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Abstract 
The hydrological uncertainty about NASH model parameters is investigated 
and addressed in the paper through “ideal data” concept by using the Genera-
lized Likelihood Uncertainty Estimation (GLUE) methodology in an applica-
tion to the small Yanduhe research catchment in Yangtze River, China. And a 
suitable likelihood measure is assured here to reduce the uncertainty coming 
from the parameters relationship. “Ideal data” is assumed to be no error for 
the input-output data and model structure. The relationship between para-
meters k and n of NASH model is clearly quantitatively demonstrated based 
on the real data and it shows the existence of uncertainty factors different 
from the parameter one. Ideal data research results show that the accuracy of 
data and model structure are the two important preconditions for parameter 
estimation. And with suitable likelihood measure, the parameter uncertainty 
could be decreased or even disappeared. Moreover it is shown how distribu-
tions of predicted discharge errors are non-Gaussian and vary in shape with 
time and discharge under the single existence of parameter uncertainty or 
under the existence of all uncertainties. 
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1. Introduction 

It is well known that the hydrological processes are very complicated and influ-
enced by climate, weather, geographic and geomorphic conditions, underlying 
surface conditions and that it is very difficult to obtain the hydrographic features 
(precipitation, evaporation, discharge etc.) as well as the spatial and temporal 
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distributions of hydrologic cycle features precisely. For all of these reasons, the 
accuracy of hydrological modeling will be influenced by these uncertainties. 

The randomness and fuzziness of the hydrological phenomenon are the pri-
mary causes for the modeling uncertainty. Hydrologists [1] [2] [3] [4] [5] have 
discussed such uncertainties originated by such causes as input-output data, hy-
drological model structure and model parameter. In particular, the uncertainty 
of the hydrological data can be summarized as below: 1) Representativeness of 
the distribution character and mathematical expectation of hydrological features. 
Taking the rainfall as an example, as heterogeneityand variability of the precipi-
tation spatial distribution, maybe the information obtained in fixed rainfall sta-
tion network is inaccurate to be used as mean value in an area; 2) measurement 
error. As the existence of the instrument error or fault and observer’s operation 
or evaluation error for the flood monitoring system, there must be input-output 
error for modeling; 3) lack reliable information for some hydrologic features. 

Analogously, the model uncertainty can be summarized as below: 1) Since the 
knowledge limitations of hydrological processes, the descriptions of such pro- 
cesses may be approximate or unreasonable; 2) most mathematical and physical 
functions used in complex processes calculation are simplified; 3) many models 
cannot reflect the influence of environmental factors, such as global climate and 
land cover change due to human activities, to the run off process; 4) effective 
computing methods are needed. The rainfall-runoff is a continuous process that 
is simulated by the model in a discrete way causing inevitable errors. Besides, 
different discrete ways could have different influences; 5) model parameter val-
ues are difficult to be obtained by either measurement or prior estimation. 

The research of parameter uncertainty is fundamental and meaningful. Once 
the hydrological model is confirmed, the parameters will be the key point for the 
modeling validity: the modeling will stand or fall according to the parameters. 
Premier researches about modeling uncertainty are mainly about model para-
meters but with the existence of other uncertainties, such as the Generalized Li-
kelihood Uncertainty Estimation (GLUE) methodology [4] [6], the Shuffled 
Complex Evolution Metropolis algorithm (SCEM-UA) [7], and the Markov 
Chain Monte Carlo (MCMC) method [8]. All these methods were aimed to 
represent the parameter uncertainty but ignored the influence of other uncer-
tainty factors. Therefore, the key point now is how to avoid or decrease the in-
fluences of input-output data uncertainty and model structure uncertainty for 
the exact estimation of the parameters. For this, “ideal data” is proposed in the 
paper to do the parameter uncertainty and interaction estimation by using 
GLUE methodology. And meanwhile the likelihood measure is also studied here. 
The proposed approach is applied to the well-known NASH runoff model con-
sidering as case study in Yanduhe basin of Yangtze River, China. 

2. Theoretical Background 

For the sake of completeness, the main theoretical background of involved mod-
els and methods are briefly described in what follows.  
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2.1. The GLUE Methodology 

The GLUE procedure recognizes the equivalence of different sets of parameters 
in the calibration of models. It is based upon running a model with different sets 
of parameter values chosen randomly from the specified spatial distributions. 
Many papers have applied this methodology and emphasize the effects of the li-
kelihood measure in the whole applying process [9] [10]. The term “likelihood” 
was used in a general sense, as a fuzzy, belief, or possible measure of how well 
the model conforms to the observed behavior of the system [4], yet not in the re-
stricted sense of maximum likelihood theory which is developed under specific 
assumptions of zero mean, normally distributed errors [11] [12]. Moreover, it is 
subjective to choose a suitable threshold for the likelihood measure to identify 
the behavior of the model. In the past studies, usually the threshold was chosen 
subjectively on the scale of some summary goodness of fit index [13] [14] [15]. 
And the GLUE method is used well in uncertainty research [16] [17]. 

