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Abstract 
Proper understanding of global distribution of infectious diseases is an im-
portant part of disease management and policy making. However, data are 
subject to complexities caused by heterogeneities across host classes and 
space-time epidemic processes. This paper seeks to suggest or propose Baye-
sian spatio-temporal model for modeling and mapping tuberculosis relative 
risks in space and time as well identify risks factors associated with the tuber-
culosis and counties in Kenya with high tuberculosis relative risks. In this pa-
per, we used spatio-temporal Bayesian hierarchical models to study the pat-
tern of tuberculosis relative risks in Kenya. The Markov Chain Monte Carlo 
method via WinBUGS and R packages were used for simulations and estima-
tion of the parameter estimates. The best fitting model is selected using the 
Deviance Information Criterion proposed by Spiegelhalter and colleagues. 
Among the spatio-temporal models used, the Knorr-Held model with 
space-time interaction type III and IV fit the data well but type IV appears 
better than type III. Variation in tuberculosis risk is observed among Kenya 
counties and clustering among counties with high tuberculosis relative risks. 
The prevalence of HIV is identified as the determinant of TB. We found clus-
tering and heterogeneity of TB risk among high rate counties and the overall 
tuberculosis risk is slightly decreasing from 2002-2009. We proposed that the 
Knorr-Held model with interaction type IV should be used to model and map 
Kenyan tuberculosis relative risks. Interaction of TB relative risk in space and 
time increases among rural counties that share boundaries with urban coun-
ties with high tuberculosis risk. This is due to the ability of models to borrow 
strength from neighboring counties, such that nearby counties have similar 
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risk. Although the approaches are less than ideal, we hope that our study pro-
vide a useful stepping stone in the development of spatial and spatio-temporal 
methodology for the statistical analysis of risk from tuberculosis in Kenya. 
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1. Introduction 

Studying the spatio-temporal pattern of infectious diseases is an important 
health problem in biomedical research. This is because infectious diseases ad-
versely affect the health of the human population as well as of domestic and wild 
animals. This calls for the need to employ appropriate approaches to explain the 
spatio-temporal pattern of such diseases. This will enable us to have a proper 
understanding of the sources of infectious diseases as well as how such diseases 
spread nationally or globally. The data used to study the spread of infectious 
diseases are complicated due to heterogeneities that could be of spatial or 
non-spatial in nature [1] [2] [3]. Hence, methods of analysis are required to ac-
count for such complexities in order to produce valid statistical inferences [1] 
[2]. 

Various authors have proposed methods to study the spread of infectious dis-
eases [4] [5] [6] [7] [8]. The spatial and spatio-temporal patterns of a disease can 
be studied using methods that account for the spatial and the spatio-temporal 
patterns. The methods as well, will be able to create relative risk (RR) maps that 
visually display spatial and spatio-temporal variations of disease risk [2] [3]. 
However, disease counts maps have various issues such as the modifiable areal 
unit problem (MAUP) [9]; which is a source of statistical bias that can affect the 
outcome of statistical hypothesis. One special case of MAUP is ecological or 
medical bias where the question of interest is whether inference can be made at 
the individual level from aggregate data [9]. 

There are various approaches to handle the MAUP [9]. For instance, one can 
scale up the data to ensure smoothing or averaging of data and making statistical 
inferences at high aggregate level. Also, one can scale down to enable inferences 
at lower level than that used in the analysis. Multi-scale analysis can also be em-
ployed to handle MAUP [9]. The multi-scale analysis handles spatial units that 
are completely matched when aggregated [10]. Another important issue is that 
differences in populations between regions results to differences in variation of 
regional estimates. We can account for population difference using hierarchical 
Bayesian approaches [3] [9]. 

Application of Bayesian methods in disease modeling and mapping has re-
ceived great attention in biomedical research. For instance, Clayton and col-
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leagues [11] applied the Empirical Bayes (EB) method to obtain smooth relative 
maps of lip cancer. They assumed the multivariate normal for the log relative 
risks and addressed the spatial correlation between neighboring regions by using 
the conditional autoregressive model [12]. However, the EB approach is not a 
fully Bayesian approach, since a quadratic approximation was used for the like-
lihood and this did not take into account the uncertainty in the estimates of the 
hyper-parameters in the specified model. Besag and Molié [12] first proposed 
the full Bayesian approach for disease modeling and mapping. The convolution 
prior model described in Section 3.1.1 was used to model the log relative risk. 
Their study revealed that the model shrunk extreme disease rates towards the 
mean and is also able to detect spatial association that was apparent in the raw 
data and noted that the fully Bayesian model yield more precise parameter esti-
mates than that produced by EB approach. 

