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Abstract	

In	recent	years,	the	Toyota	Production	System	has	also	assumed	in	western	manufacturing	plants	
a	predominant	position.	Lean	Manufacturing,	as	it	is	usually	called	in	the	occidental	world,	aims	at	
a	“Single‐piece‐flow”	job	handling	and	has	its	advantages	compared	to	the	classic	“Batch	and	Queue”	
job	handling.	On	the	other	hand,	mathematical	Linear	Programming	optimization	techniques	have	
passed	 into	oblivion,	having	obtained	 the	 feel	 to	be	 inappropriate	 for	production	planning.	Al‐
though	the	two	approaches	have	different	aims	and	application,	they	give	particular	attention	to	
scarce	resources.	The	concepts	of	“bottleneck”	in	Lean	Manufacturing	and	“shadow	price”	in	Lin‐
ear	Programming	are	complementary.	The	paper	shows	the	different	focus	of	the	two	approaches	
and	crystallizes	their	synergic	values.	
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1.	Introduction	

In the seventies and eighties Operations Research (OR), the branch of mathematics dealing with optimization 
problems, became very popular. Within the multiple classes of problems, especially those problems character-
ized by one objective in a deterministic environment and linear equations, solvable with Linear Programming 
(LP) and its Simplex algorithm, it found selective application in industry. Increasing computational power 
helped to spread the technique into the offices of multinational enterprises. But it encountered the same destiny  
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as cybernetics in the sixties—it lost attractiveness. In fact, lack of realistic practicability prevailed over the illu-
sion of being able to optimize socio-economic systems with the computer. Since the nineties, after the spreading 
of the Toyota Production System (TPS) in America and Europe, which became popular with the name of Lean 
Manufacturing (LM), production has put the emphasis rather on cost savings and waste reduction (Muda) and 
continuous improvement (Kaizen) than on overall margin optimization. Indeed, modern production planning 
systems have other, more practical optimization functions than the valid but theoretical maximizing margin con-
tribution approach. In fact, the production mix cannot always be changed in the short term and is usually given 
by the customer base, especially if production is “made to order”. LP suffered the reputation of being too aca-
demic, although the basic concepts retain its validity and have its proven field of application, such as e.g. in 
transportation. Nevertheless, LP optimization of production and LM organization of work put the same attention 
to scarce resources of production, resources becoming the “bottleneck” of production, which makes it worth to 
compare the two approaches. In the following, we will analyze the peculiarities of each approach and show the 
dichotomic characteristics of both optimization techniques. 

2.	Linear	Programming	Aiming	at	Overall	Optimization	

What is the classic problem statement of an LP optimization problem for a plant manager? Given is a manufac-
turing plant with m machines, with each machine having a capacity of bm. With these machines, n products with 
the quantity xn are manufactured. The specific occupancy load of the m resources with the n products is given by 
the matrix A of dimension [mn]. Every product generates its specific margin contribution cn. The aim is to iden-
tify the optimal product mix x*, i.e. the quantity of each single product to be produced, which maximizes the 
overall margin contribution complying with the resource restrictions. The problem solved by LP is often also 
called “Linear Optimization”. The problem can be written in mathematical terms represented by the standard 
form 

 max , 0Tz c x Ax b x                                     (1) 

where the restrictions, given by the machine capacities, have been added with the non-negativity requirements of 
production volume of the optimization variables xn. The resulting overall margin contribution of the maximizing 
function z is a scalar product, given by the transposed vector cT of specific margin contribution coefficients and 
the vector of the product mix x. The mathematical problem has also a geometric interpretation as represented in 
Figure 1 showing the plane geometry case of two products and three machines. 

LP is a special case of convex optimization which can be solved via the Simplex algorithm presented first by 
Dantzig, a numeric solving technique well explained in scholastic literature, which we will not deal with here. 
The number of basic solutions are 

n m

m

 
 
 

                                         (2) 

The number of feasible basic solutions, which is smaller than calculated by (2), are given by the domain of 
definition, represented through the polyhedron delimited by the intersecting linear restrictions, i.e. the straight 
lines g1, g2, g3, and the two x-axes. The number of feasible basic solutions of the Simplex algorithm are given by 
the corners of the convex polygon of which one is the optimal basic solution x* maximizing the objective func-
tion. To solve the system of linear equations, slack variables ym are introduced to transform inequality restric-
tions into easy solvable equations. 

