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ABSTRACT 

We present an online tool for calculating the capacitance between two conductors represented as simply-connected po-
lygonal geometries in 2D with Dirichlet boundaries and homogeneous dielectric. Our tool can be used to model the 
so-called 2.5D geometries, where the 3rd dimension can be extruded out of plane. Micro-electro-mechanical systems 
(MEMS) with significant facing surfaces may be approximated with 2.5D geometry. Our tool compares favorably in ac- 
curacy and speed to the finite element method (FEM). We achieve modeling accuracy by treating the corners exactly 
with a Schwarz-Christoffel mapping. And we achieve fast results by not needing to discretize boundaries and subdo-
mains. As a test case, we model a MEMS torsional actuator. Our tool computes capacitance about 1000 times faster 
than FEM with 4.7% relative error. 
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1. Introduction 

MEMS technology has been rapidly developed and ex-
panded in the past 30 years in various industries such as 
automobile, consumer electronic, health, and telecom-
munication. In 2011, MEMS market reached $12B [1], 
with MEMS capacitive sensors comprising significant 
portion of the market. For example, capacitive MEMS 
are the enabling technology in automobile airbags, ac-
celerometers for cell phones and video game controllers, 
affordable inertial navigation, etc. Capacitive sensors 
offer lower noise performance and lower power con-
sumption. They are easy to fabricate, do not require un-
common materials, and do not consume DC power [2]. 

Quick and accurate capacitance modeling and simula-
tion of deformable structures can be beneficial for the 
following reasons. Faster simulation results enable faster 
transient analyses or faster parameterized design space 
explorations. More accurate modeling enables more ac-
curate determination of surface forces due to fringing 
fields, of dielectric breakdown due to high charge density, 
gap pull-in instability, comb asymmetry instability, of 
charge storage for dynamic capacitive circuit element 
analysis, of capacitance signal to noise ratio, coarse sur-
face profiles, and of parasitic capacitance analysis. 

Some popular methods used for computing the ca-
pacitance in MEMS include parallel-plate approximation, 
conformal mapping, and distributed element methods. 
Distributed element methods include integral equation 
solvers and differential equation solvers. Examples of in- 
tegral equation solvers include the method of moments or 
the boundary element method (BEM), and the fast mul-
tipole method (FMM). An example of differential equa-
tion solvers is the FEM. 

Parallel-plate approximation [3] applies to configura-
tions where there is significant electrode overlap within 
close proximity as to approximate a portion of a parallel 
plate. Because the expression for the parallel plate ap-
proximation is analytical, computation is fast. However, 
the capacitance determined by the parallel plate approxi- 
mation is usually lower than the actual capacitance be-
cause the method ignores high charge density at corners 
and parasitic capacitance. 

Distributed element methods are often used when the 
MEMS geometry cannot be represented as a portion of a 
parallel plate. In BEM, surfaces boundaries are discre-
tized into elements. BEM is the general method of choice 
when the dielectric is homogeneous [4]. BEM tools such 
as FastCAP [5] and CENEMS [6] find the surface charge 
density in 3D and 2.5D, respectively, given surface volt-
ages. The notion of 2.5D applies to symmetric 2D ge-*Corresponding author. 

Copyright © 2012 SciRes.                                                                                  JST 



F. Y. LI, J. V. CLARK 156 

ometries that can be rotated 360 degrees to represent 3D, 
or 2D geometries that can be extruded orthogonally out 
of plane into an approximate 3D configuration. Prescrib- 
ing a voltage on a geometric surface is a Dirichlet bound- 
ary condition. The capacitance is found by integrating the 
surface charge density and dividing by the voltage dif- 
ference. For inhomogeneous dielectric layers, BEM can 
be used while the homogeneous dielectric Green’s func- 
tion is replaced by layered dielectric medium Green’s 
function. In FEM, the boundaries and subdomains are 
discretized into elements. FEM is useful for modeling 
inhomogeneous dielectrics or analyzing the potential 
field or the electric field. FEM is used in commercial 
tools such as COMSOL™, CoventorWare™, and In-
telliSuite™. In general, distributed element methods re-
quire convergence analysis, where the results of succes-
sive simulations with mesh refinement of the same scale 
are compared until a desired tolerance level is achieved. 
Distributed element methods are usually computationally 
intensive, requiring a significant amount of computer 
memory and time. 