Several spatio-temporal models have been developed and applied to count da-
ta. Bernardineli and colleagues [4] approach assumed that the count data follow 
the Poisson distribution where the log of the relative was the focus of modeling. 
Waller and colleagues [5] proposed a spatio-temporal model which consist of 
some components from the [12] approach. This model uses the convolution 
prior and allows each time point to have separate spatial and non-spatial effect. 
They assumed that the risk factors are constant over time and that disease counts 
followed a Poisson distribution. Waller and colleagues [5] model was applied to 
lung cancer deaths in 88 Ohio counties for the year 1968-1988. Each year was 
modeled as a separate time point. Their study revealed that lung cancer deaths 
increase and there is spatial clustering and variation of relative risks over time. 
There was increasing evidence of clustering of relative risks among the high rate 
counties, but with higher rates increasing and lower rates were constant. This 
suggests that there is increasing variability (heterogeneity) in relative risks over 
the study period [13]. Knorr-Held and colleagues [14] proposed a spa-
tio-temporal model which is composed of both the convolution prior on space 
and also a similar prior for temporal trends. Their approach is an extension of 
the [5] model by assuming that the spatial terms were constant over time. This 
formulation allows for exploration of additional varying risk factors within each 
year. This model was applied to the same Ohio lung cancer data, but it was not 
clear that it revealed additional features of the data [13]. 

Iddrisu and Amoako [3] paper focus was on studying the spatial pattern of 
relative risk of tuberculosis in Kenya with main focus on finding suitable spatial 
model for modeling and mapping such relative risks. In this paper, we investi-
gate spatio-temporal pattern of the RR of TB in Kenya and then proposed a best 
fitting Bayesian hierarchical approach for studying the spatio-temporal pattern 
of tuberculosis in Kenya. 

We introduce the data used in this paper in Section 2. We discuss the methods 
used in Section 3. Section 3.1 discusses spatial distribution of diseases with much 
focus on the conditional autoregressive (CAR) model formulation for modeling 
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spatial distribution of diseases [12]. The CAR model allows us to explain clus-
tering of disease risk between neighboring regions/counties/countries. This dis-
cussion is followed by a description of the Besag, York and Mollié (BYM) [12] 
model formulation in Section 3.1.2. The BYM formulation allows us to capture 
both heterogeneity (variability) and clustering of diseases risk simultaneously. 
The discussions on the CAR and the BYM formulation are necessary because 
they form the components of the spatio-temporal models adopted in this paper. 
The methodologies of the spatio-temporal models are discussed in Section 3.2, 
and then methods applied to the Kenya TB data and the results presented in Sec-
tion 4. In Section 5, we give a discussion and concluding remarks in Section 6. 

2. Data Description 

The data used in this paper are obtained from Kenya DHS. The map of Kenya 
showing the counties is displayed in Figure 1. Kenya is located in the Eastern 
part of Africa and is divided into 8 provinces and 47 administrative counties. 
Kenya share borders with Tanzania at the south, Uganda at the West, Ethopia at 
the North, Somalia at the North-East and Southern Sudan at the North-West. 
The data contains records of Kenya’s population size, tuberculosis cases, and 
some potential determinants of tuberculosis for each period from 2002-2009 and 
for each 67 districts. To study the risk of TB infection in each county, the data 
from the 67 districts were aggregated to provide county level summaries. Some 
of the determinants of TB that were recorded are: HIV prevalence, poverty pre-
valence, illiteracy, population less than 5 km to health facility, firewood usage, 
altitude, and mean house hold size. Summaries of all variables that constitute the 
data are presented in Table 1. The mean and the median estimates of TB cases 
and illiteracy revealed that most of their values are concentrated at the high 
scale. Following the same analogy, the HIV prevalence, proportion of poor 
people in the population and the mean house hold size variables have almost 
 
Table 1. Summary statistics of explanatory variables. 

Variables 
No. of 

counties 
Mean SD Median Min Max 95% CI 

TB Cases 47 17830 22348.07 12531 1348 149600 (7200, 20560) 

HIV  
Prevalence (%) 

47 4.289 2.797 3.800 1.000 16.430 (2.950, 4.700) 

Proportion of 
poor 

47 0.5196 0.184 0.5013 0.1157 0.9434 (0.3778, 0.6369) 

Illiteracy (%) 47 24.47 19.958 16.00 2.80 77.30 (12.10, 29.80) 

House hold 
5km away from 

Hospital (%) 
47 77.76 16.399 80.80 19.20 99.00 (72.05, 86.72) 

Firewood (%) 47 78.52 20.175 84.60 1.80 96.70 (74.95, 90.65) 

Altitude (m) 47 1361 602.2214 1432 151 2274 (1138, 1813) 

Mean House 
Hold Size 

47 5.383 0.799 5.250 3.800 6.900 (4.775, 6.050) 
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Figure 1. Map of Kenya showing counties and boarders. 
 
equal values at the low and high scale. These variables are almost symmetric or 
normally distributed. Finally, the variables, percentage of people who are at 5km 
distance away from hospital, and the percentage of those who use firewood have 
most of their data values concentrated at the low scale. 

Table 2 presents summaries of Kenya’s population size for 2002-2009. The 
mean county level population size stood out to be ( )685586 407424,869752  in 
2002 increasing to ( )838793 506907,1031868  in 2009. The mean and the me-
dian showed that most of the data values for 2002-2009 are concentrated at the 
high scale. Table 3 presents summaries of TB cases in Kenya for 2002-2009. The 
mean county level TB cases is estimated at ( )1747 679.5,2006.5  in 2002 and 
increased to 2006 at an estimated value of ( )2452 1044,2844 . TB cases de-
creased from 2007-2008 with corresponding values of ( )2416 966.5,2786.5  and 
2291(850.5,2623.0)  respectively. TB cases slightly increased in 2009, estimated 
at ( )2346 896,2,724 . 

