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Abstract 

The identification of the driving forces of industrial water pollutant emissions 
in China is conducive to its effective abatement. It also promotes the coordi-
nated development of China’s economic growth and the environment protec-
tion. Utilizing the Kaya equation and China’s provincial panel data from 1999 
to 2015, this paper investigates the spatial-dynamic driving forces governing 
industrial water pollutant emission. We decompose and quantify the hetero-
geneous effects of different drivers, that is, technology, energy consumption, 
and economic size distribution. Applying the LMDI decomposition method, 
this paper also calculates the contribution of the three drivers to the abate-
ment of industrial water pollutant emissions. The analysis indicates that the 
most important contribution to pollutant abatement is the development of 
technology, followed by energy consumption, and the least affected is the dis-
tribution of economic scale. In the future, the Chinese government should 
pay more attention to the impact of energy consumption on pollution abate-
ment. This paper suggests that the Chinese government should improve the 
clean use of fossil fuel, optimize the energy consumption structure, and de-
velop the use of more clean energy. 
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1. Introduction 

Since the implementation of the policy of reform and opening up, China’s 
economy has maintained a relatively fast growth trend. However, the rapid eco-
nomic development of China has been accompanied by the emission of a great 
number of pollutants, which in turn have caused severe environmental problems 
[1]. The extraordinary economic growth, industrialization and urbanization 
coupled with inadequate investment in basic water supply and treatment infra-
structures, have resulted in increasing industrial water pollution [2]. Industrial 
wastewater pollution has a strong destructive effect on the ecological environ-
ment and ecosystem, and thus cause environmental and human health [3] [4]. 
The continuous improvement of industrial water pollution is an important pre-
requisite for sustainable economic and social development. Therefore, it is ne-
cessary to explore the driving forces of industrial water pollution emission by 
decomposing and analyzing its spatial evolution trend. This paper is aimed to 
explore the key factors and variables for achieving industrial water pollution re-
duction, so as to provide certain policy recommendations for sustainable eco-
nomic development and high quality development. 

Chemical Oxygen Demand (COD) is a measure of the amount of reductive 
substances that need to be oxidized in water samples. It reflects the extent to 
which water is contaminated with reductive substances [5]. The time trend of 
industrial COD emissions per unit of GDP in China from 1999 to 2015 is shown 
in Figure 1 [6]. It can be seen from Figure 1 that the industrial COD emissions 
per unit of GDP have always maintained a downward trend. Then, it is necessary 
for us to decompose and analyze the industrial COD emission per unit of GDP, 
and quantitatively measure which factors lead to the decline of industrial COD 
emissions per unit of GDP. Our main goal is to analyze the driving force of re-
duction of industrial water pollution. Which aspects we can further work from 
in the future in order to further promote the reduction of industrial water pollu-
tion.  
 

 
Figure 1. The time trend of industrial COD emissions per unit of GDP in China from 
1999 to 2015. 
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The existing literature has conducted extensive research on industrial waste-
water and exhaust gas decomposition. Ma (2016) built the Kaya Equation be-
tween Chinese industrial pollutants discharge with industrial scale, industrial 
structure (the proportion of high-pollutant loaded sectors in gross industrial 
output), pollution productive efficiency (the waste discharge per unit of gross 
industrial output) and waste discharge source structure from 2001 to 2013. The 
contribution rates of four factors to the change of pollutants discharge were cal-
culated with the approach of LMDI [7]. Ling and Zhang (2017) used the Kaya 
identity to divide the industrial waste influencing factors into cleaner production 
technology level, energy consumption per unit industrial GDP, industrial 
economy level and population scale [8]. Wen et al. (2018) explored the main 
impact factors of industrial air pollutant emissions in Beijing-Tianjin-Hebei re-
gion and surrounding areas from 2011 to 2015 based on Logarithmic Mean Di-
visia Index (LMDI) [9]. Shapiro and Walker (2018) analyzed the pollution re-
duction of US manufacturing industry from the perspectives of environmental 
regulation, productivity, and trade by decomposing US industry pollution emis-
sions into three factors: scale, structure, and technology [10]. Geng et al. (2014) 
analyzed the spatial-temporal characteristics and driving forces of industrial 
wastewater emission variations in China’s 31 provinces during the years 
1995-2010. The results showed that economic factors are the main driving fac-
tors of industrial wastewater emission changes and found that technology im-
provement considerably offsets emission increases [2]. Chen et al. (2016) utilized 
the Exploratory Spatial Data Analysis (ESDA) method to analyze the characte-
ristics of the spatio-temporal distribution of the total wastewater discharge 
among 31 provinces in China from 2002 to 2013. It also discussed about the 
driving factors affected the wastewater discharge through the Logarithmic Mean 
Divisia Index (LMDI) method [11]. Chen et al. (2017) analyzed the evolution of 
spatial-temporal pattern of industrial wastewater in the Yangtze River Economic 
Zone from 2002 to 2013 and the main driving factors affecting industrial waste-
water discharge. The results showed that the economic development effect and 
the technological development effect are the main factors which lead to the in-
crease and decrease of industrial wastewater discharge respectively [12]. Yao et 
al. (2016) identified the main driving forces for SO2 and COD emission reduc-
tion in China’s industrial system. The results indicated that Engineering Emis-
sion Reduction and Supervision Emission Reduction have made the greatest 
contributions to reducing COD emissions; but Structure Emission Reduction 
has not had an obvious effect [1]. However，less attention is paid to the research 
of driving forces of industrial water pollutant emission from spatial-dynamic 
perspectives in China in the existing literature. 