Each primal problem has associated a dual problem (3), where capacities are switched with the coefficients of 
the objective function; the primal slack variables become the optimizing variables of the dual LP problem. 

 min , 0T Tb y A y c y                                    (3) 

In the case of n < m it may be useful to solve the dual problem of the slack variables instead of the primal 
problem to shorten the number of iterations, given the fact that the primal solution can also be seen in the dual 
Simplex table. The interpretation of the slack variables in a production problem of LP is unused resource, i.e. 
spare production capacity of the resource where the slack variables have a positive value other than zero. This 
represents the “shadow price” of the resource in the dual problem. If a slack variable is zero, the shadow price of 
this resource is zero. In economics the shadow price corresponds to the opportunity cost of the alternative use of 
the resource, i.e. selling the resource instead of using it for production. 
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Figure 1. Geometric solution to an LP problem with two products x1 and x2.     
 
Key questions of LP are related to sensitivity and post-optimality. Sensitivity is the analysis of the effects on 

the objective function z by varying the input parameters Amn, bm, and cn (4). Geometrically interpreted, changing 
the bm corresponds to shifting parallel the straight line of the resources, whereas changing the cn corresponds to 
change the slope of the objective function. 

, ,mn m n

z
A b c


   

                                      (4) 

Post-optimality (5) analyses the stability of the optimal basic solution x*, i.e. within which interval Δθ the in-
put variables can vary without changing the validity, i.e. the composition of the optimal basic solution. 

 Δ : ; , ,*
mn m nx x A b c                                      (5) 

This represents, without going into detail, some questions related to LP problems in a production environment. 
This simplified formulation of LP problems does not take explicitly into consideration, e.g., size of production 
batches or the problem of change-over, complications which can approximately be solved by reducing the ca-
pacity of the resources bm or more exact by passing to another class of optimization problems, being solvable 
with general Mathematical Programming. 

In the case of non-linear problems, an objective function expanded by the restrictions with Lagrange multi-
plier can be used. For concomitant application of multi objective functions, Pareto optimality is applied. A 
multi- objective solution is said to be Pareto efficient when any change of improvement for one objective func-
tion is done to the detriment of another objective function. 

3.	Lean	Manufacturing	Aiming	at	Local	Optimization	

Let us have a look at what is the LM problem statement for a plant manager. Given is the situation that several 
customers require the even supply over time (i.e. a constant supply rate) of different products of a certain quan-
tity per year, resulting in a given takt rate (TR). Apart of the elimination of waste (Muda) in the process and the 
continuous improvement philosophy, the aim of LM is to implement a customer-pull takted single-piece-flow 
(SPF) what we can synthesize with formula (6) and to satisfy the on-time-delivery (OTD) to customers. This is 
called a just-in-time (JIT) production. Thereby it does not matter if production is “made to stock” (more suitable 
for standard products) or “made to order” (more applicable for customized products). We can define JIT ma-
thematically as 

 
1

lim
n

JIT pull n


                                                                      (6) 

i.e. a pull-production, where handled quantities n tend to one (single-piece-flow). Please note, that the SPF ap-
plies to the handled quantity, not necessarily to the size of the production batch, which has also to match with 
technical restrictions. JIT means producing and supplying the right material, in the right quantity, at the right 
time, to the right place. A lean-optimized production cell represents JIT in its perfection. 

To implement JIT production, manufacturing cells are conceived. Instead of grouping similar technologies 
into the same workshop according to western production philosophy, the necessary equipment and machines to 
manufacture similar products are displayed in-line into a U-shaped production cell; in this discourse we will use 
the term manufacturing and production indifferently. The manufacturing cell is a product-optimized transfer-line 
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fabrication, with all necessary resources. If a cell is dedicated to one product we talk about mono product cell, 
otherwise mixed product cell. A cell is characterized either by its cycle time (CT) at the bottleneck (or the work-
station turnover time WTT of the bottleneck in a mixed product cell), or its inverse value which is the through-
put, also called exit rate (ER) or completion rate, where CT should not be confused with the process lead time 
(PLT) of the whole cell. 

A customer-pull takted SPF requires that all cycle times CTij of the operations i in a cell j are equal (no Mura), 
this is called a “balanced line”, i.e. 

1: ij i ji CT CT                                          (7) 

whereas the cycle times of different cells j and k may differ 

ij ikCT CT                                                                          (8) 

The necessity may exist to link different cells. When the cells have different cycle times (8), Kanban super-
markets are interposed between cells to decouple the cells. This allows the different cells to optimize their pro-
duction without being influenced by other cell scheduling, each cell becomes a self-controlled production unit. 

