimental curves in coordinates log σ – t. This situation cannot be eluded, since 
in this phenomena exist dislocations that go conform fatigue in the nano-crystalline structure of metals. From this point 
of view, is necessary to obtain a spectral study related to the energy using functions that permits the modeling and 
compute the states of quasi-relaxation included in the poles in the deformation problem to complete the solutions in the 
space D(σ – ε; t), and try a new method of solution of the differential equations of the quasi-relaxation analysis. In a 
nearly future development, the information obtained by this spectral study (by our integral transforms), will be able to 
give place to the programming through the spectral encoding of the materials in the meta-stability state, which is propi-
tious to a nano-technological transformation of materials, concrete case, some metals. 
 
Keywords: Hereditary Integrals; Meromorphic Curves; Meta-Stability State, Plastic Energy; Quasi-Relaxation  
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1. Introduction 

In the last 30 years, the experimental technique to the 
characterization of materials with the use of testing ma-
chines has experimented a big heyday. In the conven-
tional machines of essays, where the specimen previ-
ously is loaded up to an initial level of the stress, after 
that which the motorize system of the machine is dis-
connected, it is a observed a spontaneous fall of stress. 
The kinetic of the fall of the stress is registered during all 
the process of the essays [1]. Similar experiment must be 
executed in a programmed specially machine, in which 
during the essay of automatic manage stays constant the 
longitude of the specimen that; is to say, the condition of 
the essay in regime of quasi-relaxation can be expressed 
in the following form 

const,l                   (1) 
or well, 

0,d dt                   (2) 

This condition define the meta-stability as a state of 
constant deformation only in their plastic characteristics 
in the initial process of dislocations [2,3], where the en-
ergy of the nano-crystals accumulate the enough energy 
to maintain the specimen in a stable range of recovering 
to original state, in a very short time interval [2,4]. In this 
respect, it is necessary to realise a deep study of traces of 
deformation tensor in function of the stress tensor corre-
sponding plastic deformation and use a functional of en-
ergy [5], that measures this recover energy due the nano- 
crystals [6]. 

2. Constitutive Equations to 
Stress-Deformation Tensor 

Considering a material M, like the defined space by the 
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limit surface specimen-machine; (the surface or zone of 
work of the machine on specimen [5]): 

 , k 0,                (3) 

where is the differentiable surface in    ,M    × 
 ,D •   [7]. Here  , is the density of the disloca-

tions, is the relaxation function, and • ,
 •,

 is the velocity 
of applied stress to specimen. D   , is the stress 
space [3,7,8] 

      • 3 3
3, ,D T R         ,k



    (4) 

   ,k M    , with k, the state tensor of media. By 
stress-deformation theory [3], the rate of the stress tensor 
 , comes give by the expression in all region all space 
of the material M, 

   • •,   , ,•g k b k k                    (5) 

to all  ,k M    , with k, the state tensor of media and 
 , the deformation tensor. Then [9]: 

,g b
k

 
 
 

               (6) 

where [.]g , is the conformal elastic tensor of  , and 
, is conformal inelastic tensor of the tensor [.]b  . Note 

that b, is an element belonging to tensor space  3T R4
4 , 

(tensor of range 4, in the ordinary space) [6,10,11], 
which participates in the symmetrization of the elastic 
module tensor of the deformation tensor  , and analo-
gously , to the elastic part of b  . This helps us to un-
derstand that the realised transforms on the material sub-
ject to the stresses  , are plastic transformations and 
produces only dislocations or laminar displacements in 
the material [4,7,12], (staying invariant the structure), 
thus the actions of the contributions of the inelastic and 
elastic conformal components of the rate of stress • , 
and • , are linear and these are superposes [8]. Then the 
stress space  ,D •  , satisfies the orthogonal relations 
to  , and  , respectively [9]: 

    
     

• •

• •

, , ,

, , ,

e i

e i

D D D

D D D

     

     

 

 

•

•

,

,
 

As consequence of it, the set of solutions or integrals 
that we obtain to method of quasi-relaxation is included 
in this orthogonal decomposition to their more general 
integral, which is determined through the corresponding 
hereditary integrals in solid deformations [2,7], and 
whose quasi-relaxation can be study in the space   , 
like the sum of two components of the tensor  , as the 
produced by the external stresses, and other by the inner 
stresses due to the dislocation. The similar thing to the 
deformations. Now we precise the necessary roll of the 
analysis of the deformations. 

Consider the deformation tensor  , which is given by 

the function [1] 

( , ),E k   

to all E-differentiable surface in    •, ,M D      , 
ult the rate of analo[3,7]. Deriving with respect to t, res -

gous deformation like given to the tensor  , to know 

   • •,   , ,•g k b k k       
     

 


7) 

where 

      (

,
E E

C d
k



 

 
 

             (8) 

where , is the elastic modulus tensor defined by the 
8,11

       (9) 

with correspondence rule 

[.]C
map [6, ] 

 4 3
4: ,C D D D D T R     

•'] ,ijkl klC[C                (10) 

and , is the inelastic modulus 
ε, 

, in the deformation analysis the tensors
an

[.]d
h is 

tensor of the tensor 
whic a map of k(depends only on the specific prop-

erties of k). 
In general d , 
d C , is a dependence on  , and k. Then through 

their mponents to a transformation system of coordi-
nates in the space 3R , belonging to a group of orthogonal 
transformations of nge 2 [6], takes the form 

• • • ,C d k          

 co

 ra

   (11) 

Since

ij ijkl kl ijkl kl

 , and  , are symmetrical, the tensor 

ijkl ijlkC CjiklC  
 inv

. Then the differentiable function E , 
e in must be ertibl  , the tensor C , must be non 

singular and the differentiable equivalence of the limit 
surfaces of the material M, submitted to stress-deforma- 
tion of the tensors  , and  , come given by the dif-
ferentiable equivalen  betwe n the deformations space ce e
 •,D   , [5], and the stresses space  •,D   , under 

ntiable maps the differe  , and E [5,7,1
Given that the elastic energy that is got i

1]. 
n a specimen 

un



der stress-deformation comes measured for the elastics 
fields of the dynamical dislocations [4], the contribution 
of the inelastic modulus tensor to the given deformations 
for the inner stresses, that is to say, due to the disloca-
tions, contribute to the velocity of total deformation in 
the quasi-relaxation equation, thus 