Conformal mapping methods are useful in MEMS 
when the configuration can be approximated as 2.5D by 
either rotating about an axis or extruding orthogonally 
out of plane. Conformal mapping is based on a branch of 
mathematics called complex analysis, which conformally 
maps the field and boundary of simply-connected ge- 
ometries from one configuration to another. When con- 
formal mapping is used for modeling capacitance, it is 
usually done by mapping an arbitrary geometry configu- 
ration that is difficult to solve to a configuration that is 
easy to solve. In particular, such arbitrary geometries are 
transformed to truly infinite parallel plate configuration, 
which is accurate, unlike the partial parallel-plate ap- 
proximation mentioned above. Although such geometric 
transformations can be quite extreme, the capacitance is 
invariant during one or more conformal mappings [7]. If 
the conformal mapping is done through the upper-half 
complex plane, then it is called Schwarz-Christoffel map- 
ping (SCM). 

Examples of SCM used in MEMS are as follows. To 
reduce computational cost, Sumant et al. used SCM to 
avoid re-meshing after RF MEMS deformation in an 
electrostatic structure [4]. To develop an analytical model 
of a repulsive electrostatic actuator, He and Mrad divided 
an electrostatic domain into four subdomains to find an 
analytical SCM expression, which transformed the sub-
domains into a strip plane to model capacitance [8]. To 
develop 3D SCM models for interdigitated comb fingers, 
Johnson and Warne limited their model to finger thick-
nesses that are much smaller than the engagement dis-
tance and finger gap [9]; Yeh et al. ignored the electro-
static contribution of the ground plane [10]; and Bruschi 
et al. 2004 created eight subdomains in 2.5D to find a 

SCM solution [7]. 
Such SCM methods are for specific geometries only. 

There does not appear to be a preexisting SCM tool for 
computing the capacitance for more arbitrary MEMS 
geometries. We proved that SCM can be used for deter- 
mining the capacitance of arbitrary simply-connected 2D 
geometries in [11]. In this paper, we extend those results 
into an online tool that can be used to investigate the ca- 
pacitance, charge, and force of a variety of MEMS ge- 
ometries in 2D. The numerical solver in our tool is the 
SCM MATLAB™ toolbox developed by [12]. 

Compared to distributed methods in 2D, solution times 
by SCM is generally faster by avoiding the large number 
of coupled equations associated with distributed methods. 
Instead of using a large number of elements to estimate 
geometric corners, SCM treats corners exactly. And if 
there is a small number of vertices in the configuration, 
then SCM can become analytical. However, SCM method 
only accommodates for homogeneous dielectric medi- 
ums. 

The preliminary results of the project have been pub- 
lished in [13], and the completed results with thorough 
analyses are presented here. The rest of the paper is or- 
ganized as follows. In Section 2 we overview particular 
aspects of SCM theory. We add the theoretical deriva-
tions of energy, charge, and electrostatic force which is 
not presented in [13]. In Section 3 we present the current 
graphical user interface (GUI) of our online capacitance 
modeling tool which is not presented in [13]. In Section 4 
we investigate a MEMS torsional actuator as a test case 
of SCM and compare our results to FEM and analytical 
approximation. We add convergence analysis in SCM 
and compare the results found by three different methods 
which are not presented in [13]. And in Section 5 we 
summarize our findings. 

2. Theory 

In this section we overview the process of mapping a 
region from a physical plane (Z-plane) into a strip plane 
(F-plane). A strip plane consists of infinitely parallel 
boundaries, which is ideal for determining capacitance 
using the infinite parallel-plate model. We also discuss 
how capacitance, charge, and force can be determined. 

