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ABSTRACT 

Prediction of highly non-linear behavior of suspended sediment flow in rivers has prime importance in environmental 
studies and watershed management. In this study, the predictive performance of two Artificial Neural Networks (ANNs), 
namely Radial Basis Function (RBF) and Multi-Layer Perceptron (MLP) were compared. Time series data of daily 
suspended sediment discharge and water discharge at the Langat River, Malaysia were used for training and testing the 
networks. Mean Square Error (MSE), Normalized Mean Square Error (NMSE) and correlation coefficient (r) were used 
for performance evaluation of the models. Using the testing data set, both models produced a similar level of robustness 
in sediment load simulation. The MLP network model showed a slightly better output than the RBF network model in 
predicting suspended sediment discharge, especially in the training process. However, both ANNs showed a weak ro-
bustness in estimating large magnitudes of sediment load. 
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1. Introduction 

River suspended sediment load is a principal parameter 
in reservoir management and can serve as an index to 
understand the status of soil erosion and ecological envi-
ronment in a watershed [1]. The rainfall-sediment yield 
process is extremely complex, non-linear, dynamic, and 
fragmented due to spatial variability of watershed geo-
morphologic characteristics, spatial/temporal variability 
of rainfall and involvement of other physical processes 
[2,3]. Therefore, predicting sediment yield process in ri- 
ver basins requires a non-linear modeling approach such 
as Artificial Neural Network (ANN), which can capture 
complex temporal variations within time series data [4]. 

The ANN is a powerful soft computational technique 
which has been widely used in many areas of water re-
source management and environmental sciences [5-15]. 
ANN comprises parallel systems that are composed of 
Processing Elements (PE) or neurons, which are assem-
bled in layers and connected through several links or 
weights. After feeding input data to the input layer, they 
pass through and are operated on by the network until an 
output is produced at the output layer. Each neuron re-
ceives numerous inputs from other neurons through some 

weighted connections. These weighted inputs are then 
summed and a standard threshold is added, generating 
the argument for a transfer function (usually linear, lo-
gistic, or hyperbolic tangent) which in turn produces the 
final output of the neuron [14]. 

This study was aimed at comparing the predictive 
performance of the Multi-Layer Perceptron (MLP) and 
the Radial Basis Function (RBF) neural networks in pre-
diction of suspended sediment discharge at the Hulu 
Langat watershed using time series of daily water dis-
charge as the input data. 

2. Materials and Methods 

2.1. Study Area 

Hydrometeorologically, the Hulu Langat watershed is 
affected by two monsoon seasons, i.e. the Northeast 
(November to March) and the Southwest (May to Sep-
tember). Average annual rainfall is about 2400 mm. The 
wettest months are April and November with an average 
monthly rainfall exceeding 250 mm, while the driest 
month is June with an average monthly rainfall below 
100 mm. Topographically, the Hulu Langat watershed 
can be divided into three distinct areas in reference to the 
Langat River, i.e. mountainous area in the upstream, un-*Corresponding author. 
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dulating land in the center and flat flood plain in the 
downstream. This watershed consists of a rich diversity 
of landforms, surface features and land cover [16,17]. 
Descriptions about this watershed are shown in Figure 1 
and Table 1.  

2.2. Data Sets 

Daily water discharge and sediment load data from 1997 
through 2008 recorded at Sungai Langat hydrometer sta- 
tion were obtained from the Department of Irrigation and 
Drainage (DID) of Malaysia. 

2.3. Multi-Layer Perceptron 

Multi-Layer Perceptron (MLP) is a popular architecture 
used in ANN. The MLP can be trained by a back- 
propagation algorithm [18]. Typically, the MLP is or- 
ganized as a set of interconnected layers of artificial 
neurons, input, hidden and output layers. When a neural 
group is provided with data through the input layer, the 
neurons in this first layer propagate the weighted data 
and randomly selected bias through the hidden layers. 
Once the net sum at a hidden node is determined, an 
output response is provided at the node using a transfer 
function [19,20].  

Two important characteristics of the MLP are its non- 
linear processing elements which have a non-linear acti- 

vation function that must be smooth (the logistic function 
and the hyperbolic tangent are the most widely used) and 
its massive interconnectivity (i.e. any element of a given 
layer feeds all the elements of the next layer). The two 
main activation functions used in this study were sigmoid, 
and are described as follows:  

        1
tanh and 1 iw

i i iy w y e 
       (1) 

in which the former function is a hyperbolic tangent 
ranging from –1 to 1, and the latter is a logistic function 
similar in shape but ranges from 0 to 1. Here, yi is the 
output of the ith node (neuron) and wi is the weighted 
sum of the input synapses [15,21,22].  