3. Methods 

In this section we discuss the Bayesian spatial and spatio-temporal models used  

https://doi.org/10.4236/jtr.2018.62017


A.-K. Iddrisu et al. 
 

 

DOI: 10.4236/jtr.2018.62017 180 Journal of Tuberculosis Research 
 

Table 2. County Level Population Size Summaries for 2002-2009. 

Year N Mean SD Median Min Max 95% CI 

2002 47 685,586 435,819.5 604,298 83,985 3,034,397 (407424, 869752) 

2003 47 705,776 450,910.0 625,506 86,443 2,600,859 (420676, 890554) 

2004 47 727,220 466,775.6 647,886 89,058 2,710,706 (434932, 912918) 

2005 47 747,631 481,824 669,403 91,549 2,815,838 (449244, 934009) 

2006 47 768,909 497,822 691,637 94,150 2,924,309 (462472, 956223) 

2007 47 791,147 514,520 714,590 96,851 3,034,397 (475354, 979870) 

2008 47 814,422 531,548 738,321 99,662 3,146,303 (490594, 1005057) 

2009 47 838,793 548,905 762,870 102,593 3,260,124 (506907, 1031868) 

 
Table 3. Summarises Statistics of County Level TB Cases From 2002-2009. 

Year N Mean SD Median Min Max 95% CI 

2002 47 1747 2409.296 1,053 111.0 15979.0 (679.5, 2006.5) 

2003 47 2028 2761.937 1,355 154.0 18360.0 (746.5, 2386.0) 

2004 47 2249 2954.713 1,497 138.0 19871.0 (928.5, 2620.0) 

2005 47 2302 2913.039 1,549 124.0 19487.0 (938.5, 2737.5) 

2006 47 2452 2934.737 1,757 172 19,472 (1044, 2844) 

2007 47 2416 2836.123 1,988 177.0 18901.0 (966.5, 2786.5) 

2008 47 2291 2790.387 1,676 223.0 18589.0 (850.5, 2623.0) 

2009 47 2346 2843.675 1,700 249 18,984 (896, 2724) 

 
in disease modeling and mapping. 

3.1. Bayesian Hierarchical Spatial Model for Disease Mapping 

Spatial data are associated with a given location on the surface of the earth where 
such models allow for borrowing of strength between neighboring locations. In 
this way, neighboring locations/countries/regions/counties will have similar 
risks whiles distant counties are expected to show variation in risks. Waldo Tob-
ler’s first law of spatial analysis states that “everything is related to everything 
else but near-by things are more related than distant things’’ [15]. 

3.1.1. Conditional Autoregressive (CAR) Model 
The conditional autoregressive (CAR) models were introduced by Besag and 
Molié [12] and they are used to identify and detect clustering of diseases risk. In 
these models, risks of disease at any given area are influenced by the risk in the 
neighboring areas. The CAR model is often referred to as the structured or the 
correlated heterogeneity (CH) model. This is because estimation of risk in any 
given area is to some extend affected by the diseases risk at neighboring areas 
[16]. In the CAR model, the distances or boundaries between the re-
gions/counties are often used in determining the neighborhood properties [17]. 
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Application of the CAR model can be found in [18] [19] [20]. Let  
{ }1,2, ,S n= 

 represents the area to be studied. Let { }:iN j S i j= ∈ ∈  denote 
the set of all regions. Let ,iv i S∈  be a random variable. We define the corres-
ponding random field v as the vector ( )1 2, , , nv v v=v 

. In the normal CAR 
model, it is often assumed that each observation of the outcome variable iv  has 
a conditional distribution defined as 

2| ~ , .i j i ij j i
i j

v v N v τ≠
≠

 
Φ 

 
∑  

These are full conditionals where ijΦ  is the weight of each observation on 
the mean of iv  and also denotes the spatial dependence parameter. The ijΦ  is 
non zero only if j S∈ . Conventionally, we set 0ijΦ =  since we do not want 
to regress any observation on itself. Hence no region is a neighbor of itself. The 

jv  denotes a vector of all observation except iv . Note that iv  depends only on 
a set neighbours jv  only if location j is a neighborhood set iN  of iv . The 2

iτ  
is a potential unique variance for iv . For instance, if state i has M neighbours  

and 1
ij M

Φ =  for every state that is a neighbour, and 0ijΦ =  otherwise, then  

the conditional expectation of a state’s observation is the mean of all neighbours 
observations [20]. 