Within LM, theory of constraints (TOC) represents a central focus in cell-design. Restriction in production 
capacity of a cell, or more generally of a production plant, is given by the throughput, i.e. the exit rate ER of the 
considered manufacturing unit. The operation with the lowest ER (9) is the bottleneck of the production line. 

BottleneckiER ER                                      (9) 

Therefore, in LM most attention is put on the bottleneck, because this limits directly the profitability of the 
production unit. Within the JIT philosophy the bottleneck receives an additional aspect: it also usually represents 
the controlling element of the cell, the “drum” complying with the production takt required by the customer’s 
takt rate (TR). Indeed, it has to result 

ER TR                                        (10) 

i.e., the ER of the cell has to be bigger than the TR required by the customer, otherwise the cell would not be 
able to satisfy customer’s demand. The inverse value of the TR is takt time (TT) and (10) becomes 

CT TT                                       (11) 

The dimension of time (11) in cell-design is usually preferred over the dimension throughput (10), because to 
balance each operation of a cell (7), the work content is usually expressed in time units (seconds or minutes) and 
will be used to optimize the work distribution within the cell. When performing a TOC analysis, a Time-Opera- 
tion chart as represented in Figure 2 is a suitable tool to reveal visually process steps with cycle times that are 
longer than takt time; these operations are called constraints. The process step with the longest cycle time is the 
bottleneck. Please note, there may exist several constraints but every process has only one bottleneck.  

To conclude, in the LM approach the triggering of the production at the “drum” of the line is done by down-
stream customer’s Kanban. To guarantee the perfect operation of the manufacturing line, the “Drum-Buffer- 
Rope” technique is usually used, i.e. the drum has always to work assured by a full buffer and the upstream op-
erations are triggered by the “rope” via Kanban. 

 

A      B         C      D        E       F       G  

Process step
(operation)

Cycle Time CT

Takt Time TT

Process constraints Bottleneck

 

Figure 2. Time-operation chart of a manufacturing cell.                     
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4.	Synthesis	of	Both	Approaches	

As we notice, the problem statements in the cases of LP and LM are slightly different. For LP: given scarce re-
sources to produce products, what would be the optimal product mix to maximize the margin contribution ob-
jective function; this represents a problem aiming at maximizing effectiveness of transformation in a production 
plant. For LM: given a product mix, how to manufacture it in an optimal way; this represents a problem aiming 
at maximizing efficiency of transformation. After having exposed both approaches, let us elucidate the follow-
ing emerging insights: 

First: LP starts from the available resources bm, usually expressed in time units, and asks what can be pro-
duced x* to maximize a target function z such as (1), typically an economics (theoretic) approach of overall op-
timization. LM starts from a given mix x and asks how to produce it efficiently, a question of coefficient matrix 
A, i.e. [amn], expressed in time per piece, typically a production (practical) approach of local optimization. 

 
LP LM

(12) 0,max  xbAxxcz T

 )(lim
1

nxpullJIT
n



  Customermn

CustomerBottleneck

TTa

TRER




    :nm,i.e.

CustomerCell EDTPLT 
 

 
In other words: LP maximizes a single objective function z considering several restrictions regarding re-

sources bm and tries to identify the optimal product mix x*, which maximizes the target function. LM tries to sat-
isfy several customer requirements, such as takt rate TR and expected delivery time EDT, i.e. the mix is given, 
and tries to optimize the parameters of a multi objective equation system (12), which allows JIT supply. Never-
theless, both are problems of solution existence. 

Second: In the LP problem, the bottleneck is given by the resource with the lowest residual machine capacity 
bm with the optimal mix; the resources are expressed e.g. in hours or days, which is an aggregated figure. In LM 
the bottleneck is defined by the largest coefficient amn of the matrix A, a specific value, e.g. minutes/piece (13). 

 
LP LM

(13)

(14)
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In other words: Both problem statements are restricted in the short term by scarce resources, but the scarce 

resource is interpreted slightly differently in the LP and the LM problems. Bottleneck in LP means an active re-
striction of bm in Ax ≤ b, whereas bottleneck in LM means the operation with the longest cycle time amn of the 
non-balanced matrix A. In addition, in a mono product cell, the bottleneck is identical (14); this is not necessar-
ily the case in mixed product cells (15). Nevertheless, this shows the converging rational of both approaches at 
the optimum, i.e. of the overall production system or locally in the manufacturing cell. 