• •d k C • ,i i                   (12) 

Note: k, represent the state tensor (c
lik

onsider variables 
e density, mass, temperature, pressure, etc), 

      4 3, ,D T R E k        4 ,  

Then the total deformation by the tensor  , comes 
given by • • • • i eC C            , whic  clearly h

Copyright © 2012 SciRes.                                                                                 MME 



F. BULNES  ET  AL. 94 

contributes esses to material 
•
e

to value of the external str
 , which results of relevance to the deformation in 

si-relaxation (stress of the machine on the specimen). 
Lemma 2.1. The velocity of total deformation given 

qua

by the tensor • , in the quasi-relaxation equation come 
given by 

• • • ,i eC C           •         (13) 

Proof. If we write the tensor of deformation 

           (14) 

 using the rule of the chain of derivation

          (15) 

Since C, is not singular then 
1 ,

ε, like the 
co

and

mposition of functions [5,13,14] 

  , , ,E F k   k  

 we have the 
tensors 

, ,t Cg o Cb d    

1,g C b  C d            (16) 

Using the elements of inelastic transformation of the 
second component of the space of the Equations (5), to 
the tensor • , descript in the form • •

i d k     , by a 
correspondence between  ,D   , and  •,E D   , 
and the elements of the se ponen  
of the Equations (5), to the tensor 

cond com t of the space
 , descript by 

• •
i b k     , the inelastic contribution of the rate of de-  

formation • , and the inelastic contribution of the rate of 
the stress • , are related by the Equation (12). Then 
fitting • •

e

 
C     , and the Equations (5), in the or-  

thogon sition ofal decompo  ,D   , result the required 
relation. Now it is necessary onstrate whose rela- 
tion satisfies the equation of quasi-relaxation, that is to 
say, the velocity of total deformation is the given by the 
Equation (13). 

In effect, con

 to dem

sidering the reasons of deformation of the 
fundamental equation of quasi-relaxation and the Equa- 
tions (6)-(8) and (12), we have that  

 •d E
' ,

d
e

i
e

C
t t


 


     

 

 given that •



and • •
i e    , then [13] 

   • ,
' ,

d
i i

i

E E k
C

t t t k t

 
 


          

d k E 
p        

 

and 

  • d
d

d

E k
z k

t k

 
 

 
 

t

Integrating we obtain an expression of the deformation 
tensor in function of the integrals of the stress tensor or 
stress with some constants that depends on the used pa-
rameters in the machine-specimen to along of the 
quasi-relaxation process of the material [7]. 

Lemma 2.2. The tensor • • •
iC      , is a rate of 

plastic deformation [14,15  the plastic 
load during the application of machine-specimen. 

Proof. By the lemma 2.1, • • • • •
p l ez C

] and represents

      
B

  . 
 surface of load of theut given that is had considered a  

specimen given by the function given by Equation (14), 
then applying the load machine-specimen is had that 

  • • , , ,d E F k k dp p             (17) 

of where • •
p pd d   . Integrating both m

,

embers we 
have that 

 •
0

0 0

d d
t t

pT p p pT t              (18) 

But the total deformation obtained in this quasi-re- 
laxation process satisfies the entire load 

   • • • •0pT it t C C C    •
i         • ,       (19) 

The lemma 2.2. tells us that the plastic deformat
du

ion 
ring the application of the machine-specimen is the 

required to the quasi-relaxation and the lemma 2. 1, 
warns us that the quasi-relaxation process can be meas-
ure it through that plastic deformation obtained in the 
machine-specimen. But whose plastic deformation is a 
reflex of the work that realizes the machine to obtain the 
meta-stability conditions that defines the quasi-relaxation 
in the circuit machine-specimen [14,16,17]. Thus, the 
form to measure and determine the quasi-relaxation is 
through the work of plastic deformation during the ap-
plication of the system machine-specimen. Of this man-
age we can to define to functional ( , )t     [17-20], 
like the density of power of the stre urface of 
work in the process of quasi-relaxation to apply the 
stress-deformation in the system machine-specimen at 
the time t. Then as was had descript in before studies 
[7,21]. 

Theo

ss on the s

rem 2. 1. (Bulnes-Yermishkin) [21]. The quan-
tity of accumulated energy G , during the quasi-re- 
laxation is determined by the work of plastic deformation 
during the application of the system machine-specimen 
and G t   . 

Proof. Is uses the Lagrangian action the energy 
G L  , of the mono-crystals under the plastic defor-

sor mation ten  , to along of  , establishing the action 
[13,19]. 

      
0

d ( ) t
pTM M

L t t d t e  d ,     


        (20) 

To see details of the demonstration of this result con-
su

3. Functional of Plastic Energy that Promote 

Th t energy due to the meta-stables 

lt [4,11]. 

the Dislocations 

e study of the resultan
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conditions that is obtained in the quasi-relaxation phe-
nomena established clearly their plastic nature for the 
suffered deformations on the specimen. Nevertheless 
their study can require the evaluation of the field of plas-
tic deformation on determined sections to a detailed 
study on the liberated energy in the produced disloca-
tions when the field of plastic deformation acts. Thus, it 
is doing necessary the introduction of certain evaluations 
of the actions of the field to along the dislocation trajec-
tories in mono-crystals of the metals with properties of 
asymptotic relaxation. Thus we consider like specimens, 
mono-crystals of Molybdenum (Mo), subject to stress 
tensor that produces the plastic deformation given by the 
action Equation (20). By the theorem of Bulnes-Yer- 
mishkin [20], all functional of stress-deformation to 
along the time must satisfy for hereditary integrals in the 
quasi-relaxation phenomena that 

t       
0

0

, d tt t t e  d ,               


   (21) 

Studies in mathematics [9-11], can demonstrate that 
the integral from Equation (21), is an integral transform, 
if the expression between the brackets is a function with 
analytic properties that joins with te   [10,13], deter-
mine the kernel of the integral transfo and characterize 
like a quasi-relaxation transform. Our functional of en-
ergy are the evaluations of the field of plastic deforma-
tion considering the quantity of energy of liberated plas-
tic deformation by the specimen for unit of time 

G t   , in the generated dislocations in the specimen 
e regimens of quasi-relaxation. If we consider 

the average energy of the longitude unit for line of dislo-
cation, the integral form Equation (21), takes the form for 
the Burgers vector b, and the initial reserve of elastic 
energy in the specimen [21] 

rm 

under th

     
2

00
0

, d ,
2

tGb t
t G e t

           (22) 