2.1. Mapping from a Physical Plane to a Parallel 
Strip 

We illustrate the mapping process from the physical 
Z-plane to the strip F-plane. The basic Schwarz-Christoffel 
formula is a conformal mapping from the upper half of 
the complex W-plane (the canonical domain) to the inte-
rior of a simply-connected polygon in the Z-plane (the 
physiccal domain) as shown in Figure 1. By simply- 
connected polygon, we mean the polygon having no in-  
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Figure 1. Schematic of the mappings from the physical 
Z-plane to the strip F-plane. (a) We show a 2D geometry 
configuration with two electrodes having Dirichlet bound-
ary conditions, potential V1 and V2. We model the capaci-
tance within the region bounded by two electrodes and two 
electric field lines. The vertices of the electrodes with the 
arrows and the dots meet at infinity; (b) We show the map-
ping, W(Z), from the physical Z-plane onto the upper half of 
the complex W-plane. The region of interest in (a) is map- 
ped as a region with a semi-circular shape; (c) We show the 
mapping F(W) from the upper half of the complex W-plane 
onto a strip F-plane. The distance between two electrodes is 
d, and the distance between two electric field lines is D. We 
choose the strip plane because it represents the cross section 
of a true infinite parallel plate. The capacitance of any re-
gion of the F-plane can be calculated exactly. Our tool finds 
the locations of the electric field lines in the strip plane ba- 
sed on the locations in the physical plane, denoted as map-
ping F(Z). 
 
tersecting sides [14]. The pre-image of the vertices, zi in 
the Z-plane, or prevertices, are real and denoted by wi in 
the W-plane. Except in special cases, the prevertces, zi, 
cannot be com-puted analytically. This is known as the 
Schwartz-Christoffel parameter problem which is solved 
by using the SCM MATLAB toolbox numerically [12]. 
The toolbox provides the numerical relationship between 
the vertices in the Z-plane and the prevertices in the W- 
plane, denoted as W(Z) in Figure 1. Another conformal 
mapping F(W) maps the W-plane onto the strip F-plane 
so that the simply-connected polygon in the Z-plane is 
mapped into a rectangular in the F-plane. 

In Figure 1(a), we show a 2D geometric configuration 
with two electrodes having Dirichlet boundary conditions, 
potentials V1 and V2, in the physical Z-plane. The 3rd di- 
mension is extruded out of the plane. Figure 1 depicts 
the capacitance within the region bounded by two elec-
trodes and two electric field lines. The vertices of the 
electrodes with the arrows and the dots meet at infinity. 
The region shown in Figure 1(a) is mapped onto W- 
plane shown as semi-circular electric field lines. This 
semicircular field is then mapped onto the F-plane as 
infinitely parallel equipotentials with distance d between 

electric field lines from the physical Z-plane. We choose 
the strip plane because it represents a true infinite paral-
lel-plate, the capacitance of the region with the rectangu-
lar shape can be calculated exactly as 

C wD d                   (1) 

where ε is the permittivity of t

2.2. Energy, Capacitance, Charge, and Force 

 the 

he dielectric between two 
electrodes, and w is the out-of-plane width. Since the 
capacitance is invariant during one or more conformal 
mappings, we can calculate exactly in the strip F-plane 
for any rectangular region bounded between the two 
electrodes and two electric filed lines. The result is the 
capacitance between the corresponding electric field 
lines and electrode geometries in the physical Z-plane. 

The electrostatic energy U stored in a capacitor and
total charge Q can be expressed as 

2U CV 2               (2) 

and 

Q CV                  (3) 

The electrostatic force Fd alon
by

g the direction d is given 
 the negative gradient of the stored energy [1] as 

dF U d   ,              (4) 

where U is the electrostatic energy stored in the capacitor 
given in (2). Substituting (2) into (4) we have 

 2 2dF CV d   .           (5) 

Since the potential difference V doe
ha

s not change, we 
ve 

   21 2dF V C d            (6) 

The derivative C d   can be approxim
ni  smal

ated by a fi-
te difference for a l displacement d  of the elec-

trodes as 

C d C d     .            (7) 

3. GUI of Our Online Capacitance Modeling 

Ou itance modeling tool is installed at nanoHUB. 

present the GUI of our online capaci-
ta

oped in the future versions. In Figure 2(a), we show the  

Tool 

r capac
org. Users may configure and run simulations over the 
web with remote computation. Simulations remotely run 
over the clusters located at Purdue University so that the 
computational memory requirement for users’ local com- 
puters is minimal. 

In Figure 2, we 
nce modeling tool (version 0.1). In this version, we 

only provide the capacitance result, while the calcula-
tions of the charge and electrostatic force will be devel-

two bounding electrodes and distance D between the two 
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(a) 

 
(b) 

Figure 2. Online GUI of our c pacitance modeling tool. (a
GUI for configuring the geo . The coordinates and the 

 phase. The coordinates and the angles 
f the vertices are defined by the users for the device 

orsional Actuator 

 widely used. 
t 50% of the 

d 
by

a
metry

) 

angles of the vertices of the geometry are defined by the 
user. The user also defines two vertices that are to be map- 
ped to infinity in the strip F-plane. The simulation runs on 
nanoHUB clusters remotely; (b) GUI of the output. The 
device configuration is shown together with the electric and 
equipotential field lines. The calculation of capacitance for 
2D is provided by selecting the Capaticance option in the 
pull-down menu. 
 