To explore the driving forces of industrial water pollutant emission from spa-
tial-dynamic perspective in China, this paper applies the provincial panel data 
from 1999 to 2015 to decompose the industrial COD emissions per unit of GDP 
(i.e. the intensity of pollution emissions). Based on the Kaya equation, the pollu-
tion emission intensity is decomposed into three factors: technology effect, 
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energy consumption intensity, and regional distribution of economic scale. The 
contribution rate of each factor is quantitatively determined by applying the 
LMDI decomposition method. At last, rational and effective policy recommen-
dations are drawn in order to achieve high-quality development goals to control 
water pollution emissions while developing the economy. 

2. Data Sources and Research Methods 

1) Data Sources 
This paper applies the provincial panel data from 1999 to 2015 in China to 

decompose the industrial COD emissions per unit of GDP into technology ef-
fect, energy consumption intensity, and regional distribution of economic scale 
the three factors. The industrial COD emissions of each province comes form 
China Environmental Yearbook from 1999 to 2015. GDP of the whole country 
and each province comes from China Statistics Yearbook from 1999 to 2015. 
Energy consumption of the whole country and each province comes from China 
Energy Statistics Yearbook from 1999 to 2015. The total sample in the paper is 
divided into four regions according to the commonly used regional division. The 
eastern region includes Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fu-
jian, Shandong, Guangdong, and Hainan. The central region includes Shanxi, 
Anhui, Jiangxi, Henan, Hubei, and Hunan. The western region includes Inner 
Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, 
Gansu, Qinghai, Ningxia and Xinjiang. The Northeast region includes Liaoning, 
Jilin and Heilongjiang. Due to the difficulty of data collection, this paper only 
studies the industrial COD emission in mainland China, and does not include 
data and analysis of Tibetan autonomous regions. It is analyzed from five di-
mensions that are the national, eastern, central, western and northeast regions in 
this paper. 

2) Kaya Equation 
Kaya’s identity was originally proposed by Japanese scholar Kaya to break 

down greenhouse gas emissions into four driving factors: energy carbon intensi-
ty, energy consumption per unit of GDP, GDP per capita, and population [13] 
[14]. In order to analyze the factors affecting the industrial COD emission per 
unit of GDP, we build the Kaya equation and apply the research method of Sha-
piro and Walker (2018) [10]. The industrial COD emissions are decomposed 
according to the spatial dimension firstly, which is shown in Formula (1). 

30

1
i

i
Industrial COD Emission Industrial COD Emission

=

= ∑        (1) 

In Formula (1), Industrial COD Emission  represents industrial COD emis-
sions across China. iIndustrial COD Emission  stands for industrial COD emis-
sions of province i in China. Due to the difficulty of data collection, this paper 
only contains data from 30 provinces in mainland China. Tibet, Hong Kong, 
Macao and Taiwan of China do not include in the sample. 