Here in the application of GLUE methodology, for each set of parameters, 
whether the model is behavioral or not is determined by the likelihood value on 
a basis of comparing predicted and observed responses.   

The requirements of the GLUE procedure are given as follows: 
1) A formal definition of a likelihood measure. At this stage it is worth noting 

that a formal definition is required but the choice of a likelihood measure will be 
inherently subjective. 

2) An appropriate definition of the initial range and the distributions of the 
parameters to be considered for a particular model. 

3) Definition of a feasible threshold value. 

2.2. NASH Model 

The NASH model [18] [19] [20] [21] is a conceptual hydrological concentration 
model developed by Nash, J.E., and it is widely used in the watershed concentra-
tion simulation [22] [23]. In the model, the research basin is divided into a series 
of identical reservoirs, and the reallocation of the net rainfall in the catchment is 
assimilated to be an adjustment of the reservoirs. So the instantaneous unit hy-
drograph (IUH) can be deduced as Eq. (1): 

( )

1 11( )
n

kku t e
k n t

−
− =  Γ  

                    (1) 

where ( )u t  is the y-coordinate of instantaneous unit hydrograph; ( )nΓ  is the 
Gamma function; n  reflects the regulation and storage capacity of the basin, 
and it could be the number of the reservoirs, termed shape parameter; k  is the 
storage-discharge parameter of the reservoirs, termed scale parameter. The Nash 
model with its clear conception and simple structure has been used extensively 
in flood forecasting [24] [25]. 

According to Eq. (1), when the net rainfall ( )h t τ−  is given, the flow hydro-
graph at the basin outlet can be deduced as  
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1 ( )
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2.3. Generation of the Ideal Data 

To avoid the input-output uncertainty and the model structure uncertainty, the 
concept of “ideal data” is proposed to do the research of model parameters un-
certainty.  

On the basis of the physical interpretation of the hydrological model and the 
characteristics of the research catchment, the model parameter spaces can be 
determined based on the prior information. Choose one set of parameters ran-
domly in the parameter spaces as the “true parameter values”. First assume the 
input data has no error, then the input is called “ideal input”, and the “ideal 
output” can be calculated by using the “true parameter values” in the model.  

For NASH model, the input is net rainfall and output is flow at the basin out-
let.  

3. Case Study and Results 

The Yanduhe catchment in upper reaches of the Yangtze River basin covers a 
drainage area of 601 km2 where the annual average rainfall is about 1337 mm, 
and the runoff mainly comes from the rainfall. In this research catchment, four 
flood events are used in the case study (Table 1). 

For NASH model, based on the physical interpretation and the catchment da-
ta, the spaces of the two parameters are k [0.5 - 4] and n [0.5 - 5]. The input is 
the net rainfall and the output is the surface runoff. Here the net rainfall is cal-
culated by XAJ rainfall-runoff model [26]. In real data research, the error com-
ing from XAJ model is assumed as input error of NASH model. In the applica-
tion of GLUE methodology, it is done by Monte Carlo simulation, using uniform 
sampling in the specified parameter range. 

In rainfall-runoff modeling we are often evaluating the errors in simulating a 
time series of discharge or other observed data. A classical statistical measure for 
evaluating goodness of fit based on the sum of squared errors or error variance is 
suggested by Nash and Sutcliffe (1970) in the form  

2

1 21L ε

ο

σ
σ

= −                            (3) 

 
Table 1. The four flood events. 

Number Flood event Starting time Ending time 
Measured peak  
discharge(m3/s) 

1 3 June 1981, 23rd July 1981, 2nd 1130.0 

2 810714 July 1981, 14th July 1981, 25th 589.0 

3 810810 Aug. 1981, 10th Aug. 1981, 22nd 628.0 

4 810824 Aug. 1981, 24th Sep. 1981, 8th 509.4 
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where 2
εσ  is the variance of the errors; 2

οσ  is the variance of the observations. 
Another measure based on the sum of squared errors is the inverse error 

measure suggested by Box and Tiao (1992) in the form: 

( )2
2 ( )

N
L N εσ

−
=                        (4) 

where N  is a shaping parameter.  
Here two likelihood measures were chosen for model and parameter uncer-

tainty research by GLUE methodology. 