The CAR model is defined by mean and covariance function [21]. Assuming 
that each conditional distribution is Gaussian, we will need the mean and the va-
riance-covariance to define the CAR model. The mean and variance-covariance 
are respectively defined as 

|
i

i j i i ij j i
j N

E v v vµ µ≠
∈

   = + Φ −   ∑  

and 

( ) 2|i j ivar v v τ=  

Detailed information on the conditional probability density function of a CAR 
random variable iv  can be found in [3] [12]. Thus, a conditional autoregressive 
model v has a probability density function defined as 

( ) ( ) 2| ~ , ,
i

i j i i j j iij
j N

v v N v i Sµ ρ µ τ≠
∈

 
+ Φ − ∈ 

 
∑  

and the joint probability density is 

( )1~ , .DN µ −v B Σ                        (1) 

The necessary and sufficient condition for (1) to be a valid joint probability 
density function is that its covariance matrix should be symmetric and positive 
definite (eigenvalues 0, , ,i i nλ >  ) [20]. The iv  is a Gaussian random variable 
with DΣ  as a symmetric matrix (See [3] [18]). 

The 2
vτ  controls the overall variability of iv  and ρ  describes the overall 

effect of spatial dependence. The value of ρ  is should be chosen carefully [20].  
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Choose ρ  such that 1
vD

−Σ  is non singular and preferably with 
1

1 1,
n

ρ
λ λ

 
∈ 
 

.  

Detailed description of how to choose ρ  values and parameter estimation in 
the CAR model can be found in [3] [20]. Application of the CAR model to the 
Kenya TB data can be found in [3]. 

3.1.2. The Besag, York and Mollié (BYM) Model 
The BYM is also a spatial model for risk smoothing which have appeared in lite-
rature and has received much attention [12]. The BMY model is composed of 
the CAR model component iv  discussed in Section 3.1.1 and the unstructured 
heterogeneity (UH) component iu  with normal distribution [3] [12]. The 
component iu  the prior distribution for the area-specific random effect. The 
BYM model was introduced by [11] and latter developed by [12]. The BYM or 
convolution model is defines as i i iu vη µ= + +  and the data iy  follow the 
Poison distribution as ( )( )~ expi i iy Poisson E η , where ( )expi i iEµ η=  is the 
mean of the Poisson distribution. The linear link function i i iu vη ′= + +X β . 
The log relative risk ( )log i iϑ η= . Therefore, the relative risk for the i area is de-
fined by ( )expi i iu vϑ ′= + +X β . The log log-link function is defined as 

( ) ( ) ( )log log exp ,i i i iE u vµ ′= + + +X β  

where , Eβ  and ϑ  are vectors of the covariate, the associated parameters, the 
expected number of cases, and the relative risks of TB prevalence respectively. 
The iu  is the county level random effect capturing the residual log RR of dis-
ease in county i. The iu  (UH) is sometime thought of as a latent variable which 
captures the effect of unknown or unmeasured area level covariates and iv  has 
a CAR model structure. Detailed information on formulation of the BYM model, 
parameter estimation and application to the Kenya TB data can be found in [3] 
[12]. We now turn our attention to the spatio-temporal models, the focus of this 
paper. 

3.2. Bayesian Hierarchical Spatio-Temporal Models Disease  
Mapping 

Many disease mapping models are restricted to identification of spatial hetero-
geneity and clustering of diseases risk which are in fact constrained to a single 
time period. However, most data in public health are often in the form of time 
window for many years. Therefore, there is the need to consider models which 
account for spatial and temporal pattern of diseases risks. Several methods have 
been proposed to account for spatial and temporal pattern of diseases risks [4] 
[5] [12] [14]. 

We now present the structure of data in space and time. Consider the case 
where a given region of interest is divided into N areas (regions, districts, coun-
ties or municipalities) indexed by 1,2, ,i n=  . Let the temporal dimension be 
indexed by 1,2, ,t T=  , representing each period of time under study. Let itn  
be the number of persons-times at risk in region i at period t and ity  be the 
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corresponding observed cases which are counts TB2. The observed data ity  
depends on itN , the number of people at risk in region i and period t in the 
study population observed. Let s

itN  be the number of people at risk in the 
standard population, s

ity  be the observed TB cases in the standard population 
and s

itC  be the crude rate of TB cases in the standard population. Therefore, the  

crude rate for region i and period t, s
itC  is defined by 

s
s it
it s

it

yC
N

= . It follows  

that the number of TB cases expected in region i and period t, itE  is defined by  
s

s it
it it it its

it

yE C N N
N

= = . Therefore, the overall crude rate of TB cases is defined by 

sn T
it
s

i t it

y
N

= ∑∑C  and the overall number of expected TB cases is defined by 

sN T N T
s it
it it its

i t i t it

yC N N
N

= =∑∑ ∑∑E . We assumed that ity  follows the Poisson  

distribution with expectation ( )it it it itE y Eµ ϑ= = , where itϑ  denotes the dis-
ease risk in region i, at period t. The distribution of ity  is  

( )( )~ expit it ity Poisson E η , where it i t it itZ A ZA uη µ= + + + +  is a linear pre-
dictor, µ  denotes the grand mean, iZ  the main effect of region i, tA  the 
temporal trend effect in period t, itZA  is interaction of risk in space and time 
and itu  is the unstructured random effect. The contribution of a given term 
may serve to increase or decrease the risk of disease. The intercept or µ  gives a 
background amount of risk shared by all regions and periods. Most often, an 
unstructured extra variability term itu  is included in the model so as to capture 
the overall effect of the other unaccounted and unobserved effects. The random 
effect itu  is defined as 

( ) { }2 2| ~ 0, , , ,
iid

e u uu N e i t itτ τ ∈  

and tA  is often modeled as a structured random effect. 
In the following sections, we describe the spatio-temporal models used and 

parameter estimation. Markov Chain Monte Carlo via Gibbs sampling is used to 
obtain parameter estimates under each model [16]. 