During the unloaded of the specimen, stressed in the 
el



astic field, these dislocations transform in a density of 
initial dislocations. The realised videos on the evolution 
of the dislocational structure in mono-crystals of Molyb- 
denum (Mo), (images of the transitory given by the 
Laplace transform involucrate in the functional of Equa- 
tion (21), (see Figure 1, of mono-crystal evolution), dur-
ing the load and unload, demonstrates the reversibility of 
the sliding character of the dislocations, and of varia- 
tion of the density of these, in the field where the metal 
behaviors elastically. The dislocations that could already 
exist in the stressed crystal, and that is annihilated during 
the unload, we call dynamical dislocations. Like is had 
demonstrate [21], practically all the elastic energy of the 
specimen it arises during the load and it is accumulates in 
form of the elastic fields of the dislocations, in base to 

 

Figure 1. Image of the electronic microscope of high voltag  

e conservation law, in the volume unit of the deformed 

e,
HVTEM of Moybdenum single crystal in regime of quasi- 
relaxation [2]. 
 
th
material during the load, it is describes through the fol-
lowing equation: 

2 2

,
2 2 d

r

Gb

E

              (23) 

Do not use hard tabs, and limit use of hard returns to 
on

al elastic 
re

ly one return at the end of a paragraph. Do not add any 
kind of pagination anywhere in the paper. Do not number 
text heads—the template will do that for you. 

where rE , is the value of modulus of norm
laxation at is to say, the valued energy considering 

the elasticity of the essay machine dym

, th
 , the density of 

the dynamical dislocations, expressed the right part of 
the Equation (23). Here is necessary observe that the 
property of the integral transforms to the obtaining of 
the spectral state of the quasi-relaxation phenomena, 
bounded by constants or coefficients that is computes in 
the corresponding energy space of signals 

 in 

 t , or 
 t , that is to say, in the space   2 ,L D   , i

no-c
t re-

s in the norm of technology (giv ompo- 
nents like can be nano-crystal [15,16]), given by [20], 
and bounding the Lagrangian action given by the Equa-
tion (20), to know:  

   

flexe en to na

   , x t  log log ,
a b

t x      (24) 

where , is the foreseen action in the Theorem 2 .1, and 
 x t , is a particle of the material specimen M  [10,20], 

values in 2a bwith   . The controls to   , x t  , 
are given for lo


g ( )t , and   log x t , [  

one that are is  in the c 
3, 8]. But the

ometrics ontext of 2L G , (space 
of measures obtained in the panel of l of the 
specimen-machine (See Figure 2 and also the Figure 3 
to their spectra). 

Example 3. 1.

contro

 [20]. Consider the following example. 
Be the signal  t , emitted by a system anyone of de-
formation (for ple our system machine-specimen). 
Let us consider a machine of deformation controlled with  

exam

Copyright © 2012 SciRes.                                                                                 MME 



F. BULNES  ET  AL. 96 

 

Figure 2. Specimen-machine to obtain the quasi-relaxation 
state of a material [5]. 
 

 

 

Figure 3. Spectral densities measured in space   •
2L D ρ,σ  

  Ψ 0.2 + 0.025exp 7t , is the spectral density of quasi- 

relaxation function of    φ

ram space-time 4.0. 

= 0.2 + 0.025exp 7t t . It is had 

used the simulation prog
 
eformations given by the signals: 

0,
          (25) 

It is wanted to evaluate the quasi-relaxation obtained 
by this machine through their answer
defi

d

 ' ,x t t
( )

0, 0.
t

t



 


 

, for what we can 
ne the space of these new states are given by the 

quasi-relaxation on a test specimen is necessary to define 
the space 

        1 , , ,t nM L t O R L t C x t s      (26) 

where the application of stress are those pre-designed by 
the functional coefficients  t , of the matrix
tensor of enforce of Cauc e which in turn de- 

 of the 
hy, the on

pends on the gradient of deformation 

     

     
, , , , , , ,

, , , ,

TC x t s F x t s F x t s

y x
F x t s F x t s




 

, ,i
ij

i

t s

x

     (27) 

Then the new states that are the deformatio
according to the rule of correspondence dictated previ-
ously

ns required 

 come given by 

       
 
  

 
  

1 2 1 2

1
21

new states of deformation ,

, ,

s

s , ,
,

, ,, ,

x s Lx s d x s

W I I s


 

 


t W I I s t
ds

I C x t s II C x t s I

 
 

  
 

(28

that is to say, 

      

ned in the Equation (29) is the plastic 
flux of the particles 

) 

(29)     , , , 6,21
s

Flux x t s


    

The flux obtai
 x s

ore disl
, before to risk

[12]. The limit bef ocations in the system de-
sc

 dislocations 

ribed comes given by 0 s t  : 

     0

d '
lim ' d .

d

t

s

t

'
s t s t

t


  

   

( )tThe function , is the fluency function that ap-
pears into the ditary integral to deform he-
nom

 here ation p
ena. 

Taking the traces of the matrices  , ,C x t s , and 
 1 , ,C x t s , of the Equation (28) [5], and considering the 

initial conditions of the action given by the (20) 
th the longitude 0l , of circuit of force of the machine 

remaining constant (Lagrangian action of the operator L) 
(Figure 2), we have an expression to the deformation in 
one general forms obtained experimentally [21]: 

 

Equation 
wi

00 0 1
0

0

2
1 ,

n

ii
n

i

c Fc
t

lc


   

         
    




   (30) 
1i

The enters of the matrices are elastic tensors
nents such that each one of them are bounded by the co-
efficients 

 compo-

ci, for which with more precision we have 
 , , i itrC x t s c   [3]. 