The MLP network is trained with error correction 
learning, which means that the desired response for the 
system must be known. Error correction learning works 
in the following way: From the system response at PEi at 
iteration n, yi(n) and the desired response di(n) for a 
given input pattern, an instantaneous error ei(n) is de- 
fined by:  

     i i ie n d n y n             (2) 

Using the theory of gradient descent learning [21, 
23-25], each weight in the network can be adapted by 
correcting the present value of the weight with a term 
that is proportional to the present input and error at the 
weight, such that: 

 

 

Figure 1. Location of study area. 
 

Copyright © 2012 SciRes.                                                                               JWARP 



H. MEMARIAN, S. K. BALASUNDRAM 872 

 
Table 1. General information of the Hulu Langat water- 
shed.  

Main River Langat 

Geographic Coordinate 
3˚00' - 3˚17'N and 
101˚44' - 101˚58'E 

Drainage Area (km2) 390.26 

Watershed Length (km) 34.5 

Average Slope (%) 29.5 

Max. Altitude (m) 1480 

Min. Altitude (m) 36 

Ave. Altitude (m) 278 

Reference Hydrometer Station Sungai Langat 

Annual Water Discharge (*106 m3) 289.64 

Annual Sediment Load (*103 ton) 146.6 

Annual Runoff (mm·km−2) 742.16 

Annual Sediment Yield (ton·km−2) 375.65 

Reference Rainfall Station 
UPM Serdang, Kampung Lui, 

Ladang Dominion 

Precipitation (mm) 2453 

Land Cover* 

Forest (54.6%), Cultivated Rubber
(15.6%), Orchard (2%), Urbanized
Area (15%), Horticulture and Crops,
Oil Palm, Lake and Mining Land
(12.8%) 

*Based on the 2006 land use map. 

 

            1ij ij i j ijw n w n n x n w     1ijn w n 

 n
e n

 

(3) 

The local error i  can be directly computed from 

i  at the output PE or can be computed as a 
weighted sum of errors at the internal PEs. The constant 
η is known as the step size and α is known as the mo- 
mentum. This procedure is referred to as the back- 
propagation algorithm imposed into the momentum 
learning. Back-propagation computes the sensitivity of a 
cost function with respect to each weight in the network, 
and updates each weight proportional to the sensitivity 
[21,24]. 



2.4. Radial Basis Function  

The Radial Basis Function (RBF) is another popular ar- 
chitecture used in ANN. The RBF, which is multilayer 
and feed-forward, is often used for strict interpolation in 
multi-dimensional space. The term “feed-forward” means 
that the neurons are organized as layers in a layered neu- 
ral network [26]. The basic architecture of a three-lay- 
ered neural network is shown in Figure 2.  

The RBF network comprises three layers, i.e. input, 
hidden and output. The input layer is composed of input 
data. The hidden layer transforms the data from the input 
space to the hidden space using a non-linear function. 
The output layer, which is linear, yields the response of 

the network. The argument of the activation function of 
each hidden unit in an RBF network computes the Eu- 
clidean distance between the input vector and the center 
of that unit. In the structure of RBF network, the input 
data, x, is a p-dimensional vector, which is transmitted to 
each hidden unit. The activation function of hidden units 
is symmetric in the input space, and the output of each 
hidden unit depends only on the radial distance between 
the input vector, x, and the center for the hidden unit [26]. 
Each node in the hidden layer is a p-multivariate Gaus- 
sian function, given as follows: 

 2

2
1

1
, exp

2

p

i
k

k ik
i

G x x x x
 

    


        (4) 


where: xi is the mean (center) and i  is the variance 
(width). These functions are referred to as radial basis 
functions. Finally, a linear weight is applied to the output 
of the hidden nodes to obtain: 

    
1

,
N

i i
i

x w G x x


 F            (5) 

The problem with this solution is that it may lead to a 
very large hidden layer. Thus, the solution should be ap- 
proximated to reduce the number of PEs in the hidden 
layer and cleverly position them over the input space 
regions. This entails the need to estimate the position of 
each radial basis function and its variance, as well as to 
compute the linear weights, wi [21,26]. An unsupervised 
technique, known as the k-nearest neighbor rule, is used 
to estimate the mean and the variance. The input space is 
first discretized into k clusters and the size of each clus- 
ter is obtained from the structure of the input data. The 
centers of the clusters give the centers of the RBFs, while 
the distance between the clusters provides the width of 
the Gaussians. NeuroSolutions, an ANN computer pro- 
gram, uses competitive learning to compute the centers 
and the widths. It sets each width proportional to the dis- 
tance between the center and its nearest neighbor. The 
output weights are obtained through supervised learning. 
Therefore, the error correction learning described earlier 
in the MLP section is employed [21,27].  
 