3.2.1. Spatio-Temporal Model I 
This spatio-temporal model is based on the mode proposed by Bernardineli and 
colleagues [4]. This is a kind of parametric model in which the risk in a given re-
gion is considered as a linear or quadratic function of time. This model takes in-
to account spatio-temporal interaction where temporal trend in risk may differ 
for spatial locations and may even have a spatial structure [16]. All the temporal 
trends are assumed to be linear and information is shared in both space and time 
[16]. This approach is used to investigate statistical linear rise in the reported TB 
prevalence in Kenya from 2002 to 2009. 

Assume that the TB counts ( )( )~ expit it ity Poisson E η . According to Bernar-
dineli and colleagues [4], the linear predictor itη  is defined by  
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( )it i i i tu vη µ ϖ δ= + + + + ×ℑ , where i iu v+  follows the BYM specifications 
[12] (See Section 3.1.2) and tϖℑ  linear trend in time tℑ , iδ  is the interac-
tion random effect between region and time and ϖ  is the overall linear time 
trend. The log relative risk for area i and period t is ( )log it itϑ η= . Therefore the 
relative risk of disease is given by 

( ) ( )( )exp exp .it it i i i tu vϑ η µ ϖ δ= = + + + + ×ℑ  

The log of the Poisson mean 

( )( )expit it i i i tE u vµ µ ϖ δ= + + + + ×ℑ  

is therefore given by 

( ) ( ) ( )log log .it it i i i tE u vµ µ ϖ δ= + + + + + ×ℑ  

3.2.2. Parameter Estimation 
Given that ( )( )~ expit it ity Poisson E η  with likelihood function denoted by 

( )2 2 2Pr , , | , , , , , , .u v δϖ τ τ τy E u vϑ δ                      (2) 

The prior distribution ( )P u  of u  follows a normal distribution defined as 

( )
2 2

2
1

1 1Pr exp
2π 2

nn n
i

iu u

u
τ τ=

    = −    
     

∑u  

and prior distribution ( )P v  of v  has CAR structure (Section 3.1.1). Also, iδ  
is modeled as a CAR structure with prior distribution denoted by ( )P δ  and 

( )~ 0,0.005Nϖ  with prior distribution ( )P ϖ . The overall mean is defined as 
( )~ 0,0.01Nµ . Therefore, the posterior distribution is defined as 

( )
( ) ( ) ( ) ( ) ( )

2 2 2

2 2 2

Pr , , , , , , | , ,

Pr , , | , , , , , , Pr Pr .

u v

u v P P

δ

δ

ϖ τ τ τ

ϖ τ τ τ ϖ∝ ×

u v y E

y E u v u v

δ ϑ

ϑ δ δ
   (3) 

One limitation of the model is the assumption of a linear time trend in each 
region. This limitation is resolve by [8] model (discuss in Section 3.2.5). Para-
meters estimation from Equation (3) was carried out using MCMC via Gibbs 
sampling. 

3.2.3. Spatio-Temporal Model II 
The spatio-temporal Approach used in this section was developed by Waller and 
colleagues [21]. In this model, spatial effects are observed as a set of spatial mod-
els, one for each period of time, with almost no relation between them, except 
possibly for some restriction in their precision parameters [16]. Under this mod-
el, the hierarchical specification is applied to each time point separately [12] 
[16]. This model does not have a single spatial main effect and does allow spatial 
pattern at each time point to be completely different [2] [16]. 

Assume that ( )( )~ expit it ity Poisson E η , where ( ) ( )t t
it i iu vη = +  and  

( )expit it itEµ η=  is the Poisson mean. The log relative risk for area i and period 
t is ( )log it itϑ η= . Therefore relative risk of disease is given by 
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( ) ( ) ( )( )exp exp ,t t
it it i iu vϑ η= = +                   (4) 

where for each period t, the model term ( ) ( )t t
i iu v+  follows the BYM specifica-

tion (See Section 3.1.2) with different precision parameter ( )t
uτ  and ( )t

vτ  for 
each period of time. The log of the Poisson mean ( )exp t t

it it i iE u vµ = +  is there-
fore given by 

( ) ( )log log t t
it it i iE u vµ = + +                   (5) 

The ( )t
iu  and ( )t

iv  are respectively uncorrelated and correlated heterogenei-
ty terms which may vary with time. This approach results in spatio-temporal 
model where the spatial dimension is nested within time; thus in effect a spatial 
model is fitted for each period. 