Now well, is necessary, that the energy of the elastic 
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field of the dislocations have a logarithmic member. 
More yet, in the nucleus of the dislocations is concen-
trates to until the 10% of the total energy of the disloca-
tions, and the energy of the elastic field so much of heli-
cal dislocation as rim is distinct, even to an approximate 
isotropic evaluation. This logarithm behavior, that is 
asymptotic to certain limit of dependent velocity of the 
time of thoroughness of the dislocation for the contention 
barrier in the machine-specimen, it is reflexes in the hy-
perbolic component of the curves of quasi-relaxation 
 t , to know (see Figure 4): 

   
0 1

1
0 1

,
1

tt e
K

 
 

 


 
 

     (31) 

This hyperbolic component is responsible in t
tality for the helical dislocations, being able 
strate through the quasi-relaxation transform [22], and 
fo

rmined dis-
ta

heir to-
to demon-

r the help of the Hilbert transform, certain periodicity 
of the field of plastic deformation [2,5,14,17], in the 
elastic component of the field. In the selected crystal of 
Molybdenum the prevalence of the helically dislocations 
to manage thanks there is a mechanism of double trans-
versal sliding during the process when the dislocation it 
is multiplies. This effect can be very notorious realizing a 
study on mono-crystals of Fe (see Figure 5). 

Then the energy of inner-relation of dislocations W, is 
equal to work of the slide of a second dislocation into the 
field of stress of the first, until to risk a dete

nce between them [12]. Then the integral of energy of 
the expression between the square brackets of the Equa-
tion (21), takes the form using the Equation (23), 

   
1

2
2

10

1
d d log ,

2π 2π

t
r

r

Gb r
W t t r Gb

r r
       (32) 

 

 

 

Figure 5. Sub-boundaries in one mono-crystal of Fe. The 
effect of dislocations is consumed with the pass of time. The
limit of meta-stability is when 

 
t  . Here we have con-

sidered a relaxation time   ( 0.5)dymf  , for single crystals 

of Fe, as measured from the quasi-relaxation data [22]. 
 
which characterize the h rt of all quasi-re- 
laxation function in the analytic function given by Eq

yperbolic pa
ua-

tion (31). Then the generalized functional of stress-de- 
formation to the quasi-relaxation functions given in the 
Equation (21), takes the form 

   
0

d ,t
dymGb t e       


          (33) 

 ,
ults 
of

Figure 4. Quasi-relaxation curves for Molybdenum single 
crystal: —0 = 396 MPa, 2.—0 = 346 MPa, 3.—0 = 292 
MPa, 4.—0 = 208 MPa, Mo<100>{100}, at T = 293˚C. 

where  comes given by the Orowan Equa
The res obtained before, we use to the analy

tion (22). 
sis of the 

curves  stress in steel of low Carbon of type 08KP, in 
normalised state [1,14]. In the Figure 6, it is shown the 
curves of stress to two structural states of the steel. Ob-
serve that the curves of the corresponding signal to each 
specimen tM , have the foreseen behavior and bounded 
by the logarithmic curves of the Equation (24), in a short 
interval of deformation. 

The Figure 7, in the I + II, of the deformation field 
correspond to the elastic zone of the helical dislocations, 
in relation with the steel 08KP, showed in the Figure 6, 
with a surplus of 1350 Mpa. In the stage III, of the de-
formation field is observes an accumulation of constant 
type due to sliding of the dislocations like such. This 
behavior is observed with a constant and soft sliding to 
the other sample of steel (Figure 6, curve in green). In 
the curve in blue of the Figure 6, the constant and soft 
sliding is almost null due to the accumulation of elastic 
sliding of the stage I, and II. That takes to the stage V, of 
form very early. Our functional of energy  , t    , to 
the curve in blue of the Figure 6, shows that the interval 
of duration of elastic dislocations is very short and invest 
little energy although accumulative that, is to say, exist 
the superposition phenomena of dislocations of the two 
types. 

The increase of velocity of the accumulating could  
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Figure 6. The curves of the before samples in regime of 
temperature of T = 20˚C, obtains an image of the space 

  , in their stages III and V, (see Figure 7), of the cor-
responding levels of scales of the loss of stability of the slide 
in poly-crystal metals under stress. 
 

 

Figure 7. Scheme of the stages of the curve “stress-defor- 
mation”, and the corresponding levels of scales of the loss of 
stability of the slide in poly-crystal metal under stress [14]. 

 
 shows a mono-crystal of Fe, after of the quasi-relaxa- 

 
have an energy consumption of the 2.5%, having a loga-
rithmic growth in the stress. Now well, in the Figure 5, it
is
tion in which is observes fine segregations belonging to the 
phase II, established in the Figure 7, in an amount of 
defect of agglomeration. Their corresponding spectral 
curves characterize their coefficient of behavior of segre- 
gation, by the theory explained through of the integral 
transforms with the specialized use in each case. It is can 
to note that the multiplication of dislocation in a mono- 
crystal of Fe, occurs at least to a stress of 0 0.25   . 

These results throws interesting properties of the ma-
terials in regime of quasi-relaxation that cans be used in 
devices submitted to continuous stresse ots and that n  
produces an alteration of the crystalline structure major 
to the apparent dislocation sliding in quasi-relaxation. 
The energy in such case can be used to a metal transform 
that be technologically useful, such and like it is had 
foreseen by the bounds given in the Equation (24), [20]. 

The reader cans re-emitters to the lecture of [20], and 
study the integral operator to this study. 

   

    

1,
G

X f t t nt nt    

 1                      ,t t t      



  

 




 (34) 



In where it is gives the classification of the tech
gies using these operators and the integral operators e
plains in this work. 

nolo-
x-

Here we consider to LABX , like the space of rehearsals 
or tests of the technological process (in our porpoises 
experiments of quasi-r and implications in metal 
pr

elaxation 
ocessing). We endow LAB , of a structure of Hilbert 

space also of the Hamiltonian structure that have due at 
their ergodicity (see ergodic theory of dynamical systems, 
[3]), then the space of tru opositions verified in 

X

e pr LABX , 
satisfies 

      implies tautologically , 9, 21LABX X f   5) (3

   2f L G ,   ,SYSTEM t    
rator (technologies tra
y (for example, the com

nging to a class (tha

, the transfer 
nsferred 

un posites, or al-
techn
co
loy

ologies ope
try to countr
, and where

from 

s))  belo t is to say, ap-
plicable to a certain class of technologies), they are iso-
metrics from FISMATE , (space of knowledge in physic 
and mathematics of the matter [9], of engineering 
study(in our case material physics)), to LABX , having 
that for a varie chnological applications and with 
the relevancy of considering widespread measures of the 
technological applications is complies the Equation (34). 