 

Figure 2. Basic RBF architecture. 

Copyright © 2012 SciRes.                                                                               JWARP 



H. MEMARIAN, S. K. BALASUNDRAM 873

2.5. Performance Metrics 

The metrics used for network training and validation 
were Mean Square Error (MSE), Normalized Mean Square 
Error (NMSE) and correlation coefficient (r). Meanwhile, 
Akaike’s Information Criterion (AIC) and Minimum 
Description Length (MDL) measurements were used by 
NeuroSolutions to produce a network with the best gen-
eralization. The AIC is used to measure the tradeoff be-
tween training performance and network size. The MDL 
is similar to the AIC in that it tries to combine the 
model’s error with the number of degrees of freedom to 
determine the level of generalization [21,24]. The com-
putations of MSE, NMSE and r are given below:  

 2
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where: P is the number of output processing elements, N 
is the number of exemplars in the data set, yij is network 
output for the exemplar i at the processing element j, and 
dij is desired output for the exemplar i at the processing 
element j [21,24]. 

2.6. Application of MLP 

Data randomization was performed before the training 
process. In the training process, 54% and 14% of the 
total data were utilized for training and cross validation, 
respectively. Network testing was conducted using 32% 
of the total data. Data normalization was performed using 
NeuroSolutions. In this process, data sets were scaled in 
the range of 0.05 - 0.95. The number of neurons in the 
first and second hidden layers, and learning rates were 
determined based on several trials. The optimum proper-
ties of the MLP network are shown in Table 2. 

2.7. Application of RBF 

Network training and testing were performed using the 
same data sets applied in the MLP network. With regard 
to the form of activation function, applied in the hidden 
layer (i.e. hyperbolic tangent), data sets were normalized 
in the scale of –0.9 - 0.9. The number of neurons in the 
hidden layer, the number of clusters and learning rates 
were determined based on several trials. The optimum 
properties of the RBF network are shown in Table 2. 

3. Results and Discussion 

3.1. Error Analysis during the Training Process  

Minimum MSE and final MSE obtained during the train-
ing process of the RBF network were significantly larger 
than those in the MLP network (Table 3 and Figure 3). 
Comparatively, the MLP network is able to produce a 
more fitted output to cross validation data set in com- 
parison to the RBF network. As indicated in recent lit- 
erature [4,28], the RBF network gives a higher perform- 
ance than the MLP network when the input data is multi 
dimensional. In this work, only water discharge was used 
as the input data. Thus, higher performance of the MLP 
network as compared to the RBF network is justifiable, 
especially during the training process. 

3.2. Error Analysis during the Testing Process  

Based on Table 4, both ANNs show similar strength in 
sediment load simulation during the testing process. 
However, application of the MLP network using the 
testing data set resulted in lesser MSE and NMSE, as 
compared to the RBF network. Difference in the r value 
between both networks is negligible.  
 

Table 2. Optimum properties of the ANNs. 

ANN 
Network properties 

MLP RBF 
Number of hidden layers 2 1 
Number of neurons in the first hidden layer 20 20 
Number of neurons in the second hidden 
layer 

10 - 

Momentum rate & step size in the first hidden 
layer 

0.7 & 1.0 0.7 & 1.0

Momentum rate & step size in the second 
hidden layer 

0.7 & 0.1 - 

Momentum rate & step size in the output 
layer 

0.7 & 0.01 0.7 & 0.1

Activation function in the first hidden layer Logistic 
Hyperbolic 

tangent 
Activation function in the second hidden 
layer 

Logistic - 

Activation function in the output layer 
Linear  
logistic 

Bias 

Number of cluster centers in the input layer - 5 
Number of epochs for supervised learning 1200 1000 
Number of epochs for unsupervised learning - 100 
Number of exemplars for training 1795 1795 
Number of exemplars for cross validation 450 450 
Number of exemplars for testing 1058 1058 

 
Table 3. Error analysis during the training process. 