3.2.4. Parameter Estimation 
Given that ( )( )~ expit it ity Poisson E η  with likelihood function  

( )2 2Pr , , | , , ,u vτ τy E u vϑ , the prior distribution ( )Pr u  of u  follows a normal 
distribution and prior distribution ( )Pr v  of v  has CAR structure (See Sec-
tion 3.1.1). Therefore, the posterior distribution is defined as 

( ) ( ) ( ) ( )2 2 2 2Pr , , , | , , Pr , , | , , , Pr Pr .u v u vτ τ τ τ∝u v y E y E u v u vϑ ϑ        (6) 

Estimation of parameters from Equation (6) was achieved through Bayesian 
MCMC via Gibbs sampling. 

3.2.5. Spatio-Temporal Model III 
Knorr-Held and Rasser [8] proposed this approach which is a type of smooth 
temporal evolution model where the evolution of the estimated risk in each re-
gion is a smooth function of time. Knorr-Held and Rasser [8] proposed this 
model to overcome the limitation suffered by the Bernardineli and colleagues [4] 
model. Assume that ( )( )~ expit it ity Poisson E η . Knorr-Held and Rasser defined 
the linear predictor ijη  as 

,it i i t itu vη µ ψ= + + + ℑ +  

where the term i iu v+  follows the BYM specification. The parameter tℑ  
represents an unstructured or structured temporal effect and the parameter itψ  
is the space-time interaction. The log relative risk for area i and period t is 

( )log it itϑ η= . Therefore the relative risk of disease is given by 

( )exp .it i i t itu vϑ µ ψ= + + + ℑ +  

The log of the Poisson mean 

( )expit it i i t itE u vµ µ ψ= + + + ℑ +  

is therefore given by 

( ) ( )log log .it it i i t itE u vµ µ ψ= + + + + ℑ +  

It should be noted that ,u v  and ℑ  are the main effects whiles ψ  is the 
space-time interaction term. This model is used to study smooth temporal evo-
lution of the estimated relative risk of TB prevalence in Kenya in each region at 
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given point in time. 

3.2.6. Parameter Estimation 
Given that ( )( )~ expit it ity Poisson E η  with likelihood function 

( )2 2 2 2Pr , , | , , , , , , , ,u v ψτ τ τ τℑℑy E u vϑ ψ  

the prior distribution ( )Pr u  of u  has a normal distribution and prior distri-
bution ( )Pr v  of v  has CAR structure (See chapter 3.1.1). According to [8], if 
the main temporal random effect tℑ  assumes unstructured random effect, 
then its prior distribution would be ( )2 2| ~ 0,t Nτ τℑ ℑℑ  and if it assumes struc-
tured random effect, then its prior density follows a first order random walk de-
fined by 

( ) ( )
2

22
1

2
Pr | exp .

2

T

t t
t

ττ
−
ℑ

ℑ −
=

 
ℑ ∝ − ℑ − ℑ 

 
∑               (7) 

According to [8], prior specification for the interaction term ψ  depends on 
the spatial and temporal main effect which are assumed to interact. Different 
types interactions itψ  were classified by [22] with prior distribution denoted by 

( )Pr ψ  and precision variance denoted by 2
ψτ . Therefore, the posterior distri-

bution for the relative risk ϑ  is defined by 

( )
( ) ( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

Pr , , , , , , , | , ,

Pr , , | , , , , , , Pr Pr .

u v

u v P P

ψ

ψ

τ τ τ τ

τ τ τ τ

ℑ

ℑ

ℑ

∝ ℑ × ℑ

u v y E

y E u v u v

ψ ϑ

ϑ ψ ψ
 

The interaction type depends on which of the two possible type of temporal 
effects (unstructured or structured) interacts with the two main effects ( iu  and 

iv ). Knorr-Held and Rasser defined four interaction types. Each of the four type 
of interactions has different prior interrelationships involving the interaction 
term itψ  TB1. 

1) Interaction type I: If the unstructured main effects ( tℑ  and iu ) are ex-
pected to interact, then the distribution of the interaction parameter itψ  is de-
fined as 

( ) ( )2

1 1
Pr | exp .

2

n T

it
i t

ψ
ψ

τ
τ ψ

= =

 
∝ − 

 
∑∑ψ  

This may be considered as an independent unobserved covariate for each 
combination of region and period ( ),i t , thus without any structure TB1,TB2. 
On the other hand, if spatial and temporal main effects are present in the model, 
then the interaction effect only denote independence in the deviations from 
them. The main effects can cause contribution to risk in neighboring regions or 
in consecutive period of time to be highly correlated. This is a global space-time 
heterogeneity effect and it is often modeled as ( )2~ 0,it N ψψ τ . This interaction 
type has independent prior with no structure in space-time interaction TB1, 
TB2. 

2) Interaction type II: This interaction effect is distributed as a random walk 
independently of other counties if we modelled tℑ  as a random walk [14]. The 

https://doi.org/10.4236/jtr.2018.62017


A.-K. Iddrisu et al. 
 

 

DOI: 10.4236/jtr.2018.62017 187 Journal of Tuberculosis Research 
 

prior distribution for this interaction is defined by [8] [10] [14] 

( )2
, 1

1 2
| exp

2

n T

it i t
i t

ψ
ψ

τ
ψ τ ψ ψ −

= =

 
  ∝ − −  

 
∑∑  

This type of interactions has no structure in space TB4. This implies that each 
region has a specific evolution structure that is independent of that in the 
neighbouring region TB2, TB1. 