3.1. GLUE Research under Real Data  

The GLUE methodology has been first applied to the real data (observed dis-
charge) research with likelihood measure L1. In this study the choice of a model 
efficiency rejection criterion (<0) has been included, which assure all of the 
possible modeling results can be contained.  

Scatter plots of parameters k  and n  based on the likelihood measure L1are 
reported in Figure 1 and Figure 2 which show the effects of using different flood 
events with real input-output data. It can be seen that good and poor simulations 
are available virtually throughout the parameter ranges, and the effects of dif-
ferent flood events for parameters k  and n  are seen clearly. It can be inferred 
that there is uncertainty of input-output data or others simultaneously to influ-
ence the distributions of the scatter plots. 

The results shown in Figure 1 and Figure 2 suggest that the parameter re-
sponse surfaces are very complex and for different data that is for different 
events they vary showing the uncertainty of data. 

It is difficult in rainfall-runoff modeling to bracket all the discharge observa-
tions (or other predicted variables) within 90% of the calculated confidence 
bounds, as seen in Figure 3, the discharge is often outside of the 90% confidence 
bounds, which furthermore proves the data limitations as well as the model 
structure limitations. 

Figures 4-6 show the distribution of errors 
ptE , 10ptE + , 10ptE − , computed 

considering the four flood events under real data research, referring to peak dis-
charge, 

ptQ , discharge 10 hours after peak time, 10ptQ + , discharge 10 hours be-
fore peak time, 10ptQ − , respectively. It is easy to see from the figures that the dis- 
tributions are non-Gaussian and vary in shape through time under the existence 
of parameter uncertainty, data uncertainty and model structure uncertainty. 

3.2. GLUE Research under Ideal Data  

Then the GLUE methodology has been applied in parameter uncertainty re-
search by proposing the “ideal data” to avoid the influence of other uncertainty 
factors. Following the above generation steps of the “ideal data”, one set of pa-
rameters is chosen as the “true parameter values”: ( )3.115, 1.203n k= = , then 
the model is determined. With the ideal input of net rainfall data and the con-
firmed NASH model, the output data of the model will be obtained to be the 
ideal output data. So there is no uncertainty for the input data, output data and  
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Figure 1. Scatter plots of efficiency results for parameter k in the four real flood events. 
 

 

Figure 2. Scatter plots of efficiency results for parameter n in the four real flood events.  
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Figure 3. Ninety percent uncertainty bounds for simulations of the four real flood events 
in the Yanduhe catchment.   
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Figure 4. Error distributions at the point of pt  in the four real flood events.  
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Figure 5. Error distributions at the point of 10pt +  in the four real flood events.  
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Figure 6. Error distributions at the point of 10pt −  in the four real flood events. 
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Figure 7. Scatter plots of efficiency results for parameter k in the four ideal flood events.  

 

 
Figure 8. Scatter plots of efficiency results for parameter n in the four ideal flood events.  
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Figure 9. Ninety percent uncertainty bounds for simulations of the four ideal flood events in the Yanduhe catchment.  
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Figure 11. Response surface for k  and n  in the four ideal flood events. 

 

 
Figure 12. Error distributions at the point of pt  in the four ideal flood events.  
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Figure 13. Error distributions at the point of 10pt +   in the four ideal flood events.  
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measure, the parameter uncertainty could be disappeared. The results also clear-
ly show that under ideal data, the real parameter set is obtained, but the results 
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also show that the distributions of errors are not Gaussian distribution as which 
are always assumed. 

In real data research, when the model is confirmed the uncertainty due to 
both parameter uncertainty and data uncertainty. And the ideal data research 
show that the parameter uncertainty depends on the relationship between the 
two parameters. So the way to deal with the parameter uncertainty is how to re-
duce the correlation of the two parameters or confirm their correlation by con-
stant function. But with likelihood L2 the uncertainty from the parameters cor-
relation could be decreased in real data research  
 

 

 

Figure 14. Error distributions at the point of 10pt −  in the four ideal flood events.  
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Figure 15. Response surface for parameters k and n under 
ideal data with likelihood L2.  
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The distributions of errors from model structure uncertainty, data uncertainty 
and model parameter uncertainty or from single model parameter uncertainty 
are non-Gaussian, and furthermore, changeable in each rainfall-runoff event. 
Meanwhile for different flood events they are also different. So it is not reasona-
ble to assume the errors with this certain kind of distribution. Comparing these 
to the results from ideal data estimation, the mixed uncertainties make the error 
distributions more complicated.  

Suitable likelihood measure is very important for uncertainty estimation and 
parameters determination. While the accurate data and perfect model structure 
are the two important factors for C. They are the preconditions for the estima-
tion of model parameter uncertainty and interaction.  
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