GUI of the input
o
configuration to be simulated. And users need to define 
two vertices that to be mapped to the infinite in the strip 
F-plane. The simulation will start to run remotely on the 
nanoHUB clusters once the Simulate button is clicked. 
Our tool uses the SCM MATLAB toolbox [12] to deter-
mine the locations of those vertices in the strip F-plane 
and calculate the capacitance by using (1). In Figure 
2(b), we show the GUI of the output phase. The device 
configuration is shown based on the vertices and angles 

input along with the electric field and equipotential lines. 
The capacitance per unit depth result (not shown in fig-
ure) for the 2D configuration is provided numerically by 
selecting the Capaticance per Unit Depth option in the 
pull-down menu. 

4. Test Case: T

Electrostatic torsional actuators have been
The torsional actuator has claimed abou
market share in projector sales, and its performance is 
orders faster than competing LCD technology [15]. Sev-
eral types of torsional actuators are shown in Figure 3. In 
this section, we model the capacitance of a MEMS tor-
sional actuator at different states of angular deflection. 

For our test case, we consider the configuration shown 
in Figure 4. It consists of a conductive plate supporte

 a torsional flexure above a conductive substrate. Upon 
electrostatic actuation, the plate is attracted to the sub-
strate and rotates about its far left end (Figure 4(b)). The 
plate has length L, out-of-plane width w, cross sectional 
thickness h, and the initial gap between the plate and 
substrate is g. The potential difference between the plate 
and substrate is voltage V. Although in-plane (xy-plane) 
fringing field is considered, we have assumed that the 
out-of-plane (yz-plane) dimension is large enough, or that 
the gap is small enough, so that the out-of-plane fringing 
fields are not significant. Otherwise, we would consider 
modeling the cross section of the plate about the yz-plane 
as well. Below we compare three models. In Subsection  
 

 

Figure 3. SEM images of four torsional actuators. (a) Tor-
sional actuators using self-aligned plastic deformation of si- 
licon potentially used for MEMS scanning mirrors applica-
tions [16]; (b) A low-voltage actuated micromachined mi-
crowave switch used for mobile RF telecommunication sys-
tems [17]; (c) A torsional micromirror used for light modu-
lator arrays [18]; (d) A torsional micro-mirror by Texas 
Instruments commercially used in digital light projection 
(DLP) systems. 
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use our online tool to model the capacitance of the ac-
tuator. In Subsection 4.3 we model the capacitance of the 
actuator using in a FEM tool. And in Subsection 4.4 we 
compare these results. 

 

4.1. Parallel-Plate Approximation Model 

We model the angled configuration in Figure 4(b) using 
a parallel-plate approximation by discretizing the facing 
surfaces of the plate and substrate into columnar portions 
of a parallel plate. One such columnar portion is depicted 
in Figure 4(b) bounded by the two vertical dashed lines 
at positions x0 and x0 + dx, the horizontal substrate sur-
face, and the angled plate surface. Similar to Cheng et al., 
we approximate angled plate surface is as being horizon-
tal by considering a small dx amount of it [3]. The paral-
lel-plate capacitance ppC  of such a small portion can be 
approximated as 

 
(a) 

 

  d d tanppC w x g x   .       (8) 
(b) 

Figure 4. MEMS torsional actuator configuration. A 3D view
of a MEMS torsional actua s shown in (a). The length
out-of-plane width, and cros tional thickness of the plate 

.2 we  

 
, 

By integrating (8) along the length of the plate, the net 
capacitance is 

tor i
s sec  

   
0

d tan

tan ln tan .

L

ppC w x g x

w g g L

 

  

 

 
      (9) are L, w, and h. The initial gap between the plate and the 

electrode is g. We model this device by considering the 2D 
cross section shown in (b), which can be extruded by amount 
w out-of-plane for 2.5D. The plate rotates an angle θ. 
 
4.1 we derive an analytical capacitance model based on 
the parallel-plate approximation. In Subsection 4

The fringing field effect and surface charge contribu-
tions from the sides and upper surfaces are not modeled 
with (9). The capacitance in (9) as a function of angle is 
discussed in Subsection 4.4 and plotted in Figure 5. 