3) Interaction type III: If we assumed that the unstructured temporal main 
effect ( tℑ ) and the spatially correlated or structured main effect ( iv ) interact, 
then the interaction effect parameter ( )1 , , , 1, ,t t nT t Tψ ψ ψ= = 

 follows an 
independent Intrinsic autoregressive distribution defined as [8] [10] [14] 

( )2

1 ~
| exp

2

T

it lt
t i

ψ
ψ

τ
ψ τ ψ δ

=

 
  ∝ − −  

 
∑∑



 

This interaction is assumed to have a spatial structure for each period, inde-
pendent of adjacent periods (its neighbors in time). This interaction type is ana-
logous to the clustering effect, which is often modeled as a CAR distribution 
(section 3.1.1) for each period [1] [4]. Here we implicitly assumed that each spe-
cific region may have a slight deviation from the global trend, but that this devi-
ation is likely to be identical to that in the neighboring regions, while at the same 
time, independent of that in that in the previous period of time [1] [8]. 

4) Interaction type IV: Type IV is completely dependent on space and time 
theoretically [14]. Hence the effect can no longer be factorized into independent 
blocks if tℑ  is modeled as a random walk allowing interaction with the struc-
tured main effect ( iv ). [8] defined type IV interaction as 

( )2
, 1 , 1

2 ~
| exp

2

T

it lt i t l t
t i

ψ
ψ

τ
ψ τ ψ ψ ψ ψ− −

=

 
  ∝ − − − +  

 
∑∑



 

[8] stated that, type IV is the most interesting type of interaction that occurs 
when deviation from the global trends are highly correlated with their neighbors, 
both in space and time. Here, hidden factors whose effects exceed the limits of 
one or more regions and also persistent for one or more period of time can be 
modeled. This is also an efficient way of obtaining information from data, par-
ticularly in the case of rare diseases or less populated regions, since the risk esti-
mation for the region-period is not performed on the basis of only locally ob-
served data but also on that in the neighboring regions and periods TB2. 

The hyper-prior distribution for 2τℑ  and 2
ψτ  are modeled as gamma distri-

bution. Estimation of all parameters was achieved with Bayesian MCMC via 
Gibbs sampling. 

4. Results 
Best fitting spatio-temporal model to Kenya TB data was selected from the above 
candidate models based on their respective model’s DICs and pDs presented in 
Table 4. Note that these values are subject to Monte Carlo error, which is diffi-
cult to quantify. We have therefore chosen a very long run of which convergence 
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was reached at 1,200,200 after a burn-in period of 100,000 and thinning of every 
30th element of the chain for each model shown in Figure 2. 

From Table 4, D  is the mean of the posterior deviance, pD is the effective 
number of parameters and DIC = D  + pD proposed by [22]. Among the spa-
tio-temporal models presented in Table 4, the model with the lowest DIC 
(4194.30) and lowest pD (375.306) is the Knorr-Held and Rasser [8] model. We 
therefore recommend model (7) as the best fitting space-time model to Kenya 
TB data for 2002-2009. Table 5 summaries our effort to identify appropriate in-
teraction type. The Table 5 presents deviance summary of the interaction types 
after MC convergence at 1,200,000 and a burn-in period of 100,000 for each 
model. The models fit with interaction type III and IV fit the data well but type 
IV seems better than type III since it yields the lowest pD (362.494) and DIC 
(419.410). We now consider analysis and interpretation of results under the 
model with interaction type IV since it gives best fit of the Kenya TB data. In 
Table 6, the overall mean relative risk µ  is insignificant and the precision va-
riance parameters 2

vτ  and 2
uτ  indicates significance of clustering and hetero-

geneity of relative over the studied period respectively. The precision of the va-
riance parameter indicates significance of TB relative risk interaction in 
space-time. 

Figure 3 displays the distribution of the posterior relative risk for 2002-2009. 
Generally, the pattern does not change much over the study period. However, 
some counties have interesting time trends. For instance, in Figure 3, the two  

 
Table 4. Spatio-Temporal models Deviance Summaries. 

Model indicators Bernardinelli et al., 1995 Waller et al.,1997 Knorr-Held et al., 20000 

D  135492 4039.320 3818.720 

pD 487.536 594.296 375.306 

DIC 135979 4633.62 4194.03 

 
Table 5. Interaction Types Deviance Summaries. 

Model indicators Type I Type II Type III Type IV 

D  3820.060 3818.600 3827.920 3826.910 

pD 376.637 374.377 363.510 362.494 

DIC 4196.700 4192.970 4191.430 4189.410 

 
Table 6. Interaction Type IV Posterior Statistics. 