Third: In the LP problem, the resources bm are aimed to be fully utilized, corresponding to minimize the slack 
variables ym ideally becoming zero. In LM the manufacturing cell is optimized, in order to get a cycle time-ba- 
lanced amn column of the matrix to comply with a JIT supply to the customer’s required takt time (12); accord-
ing to (7), in a mixed product cell all the columns have to be linearly dependent (16). 

 
LP LM
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In other words: In LM the resource utilization is of second priority and does not appear in (16); it can even be 
increased deliberately to a certain extent if the need arises. It can happen, that the artificial summation of the re-
source utilization of different cells in a multi cell plant, may not have an optimal resource bm utilization, i.e. in 
this case the slack variables ym are greater than in an overall optimized LP problem (17). In fact, a JIT SPF cell- 
design may result in less capacity because each of the capacities bm have been split into the different cells. 

Forth: In an LP problem, batch size is not investigated and does not appear in the problem and restriction 
statement (12). In LM, batch size is of fundamental importance to comply with (12); flexibility (and quick chan-
geovers) is mandatory for a mixed product cell. 

 
LP LM

(18)
WACC

fix
opt ik

kQ
B





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In other words: In LP the products of the mix xn may be produced in n big batches (one for each xn) or could 

be produced in several batches for each product xn according to the economic batch quantity Bopt; this corre-
sponds to a clear push manufacturing philosophy without dedicated resources. In LM the optimal batch size 
gives maximum flexibility of a mixed product cell to allow the production of several products within the same 
cell, even to be produced several times a day, leveled according to pitch scheduling of a Heijunka box. Lean 
batch sizing optimizes the batch Bi considering workstation turnover time WTT and desired takt rate of the cus-
tomer to be produced ideally in a JIT SPF cell-design (18). 

Fifth: In LP the focus of optimization is driven, for economic reason, to the objective function with priority 
given rather to sensitivity than to post-optimality. In LM the focus is put on balancing the operations of the 
workstations composing a cell (16); this is a problem of post-optimality. 

 
LP LM

(19)
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In other words: LP addresses mainly the question of how much will the objective function be improved by in-

finitesimal change of the parameter, i.e. for example, changing the bottleneck resource bm by a marginal unit, re-
flecting the “shadow price” of the resource. LM addresses mainly the balancing of the cell to allow JIT supply 
according to customer’s TR; the aim is to determine the balanced [amn] with less waste, i.e. minimize Muda 
within the process (19). 

Final consideration: The above considerations show, that the problem statement is different, although the 
problem structure appears to be similar. The question is therefore not do we apply LP or LM; they solve differ-
ent problems. Indeed, we can state, LP deals “ex-ante” to determine the overall maximum, which concept is 
suitable for sales managers dealing with effectiveness of resource transformation. The LM approach deals “ex- 
post” to optimize the given mix, i.e. having the production mix fixed, in order to determine the local maximum 
(efficiency of resource transformation), this concept is suitable for production managers. Mathematically inter-
preted, LM can be assimilated to the method of the gradient leading to find local optima and the Kaizen to the 
step of the steepest ascent. LP through the iteration within a convex space delivers the overall maximum of the 
whole production system; LM may not be of convex programming but through the Kaizen iteration it ap-
proaches the overall maximum without ever reaching it. This shows that Lean is not only a toolset but primarily 
a management philosophy of continuous improvement. 

5.	Conclusion	

Both approaches have the same rational to focus on the bottleneck of production to increase the output function. 
But at the end, LP has more the feel of an intellectual exercise rather than of being of great practical help to 
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manage a production system. Indeed, the mix is usually already outlined by strategy, LP-optimized or not, and 
then given in reality by the sales department’s activity. Therefore the question interesting the production man-
ager is not what would be the ideal mix, but rather how to deliver in time without quality issues to the customers 
with the actual mix. This shows, LM is more a day by day business approach in search of excellence, helping to 
satisfy, in a cost efficient way, changing customer needs. That relegates LP applied to manufacturing problems 
to a minor role. In other applications, such as transportation problems to optimize complex routing, LP may 
keep its reason to exist also in day to day business. In a nutshell, in production problems, LP and LM deal with 
different objectives. Nevertheless, LP has its reason to exist in the sales and marketing department to address 
and leverage equipment-optimized products. In the sales department considerations of price elasticity may help 
to force the load-optimized mix of the plant; for that LP is the ideal tool. As we can see, the two approaches are 
not mutually exclusive, they are more synergically complementary. 
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