Furthermore, industrial COD emissions across China are decomposed ac-
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cording to Formula (2). 

30

1

i i i

i i i

Industrial COD Emission
Industrial COD Emission Energy GDP

GDP
Energy GDP GDP=

= ⋅ ⋅ ⋅∑
        (2) 

In Formula (2), industrial COD emissions of province i are decomposed into 
three factors: technology effect, energy consumption intensity, and regional dis-
tribution of economic scale. Technology effect is measured by industrial COD 
emission per unit of energy consumption; energy consumption intensity is 
measured by energy consumption per unit of GDP; regional distribution of 
economic scale is measured by the ratio of GDP in province i to the whole coun-
try. 

It is divided by GDP on both sides of Formula (2), and we can obtain the 
Formula (3). 

30

1

i i i

i i i

Industrial COD Emission
GDP

Industrial COD Emission Energy GDP
Energy GDP GDP=

= ⋅ ⋅∑
         (3) 

Formula (3) is abbreviated as Formula (4). 
30

1
ICODEG i i i

i
ICODEE EG GG

=

= ⋅ ⋅∑                (4) 

In Formula (4), ICODEG  represents the industrial COD emission per unit 
of GDP; iICODEE  represents the technology effect of province i; iEG  
represents energy consumption intensity of province i; iGG  represents regional 
distribution of economic scale of province i. 

At first, the decomposition results of industrial COD per unit of GDP in the 
baseline case are obtained. Then, one factor is controlled (maintaining the value 
of 1999 unchanged), and the other two factors change with the real situation. 
The time trend of industrial COD per unit of GDP after controlling one factor is 
obtained, and compared with the time trend of the baseline (the three influen-
cing factors are not controlled). The greater the deviation of the two time trends, 
the greater the impact of this factor. 

3) Logarithmic Mean Divisia Index (LMDI) Model 
The DI index decomposition analysis method and Laspeyres index decompo-

sition analysis method were put forward in the 1980s. LMDI represents Loga-
rithmic Mean Divisia Index method in DI’s index decomposition analysis me-
thod, and it is a digital model produced by Ang [14] [15] [16]. This model was 
used to learn more about the contribution of people’s activities to pollution dis-
charge [17] [18]. The model is suitable for problems in factor decomposition and 
widely used in analyzing forces [17]. 

According to the LMDI method put forward by Ang, the change of industrial 
COD emission per unit of GDP between a base year m and a target year t, is de-
noted by ICODEGt m−∆  
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ICODEG i i iICODEE EG GG∆ = ∆ + ∆ + ∆               (5) 

The contribution rate of each factor to industrial COD emission per unit of 
GDP can be calculated by the following formulas: 

0

0 0ln
ln ln

t t
i i i

i t
i i i

ICODEG ICODEG ICODEE
ICODEE

ICODEG ICODEG ICODEE
 −

∆ = ⋅ 
−  

      (6) 

0

0 0ln
ln ln

t t
i i i

i t
i i i

ICODEG ICODEG EG
EG

ICODEG ICODEG EG
 −

∆ = ⋅ 
−  

           (7) 

0

0 0ln
ln ln

t t
i i i

i t
i i i

ICODEG ICODEG GG
GG

ICODEG ICODEG GG
 −

∆ = ⋅ 
−  

           (8) 

3. Empirical Analysis 

1) Kaya equation and decomposition analysis 
Based on the provincial panel data from 1999 to 2015, the Kaya equation and 

the decomposition method of Shapiro and Walker (2018), the industrial COD 
emissions per unit of GDP are decomposed into three factors: technology effect, 
energy consumption intensity, and regional distribution of economic scale. At 
first, the decomposition results of industrial COD per unit of GDP in the base-
line case are obtained. Then, one factor is controlled (maintaining the value of 
1999 unchanged), and the other two factors change with the real situation. The 
time trend of industrial COD per unit of GDP after controlling one factor is ob-
tained, and compared with the time trend of the baseline. It is analyzed from five 
dimensions that are the national, eastern, central, western and northeast regions 
in this paper. Decomposition results of industrial COD emissions in the eastern 
region, central region, western region and northeastern region in China are 
shown in Figures 2-6 respectively. As can be seen from Figures 2-6, the tech-
nology effect has the greatest impact on industrial COD emissions per unit of  
 

 
Figure 2. Industrial COD emissions decomposition results in the eastern region. 
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Figure 3. Industrial COD emissions decomposition results in the central region. 