4. Pair of Quasi-Relaxation Transforms 

In our study is evident a bi-univocally correspondence 

ty of te

between the quasi-relaxation function and their sp
through of the corresponding transformation that 

ectra 
is es-

condition of meta-stability that 
de

tablishes into the space of the material. By functional 
analysis it is can prove the uniquely of this transforma-
tion, and using the characteristic of energy given by our 
generalized functional given by the Equation (20), that 
involves the Laplace transform [9,17], that expresses the 
action of the viscous-elasticity phenomena into the quasi- 
relaxation process, we can obtain un pair of integral 
transforms to this study. 

Considering that in the research realised on quasi-re- 
laxation in metallic specimens [1,17,20,22], it has been 
achieved identify to the 

fine univocally a state of quasi-relaxation [21], through 
of plastic deformation expressed by the plastic work 
(theorem 2.1), that invert the system of machine-speci- 
men to the deformation of the nano-crystalline structure 
of the metals (to see Figure 8) risking the state of the 
curves (the history of deformation under stress  , to 
along of time t), like the given by the Equation (21), then 
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Figure 8. Dislocation structure of a mono-crystal of Mo- 
lybdenum during the plastic deformation. The functional 
measures of the plastic energy of the deformation in regime 
of quasi-relaxation of a mono- crystal with tensor C[  i  ], 

are the maclas. The mono-crystal was deformed into the 
column of the HVTEM; 25,000. 
 
the quasi-relaxation function given by the distribution 
(distribution in the functional context), is 

   
0

d ,te    


           (36) 

where ( )
ation

these applications confor

, is the density of distributio
of relax  or spectra of relaxation [2,3

ms a class of functions

n of the times 
,13]. Given that 

 ( )t , 
such th 3] 

 

at [9,1

0 ,tt M e M 


         ) (37

To the integral operator ( ) ( , )dtI K t      , whose 
nucleus is /( , ) tK t e    , and due to that 

 d ,pTV
 

     (38) 

then exists two integral transforms of quas

11tM e       

i-relaxation of 
the curves  under the regime of plast
given by n (10), and with the following result: 

.) [1

( )t ,
the Equatio

ic deformation 

Theorem 4. 1. (Bulnes F., Stropovsvky Y., and Yer-
mishkin V 7]. The nucleus K( , t), defined to 

operator I , verify 

 

τt    , d 1,K t C       q q
specimen

with 0d ( ) -V tpT     . Then  0( ) ,t   the  

pair of transforms are: 

 
0

( ) d ,t t e    39) 


           (

    d ,t t       (40) 
dym

t e
b

 






  

Proof. By [9,10,12]. 
Corollary 4. 1. (Bulnes F. and Stropovsv

quasi-relaxation in the stress-deformation process is a 
n type with singularities in the limit 

af

ies in 

ky Y.). All 

response of relaxatio
ter of obtains the meta-stability conditions in Mt. 
Proof. First we must demonstrate that a quasi-relaxa- 

tion function is a response of relaxation type. After, are 
necessary to show that this function have singularit

   
   

2
1 0 1 2

2 0 1

 

 2

t t

t

s t e G G e

s t e Gt e t 

     3 0 0
ln d lnts t e H e   

the limit after of enter to the meta-stability co itions yet 
with the residual relaxation effects given by the term 





 

    

nd

te . Using the quasi-relaxation transform given by the 
Equation (39), and the hereditary integrals to a load 
given by  'U t t , it is has that: 

   

   

   

    

   

 
0

0

d

d '

t
c e

t

    



0

0
0

0
0

0

0

' d ' d
d '

' d ' d

' ' d

' ' d

,

t t

t t

t

t
t

t

t t t e
t

t t t t e

t U t t e

U t t t e

t









 

   

  

  

 
















 
  

 

      

 

 



 

 





    (41) 

Thus is a function of relaxation type, and only is re-

laxation into a finite interval . When is carries the 
conditions of stress outside of terval, we pass to the 
qu


 

 t ,t0

 this in
asi-relaxation (we keep the load of deformation 

0 0( )U t t  ). Here is had used t dentity 

       ' ,
t

t d t U t t     


    

e fact of  

he i

and also th

that ',

alysis [10,13]. 
w well, we use an interval more wide th  the given 
e interval [t0, t], to involucrate the cond ns to in-

ility conditions. For 

       
0

0 0' ' '
t t

t

t t t dt U t t t dt  


     

into the functional an
No at

by th itio
finite given to establish the meta-stab
it, we consider a more wide domain through of consider 
the complex spectra of  t , is to say, the func-
tion  p , with p s j  , like their analytic exten-
sion of  t , [18], from their field of definition [9]. By 
the arguments of L2-sumability [10], we can be demon-
strate that the singu  p , are confined to the 
negative of the real axis included the origin. For 
other side we know that  t , is defined 0t t  , and 
have been assumed to take chara er of a response of 
type of quasi-relaxation. But the singularities are poles of 
the meromorphic function g en by  t , give y the 
Equation (31) [18]. This poles are of first order, since  

 
of 

iv

larities 
part 

ct

n b
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any pole of superior order could elevate of term of  t , 
of the form k mtt e , which inconsisten h a behavior of 
relaxation type, like have been demonstrated to the be-

t wit

and their inverse: 

ginning of the demonstration of this result. Then th -
gularities are fined in the negative part of real axis. 
This want to say in terms of quasi-relaxation, that in the 
meta-stable conditions only these singularities is sees 
reflected in the imaginary part of  p . Relating the 
two quasi-relaxation spectra (is to say the  t , and their 
complex extension), we have by the Carson transform 
[2,11], that: 

   
0

d ,ptp p t e t


             (42) 

e sin
 con

   1
d ,

2π

j
pt

j

p
t p e

j p






 

 


   p        (43) 

The singularities of  must be considered 
like simple poles (due , m
ter like response of typ tion yet in the con-
di

  p p  ,
 to that the 

e quasi-relax
 could be

 t
a

ust be charac-

tions to infinite). Then  given by the sum of 
terms of the form , 0nt

n nG e   , where the sum could be 
finite or infinite. This can be writing in terms by the 
quasi-relaxation spectra like: 