 

 

Figure 5. Capacitance results found by three different methods for the MEMS torsional actuator at different deflections. Eq-
uation (9) is used to find the analytical results. We set the tolerance as 10-5 when using our SCM-based tool. And we perform 
the mesh refinement until reaching 0.5% meshing convergence tolerance when using FEM. The analytical results are smaller 
than both SCM and FEM results because the fringing fields from the side and top surfaces of the proof mass are ignored. The 
FEM results are slightly larger than the SCM results. This could be caused by the FEM boundary conditions. 
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4.2. SCM Model 

In order to use our tool, there are three working condi-
tions need to be sat
proximated by a 2D

isfied: 1) The 3D model can be ap-
 model; 2) The 2D model needs to 

have Dirichlet boundary conditions; and 3) the 2D mo- 
del can be described by a simply-connected polygon. In 
Subsection 4.1, we have discussed that the torsional ac-
tuator satisfies conditions (1) and (2). In Figuer 6(a), we 
show the torsional actuator with its vertices in the physi-
cal Z-plane. The detailed dimensions of the torsional ac-
tuator are listed as: L = 10 µm, h = 0.6 µm, g = 1 µm, 
and θ = 2.29˚. 
 

 
(a) 

 
(b) 

Figure 6. SCM-based method for modeling the capacitance 
of the MEMS torsional actuator. (a) A MEMS torsional 
actuator with a deflection  = 2.29˚ in the physical Z- 

 splitting the 

of θ
plane is shown. To approximate the torsional plate using a 
simply-connected polygon, we split the subdomain above 
the plate with a conductive boundary where charge capaci-
tive charge storage is minimal. The plate has six vertices, 
and the substrate has two vertices. The boundaries of the 
detour meet with the substrate boundary at infinity (verti-
ces z7 and z10) from two sides, which is not shown. The plate 
is at potential V and the substrate is grounded. The electric 
field lines generated by the tool are shown; (b) We show the 
mapping onto the strip F-plane. Note that unit length of the 
real and the imaginary axes are not in scale for better illus-
tration purpose. The eight vertices shown in (a) are mapped 
onto the F-plane with the same subscript index. The infinity 
vertices in (a) are mapped to the infinity in the F-plane, 
which is not shown. The grounded substrate boundary is 
overlapped with the imaginary axis in the F-plane, and the 
plate boundary is mapped on a vertical line intersecting 
with the real axis at 1. The electric field lines, which are not 
generated by the tool, are for illustration purpose only. 

subdomain above the plate with a conductive boundary 
where charge storage is minimal. The effect of this de-
tour is verified in Subsection 4.3. The plate has six verti-
ce

In Figure 6(a), we show the MEMS torsional actuator 
with a deflection of θ = 2.29˚ in the physical Z-plane. We 
make the geometry simply-connected by

s, and the substrate has two vertices. The boundaries of 
the detour meet with the substrate boundary at infinity 
(vertices z7 and z10) from two sides, which is not shown. 
The plate is at potential V and the substrate is grounded. 
The electric field lines generated by the tool are shown. 

In Figure 6(b), we show the mapping onto the strip F- 
plane. Note that the unit length of the real and the imagi- 
nary axes are not in scale for better illustration purpose. 
The eight vertices shown in Figure 6(a) are mapped onto 
the F-plane with the same subscript indices. The infinity 
vertices in Figure 6(a) are mapped to the infinity in the 
F-plane, which is not shown. The grounded substrate 
boundary is overlapped with the imaginary axis in the F- 
plane, and the plate boundary is mapped on a vertical line 
intersecting with the real axis at 1. The electric field lines 
shown in Figure 6(b), which are not generated by the 
tool, are for illustration purpose only. 

The locations of the vertices in the F-plane are found 
by the SCM MATLAB toolbox with the default tolerance 
as 10–5. The tolerance determines the accuracy of the 
numerical algorithm when solving for the locations [12]. 
We discuss the effects of this tolerance setting to the ca-
pacitance result in Subsection 4.4. By using (1), we can 
calculate the capacitance. For example, the capacitance 
in the region bounded by the plate boundary, the sub-
strate boundary, and the electric field lines starting at 
vertices z1 and z6 can be calculated as 

1 6C w f f d  ,          (10) 

where ε is the permittivity of the dielectric between two 
electrodes, w is the out-of-plane width, and d is the dis-
tance between two electrodes in the F-plane which equals 
to 1 in our tool. 