Model indicators estimates 95% Credible Interval 

µ  -0.22 (-0.54,0.70) 
2
vτ  10.8 (1.39,50.10) 
2
uτ  9.17 (3.57,28.60) 
2
ψτ  11.3 (9.55,13.20) 
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Figure 2. Convergence diagnostics of Markov Chain Carlo. 
 

adjacent counties (Nairobi and Kiambu) in the central part of Kenya show op-
posite trend in disease risk. This may be due to the fact that type IV interaction 
borrows strength from neighboring counties, hence, the decreasing trend in 
Nairobi county causes the estimated increase in Kiambu which is less populated 
than Nairobi, to be less pronounced. Again, high risk of TB prevalence is ob-
served in the North, West, North-West and the Central counties and low risk in 
the South-East counties for 2002-2009. 

Figure 4 displays decreasing temporal trend of posterior relative parameters 
for some highly urbanized counties such as Mombasa and Nairobi. In contrast, 
pronounced increasing trends were observed for most rural counties such as 
Nandi and Kiambu. More information on temporal trend behavior of posterior 
relative risk for the rest of the counties can be found in Appendix. The left panel 
of the Figure 5 displays a slight increasing temporal trend from 200-2004, slight 
decrease from 2004-2005, increase in 2006, a slight decrease in 2007-2008 and 
slight increase in 2009. The temporal trend effect does not change much for 
2002-2009. The right panel of the Figure 5 displays area relative risk of the type 
IV interaction. Again high risk of TB is observed in the North, West, 
North-West and Central counties of Kenya and low risk in the South-East coun-
ties. Interaction type IV was identified by [23] as the best fitting spatio-temporal 
model for modeling and mapping salmonellosis counts in cattle in Switzerland, 
1991-2008. Knorr-Held fitted the four different types of interaction to the 21  
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Figure 3. Type IV interaction posterior mean of the relative risk maps for 2002-2009. 

 
years Ohio respiratory cancer dataset and found that interaction type II was ap-
propriate; offering lowest deviance [16]. Depending on the data you are dealing 
with, any of the four interaction types can yield best fit for the data [8]. Spa-
tio-temporal Parametrization of log relative risk can take a variety of forms and 
it is not clear yet which form is most appropriate [16]. 

5. Discussion 

This paper explores application of spatio-temporal models used in disease mod-
eling and mapping of TB relative risk in Kenya. These models were fitted to 
Kenya’s TB prevalence data from 2002-2009. Markov Chain Monte Carlo via 
Gibbs sampling was used for simulation of parameters from posterior distribu-
tions. Rubin and Gelman convergence diagnostics test was used to confirm 
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Figure 4. Type IV interaction posterior mean of the relative risk for 2002-2009. 
 

 
Figure 5. Type IV temporal trend and area posterior mean relative risk. 
 
convergence of the Markov Chain. Thinning the Markov Chain and the 
over-relax algorithm though slow the speed of the MCMC but significantly re-
duces autocorrelation and number of iterations. Long-run MCMC iterations and 
high thinning sample size k is require for spatio-temporal models used in fitting 
Kenya’s TB data. The DIC of each model were compared and best model se-
lected from the set of candidate models used in fitting Kenya’s TB prevalence 
data. Among the spatio-temporal models considered, the model proposed by 
Knorr-Held and Leaonhard [8] with space-time interaction type III and IV fit 
the data well but type IV appears better than type III. The variation in TB risk is 
observed among Kenya counties and clustering among counties with high TB 
relative risk (RR). The prevalence of HIV is identified as the dominant determi-
nant of TB. We found clustering and heterogeneity of risk among high rate 
counties and the overall TB risk is slightly decreasing from 2002-2009. Interac-
tion of TB relative risk in space and time is found to be increasing among rural 
counties that share boundaries with urban counties with high TB risk. This is as 
a result of the ability of models to borrow strength from neighboring counties, 
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such that near by counties have similar risk. 

6. Conclusions 

We recommend the Knorr-Held and colleagues model [8] with interaction type 
IV structure for modeling and mapping Kenya TB relative risk. Generally clus-
tering of risks and elevated risks is observed in the North, West, North-West and 
the central counties of Kenya and low clustering and elevated risk in the 
South-West counties. We have discovered an interesting association between 
temporal trends of interaction parameters and urbanization in Kenya, which 
might set a framework for further epidemiological research. Modeling of risk in 
space and time is quite a challenging task. Although these approaches are less 
than ideal, we hope that our formulations provide a useful stepping stone into 
the development of spatio-temporal methodology for modeling and mapping 
Kenya’s TB prevalence data. 

We are satisfied that the models selected in this paper are from an appropriate 
class that led to the analysis of the Kenya’s TB data for 2002-2009. Further re-
search is required for a standard or acceptable distribution type for space-time 
interaction ijψ  to be identified since comparing posterior deviance from inte-
raction type that assumed jt  should be modeled as structured could lead to 
one or more deficiencies to a given interaction type. 
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Appendix: Supplementary Materials 

 
Figure S1. Interaction type IV posterior mean relative risk temporal trend by counties over 
the study period 2002-2009.  

 

 
Figure S2. Interaction type IV posterior mean relative risk temporal trend by counties 
over the study period 2002-2009. 
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Figure S3. Interaction type IV temporal trend of TB prevalence by counties over the study period 2002-2009.  
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Figure 9. Interaction type IV temporal trend of TB prevalence by counties over the study period 2002-2009. 
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