   
0

d ,tt h e               (44) 


with S , (that is an of the solutions 
pro d given th
tary in n function is precisely the 

ons o he curves 
of  in t

xten-
si

   n nn
h G   

posed in the Table 1), an
tegrals a quasi-relaxatio

 of relaxation type ob

at by the heredi-

function tained by  t . 
An important characteristic of  t , is that is a mono-

tonic non-decreasing function and have not oscillatory 
terms. This goes agree to the observati f t

 stress-deformation schematized he Figure 7. 
Then in the meta-stability conditions (after the simple 

relaxation), that is to say with quasi-relaxation, the func-
tion  t , takes the form, consider the complex e

on of their spectra by the Equation (40): 

     

   

   

 

2 2

                                d d

                                

                                

t
a

s j t t te

a

s j

e s j e e

s j s j

e

  

 



2 2

0 0

1
lim lim

2π
t s j s j

j

 

 
  

 

 







 



  

   

 

 


      


  







d ,t s

 (45) 

Always with 



   1π 2 cosa    . 
 of the Equation (45) yiel

 bσ ε , with.  σ ε

hod

The second term ds 

Table 1. , in x = 0, to an interval 

[0, 100]  of the integral functional 
[17], 

, seconds using the met

 ε  . 

Activation Energy of the Movement of Dislocation
Specimen of Mo [100](001) 

s in a 

   

 T, ˚K
Joule 

1

T K
 K T  3

i b   V0, eV 
− 
2MPa

1 293 3.413E(–2) 4.04E(–2) 111.87 2.46 ± 0.35 340 

2 393 2.544E(–2) 5.42E(–2) 225.29 1.11 ± 0.28 401 

nm 586 3 493 2.018E(–2) 6.80E(–2) 238.75 

 
   0    . The first and third terms can be com-

bined he fact, using t  that , of p-conjugate equals the 
conjugate of  p , to give: 

      lim Imste s s j


 d ,t s



00

 
      

 
  (46) 

That is: 

 ) 

I o s  e ch teri o 
ur quasi-relaxation function, yet after the simple relaxa-

tion and with t

uation  had calculated [10,11,13], 
that 

  t   
0

h  e ds       t 


 (47

s t ay, it is conserv s the relaxation arac stic t
o

heir singularities. This has proved the re-
sult. 

Of the Eq  (44), it is

  
0

1
lim ,

π
h j


  

 

      
 

     

 spectrum appears in the study of the relaxa-
tion in polymeric materials like hard rubbers. But this is 
equivalent to spectra due to the plastic ene
cumulated in metals in the quasi-relaxation process be-
fo

 (48) 

This last

rgy that is ac-

re of the dislocations, save the multiplicative coeffi-
cient of dislocations   [21]. 

Our quasi-relaxation spectrum for a re-scaling with the 
coeffi , given by   cient , [9], is continuous on 
 , over the region of the dislocations. If it is applies to a 
function characterized b oles it will yield zero y simple p
for    , ex

ity. It is reco
cept at the re , goes to 

vers th tion 
gularities by the quasi-relaxation function (to see Figure 
9).

poles whe
e relaxa

 Im p
remainsinfin  in the sin-

 
The same procedure can be used to define the retarda-

tion spectrum from the relation between  

   t    

and its transform, where  t , is the recoverable part of
th

 
e creep function  t , [2, 11]. 
Using the adon transfor n their version like trans-

form of dim ons, [19], we ompute distinct values 
R

ensi  can c  
m i
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Exampl

of analytic curves give
easure

e 4.1. Consider a specimen the Ag, of 
35mmV  , which have an area of exposition under 

quasi-relaxation of 4mm2, where it is has applied a stress 
of 0.5 Kgs/mm2. Considering their fractal dimension us-
ing the space n by /log V V , with 
fractal m

 

(log / ) lntm  m V V    , where  , is 
the relaxation time. The /log V V , can be write in terms 

ion of times of relaxation like of distribut

   
0

/

ln

log d ln 0.232, seetV V m V V e 






    Table 3

(52) 

where 0 , is a microscopic time, due of the microscopic 
effects of activation energy to dislocation

Fi

 
of some metals series (see Table 2), using an appropriate 
percolation [23]. The process to compute consist in re- 
writes the transform of dimensions for this case like: 

    (49) 

considering to , a function that depends of the 
geometrical act urves graphed by the experiments 
under quasi-rel itions of the specimen

gure 9. Half-infinite surface of localized plastic deforma-
tion (for example the mono-crystal of Fe of Figure 5). 

s [12]. Observe 
that th ation (48), is of the class of one of these the 

 transforms in the Table 2. Now well, 

    ˆdim ,t
F t tm m m x t M      

e Equ
calculated by

     2 2
0 0.5t

rV V t t e Kgs mm G     
, is t

    , 
[5]. G he elastic constant that to this case take

5.
s the 

value 8 6 (Cizalle Modulus to Ag), [2]. The functional 
integral given by the Equation (48), have the value 0.232, 
like a quasi-relaxation (see Table 3). 

Finally 

 ( ( ))m x t
ion of the c
axation cond  tM , in 

the fractal o a particle form applied t ( ) tx t M , [ nd 23], a
0.5 1     , , ,t t

1 1n nM R M t t dt ndt        (50

 frac-
l density of the space Mt. In our case the transform of 

) 0.1587101 [14],
19.85 2π

        (53) 

where the value 19.85, correspond to the equivalent 

Mg (Al)Equiv , to Ag, used to study of curves of flux due 
to ion field [14,15], to the 

is the fractal volume of specimen, and R(Mt), is the
ta
dimension takes the fractal dimension defined by values: 

dim ( )t
F M = {evaluation in quasi-relaxation times of 

analytic curves of maximum increasing of se

 deformat group of metals of 
oordinates “curves with c log t

ctal mgregation by 
dislocations in quasi-relaxation regime 

um in
to each 

metal}  {maxim creasing of plastic energy to each 

metal} =   sup log ,V V V t               (51) 

”. These curves char-
ctals in the fra easure 
n (48). 

2-no

ntegral tr le 

acterize the fra
by the Equatio

Ù
tm , obtained 

Using the energy bounds foreseen in the Equation (24), 
and the rm of our spectra energy, we have that the 
Equation (49), can to take the form: 

considering the factor 
 
Table 2. Example of quasi-relaxation i ansforms tab  1dymα b ρ , and using the substitu-

  t' t .tion  

lax Quasi-Re ation Integral Transforms 

U  (t) ()

   2

1 2  
t

t G G e





            0 1 2 0 1 2 2δ ’ ’G G t G G U t        U(t’) 1
 

   0 1 2
t

t e t Gt e


  


        0 1 3 ?t G Gt      t/(t – t’) 2
 

J(t – t’) 3
      

0
 dtt H ln e l n           /

0
1 dtL ln e ln       

             2
1 0 1 2 2 0 1 3 0

0
,  2 , dt t tt G G e t Gt e t t H ln e ln                  .  
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Table 3. Multiplicative dislocations coefficient [21]. 