The analytical formula in (9) completely ignores the 
side and the top surfaces of the torsion

del to 
verify our 2.5D assumption of the MEMS torsional ac-

al actuator. How-
ever, the model in our tool accurately accounts for the 
side and top surfaces, which have significant fringing 
fields. As expected, the capacitance found by our tool is 
larger than the capacitance found by (9). For example, 
the capacitance found by our tool is 18.23% larger than 
that found by the analytical model when θ = 2.29˚. 

4.3. FEM Model 

We first use 2D FEM model in COMSOL 3.5a to verify 
our simply-connected modeling geometry by comparing 
the simulation results to a model without the geometric 
detour. We then use a 3D version of the FEM mo
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tuator. We finally discuss the size universe (encompass-
ing subdomain) used in the FEM model. 

Our simply-connected version of the geometric con-
figuration from Figure 4 is shown in Figure 6. To create 
a non-broken polygonal path, we take a detour from the 
physical geometry at the top center of the plate where not 
much charge resides. To validate our geometric approxi- 
mation, we compare two FEM models with and without 
the geometric detour in Figures 7(a) and (b). Our results 
indicate that the difference between the two configura-
tions is 4%, where we use ~170,000 meshed elements. In 
our FEM simulation we use linear finite elements with a 
mesh density that is refined multiple times until a 0.5% 
convergence tolerance is reached. That is, we use the re- 
lative difference between the capacitance results of the 
final meshing condition and the previous one for our con- 
vergence analysis. We set the boundaries of the plate and 
the detour at a finite potential, ground the bottom bound-
ary of the universe as the substrate, and set the rest boun- 
daries of the universe as zero charge/symmetry. We find 
the capacitance by dividing the total charges on the boun- 
daries of the plate by the finite potential we set. 

We model the MEMS torsional actuator at deflections 
of θ = 0˚ and θ = 2.29˚ in both 3D and 2D in COMSOL 
3.5a with out-of-plane width, w = 10 µm, which is the 
same as the plate length. The sizes of the universe in both 
models are the same. In 3D FEM model, we find the ca-
pacitance by dividing the total charges on the plate sur- 
 

 

Figure 7. Effect of the boundary detour using FEM-based 
COMSOL 3.5a. 2D cross section of the torsional actuator 
without a boundary detour in (a) and with a detour in (b). 
The relative error of the capacitance between these two 
configurations is 4%. This evidence supports our use of the 
detour in our SCM model. The potential field is color 
mapped, where the torsional plate and boundary detour are 

odel is about 12% larger than those in 2D model 

 square. In all models, 
w

es are at infinity 
fo

at a finite potential, the substrate is grounded, and the other 
boundaries are set as zero charge/symmetry boundary con-
dition. 

faces by the finite potential we set. And in 2D FEM mo- 
del, we find the capacitance per unit depth first, and find 
the total capacitance by multiplying the out-of-plane 
width of the plate. We reach 0.5% and 1.7% convergence 
tolerance in 2D and 3D models, respectively, on a PC 
with 4GB memory. We find that the absolute capacitance 
in 3D m
at both deflections as expected. This is because the 3D 
model counts the out-of-plane fringing field. We also 
find that the change of capacitance between two deflec-
tions of 3D model is about 7% larger than that of 2D mo- 
del. Change of capacitance is typically of more signifi-
cance to MEMS actuator because it can be used to find 
the electrostatic actuation force and it is usually less af-
fected by parasitic capacitances. 

For FEM models, we find that the capacitance result 
increases with the increase of the universe size. For ex-
ample, the capacitance for the MEMS torsional actuator 
with a deflection of θ = 2.29˚ is 0.35% larger when the 
universe increases from a 20 µm to a 50 µm one, and the 
capacitance is 0.21% larger when the universe increases 
from a 50 µm square to a 100 µm

e reach 0.5% convergence tolerance. The decrease of 
the increasing rate indicates that the effect of the size of 
the universe to the capacitance decreases as the universe 
becomes larger. In this paper, we compare our SCM re-
sults to the FEM results with a 100 µm-square universe. 
When the MEMS torsional actuator plate deflects at 
2.29˚, the capacitance found by SCM is 4.7% smaller 
than that found by FEM model. However, computation 
of capacitance using a larger universe requires more me- 
mory and more time. For example, for a universe that is 
100 µm-square universe, FEM simulation takes about 
1000 times longer than our SCM tool. 