MLP RBF 
Best 

Networks Training
Cross  

Validation 
Training 

Cross  
Validation 

Epoch# 1200 820 999 584 

Minimum 
MSE 

0.001598738 0.001605163 0.006131928 0.006382225

Final 
MSE 

0.001598738 0.001613058 0.006131928 0.006416793
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The MLP network is comparatively more capable of 
tracing fluctuations in daily sediment load than the RBF 
network (Figures 4 and 5). As highlighted in Figures 4 
and 5, the points corresponding to sediment load with an 
observed large magnitude are mostly situated at the bot- 
tom quad of the 1:1 line. Clearly, both ANNs showed 
weak robustness in estimating sediment load with a large 
magnitude, especially for records higher than 4000 ton/ 
day. Such limitation in the application of neural networks 
has also been reported in the works of Hsu et al. (1995) 
[29], Morid et al. (2002) [30] and Talebizadeh et al. 
(2010) [14], commonly attributable to scarcity of large 
observed values in the training data set. In other words, 
inefficiency of the ANN model in estimating large mag- 
nitudes of sediment load can be attributed to different 
non-linear relationships governing the process of sedi- 
ment detachment and final sediment load generated from 
a watershed. For example, the mechanism of sediment 
load generation induced by a low flow event is obviously 
different from the sediment load produced by a storm 
event in which a significant amount of wash load enters 
the watershed drainage network and passes the outlet. 
Therefore, due to different mechanisms, a single ANN 
which may produce satisfactory results for the simulation 
of medium and low loads may not simulate large sediment 
load events with the same accuracy. In this data set, there 
was inadequate data corresponding to high sediment load 
events to train a separate ANN model for simulating these 
high values, as suggested by Cigizoglu and Kisi (2006) 
[31] and confirmed by Talebizadeh et al. (2010) [14]. 

 
(a) MLP 

 
(b) RBF 

Figure 3. MSE versus epoch for (a) MLP and (b) RBF. 
 
Table 4. Performance metrics computed based on the test- 
ing data set. 

Performance MLP RBF 

MSE 274088.998 281938.375 

NMSE 0.420 0.432 
MAE 131.454 130.925 

Min Abs Error 0.069 0.186 
Max Abs Error 6823.613 6838.253 

r 0.812 0.814 

Besides the above reason, in recent decades, the Hulu 
Langat watershed has experienced an extensive rate of 
urban development. Infrastructure constructions such as 
roads, tunnels, and bridges, and landslide occurrences 
can result in large amounts of sediment load for a num- 
ber of years which can affect water quantity and quality. 
Wastewater discharges into water streams from industrial 
or residential areas and water treatment plants are mostly 

 

 

Figure 4. Observed sediment load versus simulated sediment load by the MLP network. 
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Figure 5. Observed sediment load versus simulated sediment load by the RBF network. 
 
unknown in the Hulu Langat watershed. These sources of 
sediment load are not describable only by water dis-
charge and can produce a large amount of uncertainty in 
ANN simulation [32,33]. Therefore, using more input 
data (e.g. rainfall, temperature and reservoir level) would 
assist us in obtaining a higher level of accuracy for sedi-
ment load simulation by ANN. 

4. Conclusion 

The minimum MSE obtained during the training process 
of the RBF network was significantly larger than that in 
the MLP network. Thus, the MLP network produced a 
more fitted output to the cross validation data set than the 
RBF network. Network testing showed that both ANNs 
had similar strength in sediment load simulation. How-
ever, the application of the MLP network using the test-
ing data set resulted in lesser amounts of the MSE and 
NMSE, i.e. 274,089 and 0.42, respectively, as compared 
to the RBF network. In addition, the MLP network was 
more capable in tracing fluctuations in daily sediment 
load than the RBF network. Both ANNs showed a weak 
robustness in estimating large magnitudes of sediment 
load, especially for records higher than 4000 ton/day. 
This was attributable to scarcity of large observed values 
in the training data set and different non-linear relation-
ships governing the process of sediment detachment and 
final sediment load by a high storm event, as compared 
to those by low or medium storm events. Additionally, 
infrastructure constructions, landslide occurrences and 
wastewater discharges in the study area resulted in large 
amounts of sediment load over several years, which af-
fected water quantity and quality. These sources of sedi-
ment load may have contributed to a level of uncertainty 
in ANN simulation. 
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