α-experimental and α-theoretical by transform of dimensions 
Metal 

X Mono-Crystal 
LAB Quasi-Relaxation Poly-Crystal  -Theoreticalα  

2

1  1 Cu 0.159 0.202 0.21 - 0.38 0.5 

2 Ag 0.159 0.232 225.29 0.53 
2

n


 for n = 25,= 0.795 

3 795 to 25 0.146 0.3 - 0.6 0.38 - 0.70  Fe 0. N = 
1


 

4 Nb 0.318 0.187 0.375 0.425 
1

2
 

5 Mo 0.159  0.130 0.25 - 0.49 0.36 
1

2
 

6V, Ta 0.159 0.189-0.191 0.3 0.36 - 0.43 
2

1

 
 

  
0

1 21 2 1 2

ln

2
log d ln

3 0.158,
20

3

tm V V e G


 
 




 

which is not a s mple co idence, since 2/3, is a the 
factor into

i inc
 P

EQ , alw due to the maxi-
mum valu astic de rmation that ves in 

ays present that 
e of pl fo  is gi

max 3P
rE  

normal elastic
, with e of t odulus of 

a
Then the b  give  the Equatio 4), to the

property of effici

 rE
tion.

, the valu he m
 relax
ounds

 
n by n (2  

the co ent  , they imated 
nder the integral inequality (under 2-norm to the plastic 
nergy always present in quasi-relaxation process): 

can be est
u
e

    

    

 

0

log d ln

            log d ln

t

t

V V m V V e

m V V e














    

 

 





 

with the values 

2
2

0
0

        ln d ln ,te e t N  


   

5N  and , 

   
2

2 2/

0

ln ln log log [10, 21].te d x t         

5. Meromorphic Curves in the 
Quasi-Relaxation Spectra 

The spectral function , have cuts in the quasi- 
relaxation curves due t  of dislocations ph e due 
increasing of plastic en  all crystals of th etal 
(macla of energy). Th es are analytic in all do- 
main except in singula

 p
o enters
ergy in

ese curv
r points 

as
e m

0 
ectra satisfies with h

  
 and 11

, or , when 
the quasi-relaxation sp of the 

rm th e the 
function uency 

orrespondi  to the fluency fu tion that appear 
after of increasing too much to th  sliding dislocations 

example f this work), being possible detect the 
ic deform o macr or 

ine the d ty of the  of rel  
ween b ions [2], (see t orrespondin

sform to the two functions , and 

p 
elp 

2p , wher
e the fl

Laplace transfo  pat 
Figures 10

p 
, ar p , 

spectra c ng nc
e

(see 3.2 o
plast
def

ation t
uplici

oscopic level. The fact
se actions through

2p , 
ation

g Car-bet
son tran

oth funct he c
  t  t , 

 th
 pre-
ation 

 interval
e ac

e 
e. Th
forma-
xation

ga
ects of



n
jor

 th
e crystallin

a

a

f

and their fun l relation, [11]). 

onclus  

he intro f the integral t rms i e 
asi-rela dy helps to esta l h ma

cision the limits of the existence of th asi-relax
of a material summated to a constant l n an  
to along of the time, before off to ri ve to
cumulation plastic energy necessary t

is stag e 
alytic in

tio  t asi-rel  
ormati

tate th sform

nditions he
 of the

 of ef  
agglomeration. 

ctiona

6. C ions

T
qu

duction o
xation stu

ransfo
ish wit

e qu
oad i

sk arri
o th

h
an

he qu

lp to o

s 
le count

b

-

dislocations in metals and after of t
quasi-relaxation spectra also of support 

n on the meromorphic behavior of
curves use to obtain inf on that can be codified in 
the field of the complex frequencies to their possible 
material decoding and with it open the possibility of ma-
nipulate in this meta-stable state to the material, being 
able to fill codes that can facili e tran tion of 
the metals and their alloys [17,22]. 

The quasi-relaxation co btain special 
properties  metals, likewise some alloys. For exam-
ple, an of the alloys obtained to the program of spatial 
research in Russia, with the object of obtain metals with 
anti-corrosive memory and lightness (and the same time 
to support major temperatures to 650˚C, for example, in 
the turbines of the reaction airplanes), [15], are the ex-
periments on an alloy of Zr + 2.5% Nb, after of the 
quasi-relaxation in the which is observe fine segre -
tions of the phase II, in a considerab
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Figure 10. Meromorphic curves of quasi-relaxation. These 
are obtained by experiments of metal specimens under big 
stress obtaining [21]. These experimental results proved 
that our quasi-relaxation functions have ideal behavior very 
similar to the obtained one earlier (compare these curve 
with the curves of the Figure 4), except in the singularities 
due to the entered of the hyperbolic part contemplated of 
the functions from Equation (31). These curves measure 
fatigue for big stress after of the quasi-relaxation (appear 
the singularities). 
 

 
(a)           (b)             (c)            (d) 

Figure 11. (a)      exp t, s t s , with stress tensor 

 U t'

function 

, with . (b) Surface of quasi-relaxation   t'  t s

     
 quasi-relaxat

 in Figure
 (Yermis

axation cu
re 2, with

exp t s  . Observes the 

ion in the plane XZ, accord of the 
redict  4, after of a fatigue to Aluminum 

Magnesium hkin). (c) Quasi-relaxation surface 
-rel rves in black such like the pre-

 Figu  stress 

curves of
curves p
with 
with quasi
dicted in    exp 3   1  t s , in the 

, with the time t = 50 seconds to AMg—6B. plane YZ
(d) 

fatigue 
  1 log R t  , with     Heaviside  10  t log t , 

si-relaxation in the plane YZ, 
accord of the curves predict in Figure 4, after of the fatigu

nd Yerminshkin [20,21], it is wants like priority
opment of precise methods on the multiple

nipulations that we can realize of the metals in the 
meta-stable regime using the pre-disposition that these 
presents in accumulate energy to can realize actions like 
re-programming their nano-crystal structure and think in
the po rma-

terials [20,22], using th
 believe that the use of

the fun alysis
ent and obtaining of a com

research data ban

allurgy, and th ent of Research in Mathe

z, “Mechanics, Theoretical 
, New York, 1960. 