Due to the differences between FEM and SCM boun- 
dary conditions in modeling the torsional actuator, we 
perform analysis on a configuration that can be more 
identically applied to both analyses. In Figure 8, we show 
our verification results. Here, the center cantilever is at a 
finite potential; the top, left, and bottom boundaries are 
grounded; and the right-most boundari

r SCM, and zero charge/symmetry boundary conditions 
for FEM. Although the right-most boundary conditions 
are slightly different, the equipotential lines are very much 
alike. The relative error in capacitance is 0.4%, an order 
of magnitude better than the previous analysis of the tor-
sional actuator configuration. 

4.4. Discussion 

We discuss the effects of the tolerance parameter in the 
numerical SCM toolbox to our capacitance results, and 
compare the capacitance results calculated by three me- 
thods. 
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Figure 8. SCM vs. FEM for the same configuration with 
nearly identical boundary conditions. The center cantilever 
is at a finite potential; the top, left, and bottom boundaries 
are grounded; and the right-most boundaries are at infinity 
for SCM and zero charge/symmetry for FEM. (a) The mo- 
del is solved by our SCM-based method. We show the equi- 
potential and electric field lines; (b) The model is solved by 
COMSOL 3.5a. We show the equipotential and elec ic field 
lines. The potential is color mapped. Note that the onfigu- 

nce results is about 0.01% when the 
leran –3

tr
 c

rations in (a) and (b) have the same geometric dimensions. 
It appears that they have different dimensions because the 
scale factors are different in different tools when capturing 
the images. The relative error between the two capacitance 
simulations is 0.4%. 
 

In Figure 9, we show the calculated capacitances by 
using our tool for the torsional actuator with θ = 2.29˚ 
versus different tolerance settings. The capacitance re-
sults approach to 138.2 pF when we reduce the tolerance 
as expected. We find that the convergence knee occurs 
when the tolerance is 10–3. That is, the relative difference 
between the capacita
to ce value is less than10 . The relative difference is 
defined as the relative change between the capacitance 
results between two successive tolerance settings. 

In Figure 5, we show the capacitance results found by 
three different methods for the MEMS torsional actuator 

 

Figure 9. Effects of the tolerance to our capacitance calcula-
tions. We show the calculated capacitances by using our 
SCM tool for the torsional actuator with θ = 2.29˚ versus 
different tolerance settings in the semilogarithmic plot. We 
find that the relative difference between the capacitance re- 
sults is about 0.01% when the tolerance is less than 10–3. 
The relative difference is defined as the relative change be- 
tween the capacitance results between two successive tole- 
rance settings. 

 FEM results because the fringing fields 
om the side and top surfaces of the plate are ignored. 

 fields at vertices 
 to previous efforts using the SCM, 
 determine the capacitance of a much 

 
at different deflections for comparison. We use (9) to 
find the analytical results, we set the tolerance as 10–5 
when using our SCM tool, and we use 100 µm-square 
universe and perform the mesh refinement until reaching 
0.5% meshing convergence tolerance when using the 
FEM software. The analytical results are smaller than 
both SCM and
fr
The FEM results are slightly larger than the SCM results. 
As discussed in Subsection 4.3, this could be caused by 
the boundary conditions used in FEM. 

5. Conclusion 

In this paper, we presented a SCM-based online tool that 
quickly and accurately calculates the capacitance be-
tween two conductors that may be represented as sim-
ply-connected polygonal geometries in 2D with Dirichlet 
boundary conditions. We achieved numerical accuracy 
by using SCM that treats the fringing
exactly. Compared
our tools is able to
larger variety of geometries in 2D. We found that by 
strategically modifying the original geometry on bounda-
ries with the least amount of charge, we are able to ob-
tain good results as verified by FEM. Our tool compares 
favorably in accuracy to analytical methods, and favora-
bly in both accuracy and speed to the results found by 2D 
FEM. Using a MEMS torsional actuator as a test case, 
we find that our SCM tool is about 1000 times faster than 
FEM. Future research directions might include develop-
ing algorithms for calculating other issues such as curve 
corners and coarse surfaces. 
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