 

 
Figure 4. Decomposition results of industrial COD emissions in the western region. 

 

 
Figure 5. Decomposition results of industrial COD emissions in Northeastern China. 
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Figure 6. Decomposition results of industrial COD emissions for the whole country. 

 
GDP, because controlling one factor will result in the largest deviation from the 
time trend of the baseline. It is found that the impact of energy consumption in-
tensity on industrial COD emissions is the second, and the impact of economic 
scale distribution on industrial COD emissions is the minimal. 

2) LMDI decomposition analysis 
According to the LMDI decomposition model, the contribution rates of three 

factors to industrial COD emissions are quantitatively explored. Contribution 
rate of three factors in the eastern region is shown in Figure 7.  

In Figure 7, contribution rate of technology effect in eastern China is within 
the range of 0.6 to 1.15, and the growth rate is relatively fast from 2000 to 2003, 
and reached a peak of 1.03461 in 2003. The contribution rate from 2003 to 2015 
is relatively stable and slightly decreases, but it is always above 0.8. Therefore, 
the technology effect is the main driving force of industrial COD emissions in 
the eastern region. The contribution rate of energy consumption intensity in 
eastern China is in the range of 0.01 to 0.44. However, it dropped rapidly from 
2000 to 2003, from the highest value of 0.426721 in 2000 to the lowest value of 
0.0117249 in 2003. Its contribution rate has been slowly rising since 2003. Ener-
gy consumption intensity is another driving force of industrial COD emissions 
in the eastern region. The contribution of economic scale distribution in eastern 
China to industrial COD emissions is very little. 

Contribution rate of three factors in the central region is shown in Figure 8. 
Contribution rate of three factors in the western region is shown in Figure 9. 
Contribution rate of three factors in the northeastern region is shown in Figure 
10. Contribution rate of three factors for the whole country is shown in Figure 
11. As can be seen from Figures 8-11, the technology effect of China’s whole 
country, central, western and northeastern regions are the main drivers of in-
dustrial COD emissions. Energy consumption intensity is another driving force 
of industrial COD emissions. The results is similar to that of the eastern region. 
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Figure 7. Contribution rate of three factors in the eastern region. 

 

 
Figure 8. Contribution rate of three factors in the central region. 

 

 
Figure 9. Contribution rate of three factors in the western region. 

 

 
Figure 10. Contribution rate of three factors in the Northeastern China. 
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Figure 11. Contribution rate of three factors for the whole country. 

4. Conclusions 

Utilizing the Kaya equation and China’s provincial panel data from 1999 to 
2015, this paper investigates the spatial-dynamic driving forces governing in-
dustrial water pollutant emission. We decompose and quantify the heterogene-
ous effects of different drivers, that is, technology, energy consumption, and 
economic size distribution. Applying the LMDI decomposition method, this pa-
per also calculates the contribution of the three drivers to the abatement of in-
dustrial water pollutant emissions. The analysis indicates that the most impor-
tant contribution to pollutant abatement is the development of technology, fol-
lowed by energy consumption, and the least affected is the distribution of eco-
nomic scale.  

From the results of analysis, it can be seen that if we want to reduce China’s 
industrial COD emissions, the most important thing to improve the technical 
level, that is, the pollution discharge per unit of energy consumption. We should 
develop more clean energy technologies to improve the technical level. Second, 
we should reduce energy consumption intensity. In order to achieve this goal, we 
should vigorously develop modern high-end tertiary industries. A more ad-
vanced tertiary industry means more efficient output and more GDP with less 
pollution, thus achieving the goal of a green economy. In addition, the impact of 
economic scale distribution in the four major regions of China is subtle. It can 
be seen that China’s market liquidity is relatively good and the market is not lack 
of competition. In the future, the Chinese government should adopt more clean 
coal combustion technology to reduce emissions, reduce the energy consump-
tion intensity, optimize the energy consumption structure and develop the use of 
more clean energy. 
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