Toupin, “The Classical Field 

[10] B. Simon and M. Reed, “Mathematical Methods for 
Physics: Func , Academic Press, 
New York, 19

Observes the curves of qua
e 

to t = 50 seconds. 
 

In the Russian aerospace industry they are studying 
diverse metallic alloys to establish ranges of meta-stabil- 
ity in the deformation fields produced by the materials 
proposed [15,16]. It is wants to obtain lightness materials 
and more resistant to the corrosion and deformations. Go 
of remains to mention that in the last researches, consid- 
ering the analytic characterization proposed by Bulnes 
a
devel

 the 
 ma-

[12] J. P. Hirth and J. Lothe, “Theory of Dislocations,” 
McGraw-Hill Book Company, Institute of Physics, Oslo 

 
ssibility of obtain nano-technological transfo

tions of the ma eir spectral encod-
ing. Finally we  inverse methods of 

ctional an  in material physics can to help to 
developm plete theory of 
quasi-relaxation to characterization and transformation of 
materials of any nature [20,22]. 
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al Notation 

 

 —Stress tensor applied in the quasi-relaxation pro- 
cess in the machine-spe

space. Into this space succeeds the deformations by the 
deformation tensor. cimen. 

3R
d

 —Deformation tensor applied in the quasi-relaxa- 
on process in the machine-specimen. 

—Real ordinary space or 3-dimensional real space. 
—Indicial form of inelastic module tensor d. It use 

to ealize the orthogonal transforms by orthogonal group 
an space 

ti ijkl

 r
of Euclide  2nO R  . 



 ,D t 
rmation cu

—Topological vector space of stress-de- 
rves. In this characteristic of space of con- 

nuum media we can have two cases of study: In the 
mit to dislocations and when it gives the dislocations. 

—Inelastic module tensor of the tensor. 
—Elastic module tensor of the tensor. 

fo


tra of 
pti —Compl n of quasi-relaxation spec- ex extensio

 
xation f

li . Is the complex spectra of the quasi-re- 
la on uncti  t . 

quep —Compl
d
C ex fre ncy given by . This is 

of all the class of Laplace transforms, in the 
of the physical systems in our analysis of 

quasi-relaxation. 

p  s  j  
the variable 
dynamical 

—Function of quasi-relaxation spectra. 
 —Dislocation multiplicative coefficient, 

on a number of physical conditions. 
M—Specimen. 
t —

al lattice.
t

dependent 

 ,D   —Topological tensor space of deformation or 
Time of relaxation. 

L—Lagrangian operator. 
b—

deformation space. Into this space occurs the deforma-
tions by the stress tensor. 

Burgers number, which represents the magnitude 
and direction of the lattice distortion of dislocation in a 
cryst

—Density of the specimen on the dislocating dy- dym
namics. 

 
M —Specimen under some temporal mechanical trans- 

formation. 
 ,D   —Topological tensor space of stress or stress 

 —Direct sum of functional spaces or vector topo- 
logical spaces. In this case, our spaces are the of tensors 
an edia of the materd continuum m

ed. 
ial of the specimen 

us
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   , ,M D      —Space of test of specimen-ma- 
ch h it applies the 
st

al form of elastic module tensor . It 
us

 Euclidean space 
)—

on curve. 

specim

ix of Cauchy tensor to 1-dimensional 

ine. Correspond to the surface on whic
ress and where occurs the deformation in the quasi- 

relaxation process. 

i klC —Indicij

es to realize the orthogonal transforms by the orthogo-
nal group of

 C

 2nO R  . 
L 2(G Space of measures obtained by the signals 

space 2 (, )L  in the instrumental of measurements. 
—Quasi-relaxati
G —Group of actions on crystal structure of the 

en. 
G —Constants of elastic module. 
 , ,C x t s —Matr

behavior of deformation tensor. 
 1 2W , ,I I  t —Matrix of relaxation deformations. 
 2nO R  —Gro of up orthogonal transforms due to 

L ents of thagrangian actions on tensor compon e defor- 
mation tensor. Is on 2nR  , since each tensor is in func- 
tion of two tensors, for example:  ,E k  , which is 
a differentiable funct pace ion on s M D . 

2 (, )L —

en-machine. This surface is defined 
like a

Coefficients of bound of the components of elas-
tic modulus tensor. 

Space of signals detected by instruments of 
measure in the panel of machine-specimen in the quasi- 
relaxation system [19]. 

 , k  —Surface subject to the stress applied by 
a system


 of specim

 function of their deformation suffered by the stress 
and by the state conditions (thermal and media condi- 
tions), to which is subject. 

ci —

 K t,  —Kernel of integral transform of quasi-re- 

laxation. 
 x t —Particle of t ecimen M. he sp
 t —Function of response of t on. ype relaxati

—Lagrangian action of the meta-stability in the 
quasi-re

t and the analytic curves have a 
hyperbolic com

laxation process. The meta-stability state is risks 
when with the longitude lo of circuit of force of the ma- 
chine remaining constan

ponent of decreasing of fall of stress due 
to plastic energy in nano-crystal level. 

 t —Signal of stress tensor registered by the panel 
of machine-specimen and with measure on a square inte-
grable space 2 (, )L , to measures responses of the stress 
tensor through of their characteristic energy. 

 t —Signal of deformation tensor registered by the 
f 

rable space , to measurable responses 
of their characteristic 
energy. 

panel o

 the d

machine-specimen and with measure on a 
square integ 2 (, )L

eformation tensor through of 

g —Is the conformal elastic tensor of  . 
b —Is the conformal inelastic tensor of  . 

Abbreviations 

MPa—Mega-Pascal. 
HVTEM—High Voltage Transmission Electron Mi- 

croscopic (this is a microscopic belonging to the genera- 
tion of microscopic to research in nanotechnology). 

ev—Electron volts. 
08KP—Steel is used to make bimetallic cold-rolled 

strip with an Aluminum. The optimum Oxygen content 
of low-Carbon steels (such as grade 08KP). 
˚K—Temperature Kelvin Degrees. 
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