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Abstract 
Typically extrema filtration techniques are based on non-parametric properties such 
as magnitude of prominences and the widths at half prominence, which cannot be 
used with data that possess a dynamic nature. In this work, an extrema identification 
that is totally independent of derivative-based approaches and independent of quan-
titative attributes is introduced. For three consecutive positive terms arranged in a 
line, the ratio (R) of the sum of the maximum and minimum to the sum of the three 
terms is always 2/n, where n is the number of terms and 2/3 ≤ R ≤ 1 when n = 3. R > 
2/3 implies that one term is away from the other two terms. Applying suitable mod-
ifications for the above stated hypothesis, the method was developed and the method 
is capable of identifying peaks and valleys in any signal. Furthermore, three tech-
niques were developed for filtering non-dominating, sharp, gradual, low and high 
extrema. Especially, all the developed methods are non-parametric and suitable for 
analyzing processes that have dynamic nature such as biogas data. The methods were 
evaluated using automatically collected biogas data. Results showed that the extrema 
identification method was capable of identifying local extrema with 0% error. Fur-
thermore, the non-parametric filtering techniques were able to distinguish dominat-
ing, flat, sharp, high, and low extrema in the biogas data with high robustness. 
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1. Introduction 

In process control, the method of determining peaks and valleys of a signal, also known 
as identification of local maxima and minima, is crucial for describing and capturing 
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certain signal properties. Identification of local maxima and minima is particularly 
useful in signal processing, consequently useful in inline/online process control and op-
timization. Thereby, for reliable feature extraction it is necessary to remove redundant 
maxima and minima in a processed signal. The issue has been extensively investigated 
in literature [1]-[4], at which different techniques were reported. Magnitude-based 
methods and gradient-based methods are the most common two of such techniques. In 
magnitude based methods, the nth term of a series is xn; xn is considered as a peak 
(maximum) when xn−1 < xn > xn+1. In the same time, xn is considered as a valley (mini-
mum) when xn−1 > xn < xn+1. In gradient-based methods, extremum can be located by 
considering slope (gradient) of a certain point and acts as the most popular method [1]. 
When the slope is zero (first derivative is zero) at a certain point, the point can be de-
scribed as a peak, valley or a saddle point. However, additional calculations are neces-
sary to distinguish whether it is a peak, valley or saddle point. This encounter is solved 
by analysing the sign of the second derivative at the points of zero slopes [1]. The most 
popular methods of such are Newton Raphson method [2] and Taylor series-based de-
rivatives [3] [4] which evaluate the derivatives numerically for a given data set. 

Once the extrema points are identified, a filtration step is unavoidable to identify the 
dominant or relevant extrema. Magnitude of prominences and the widths at half 
prominence are two properties of signals that are commonly used to filter extrema [5] 
[6]. Furthermore, baseline correction is another technique used for finding out accurate 
maxima and minima [7]-[9]. In addition, there are numbers of methods for filtering 
unnecessary extrema based on template matching or masks [10], such as Kalman filters 
[11] [12] and non-linear filters [13]. Nevertheless, all aforementioned approaches are 
parametric methods [14], which question their robustness. 

One of the main classifications existing in data analysis techniques is whether the 
method is parametric or non-parametric in its nature [15]. As mentioned above, most 
popular extrema filtering methods suffer from parametric concerns. Particularly, para-
metric methods use domain dependent value as detection criteria such as average, 
standard deviation, prominences of an extrema, and the widths at half prominence of 
an extrema. These criteria are based on domain dependent parameters and are there-
fore valid only for the considered data model or considered conditions in the domain. 
Thus, majorly parametric methods’ accuracy inherits the variables’ ranges and the con-
ditions of the domain [16]. In reality, data capturing, especially within dynamic sys-
tems, such as biogas plants, is produced with various alterations. When the model or 
data range alters, whilst using parametric methods, it is necessary to recalibrate para-
meters or develop new models for monitoring, controlling, and data analysis, which is 
not of preference at process line. 

Non-Parametric Methods 

Non-parametric methods, also known as distribution-free methods, depend on fewer 
number of underlying assumptions [15] [17] [18], which progress them more as robust 
methods [16] [19]. In this research a new non-parametric technique for extrema identi-
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fication and filtration are developed. The proposed technique determines maxima and 
minima based on the relation of sum of terms in an arithmetic series. The same relation 
was used as a non-parametric method (MMS: a method based on maximum, minimum, 
and sum) for finding outliers in linear relation [20] and non-parametric linear fit iden-
tification method [21]. 

In some situations outliers, peaks and valleys are the same, when a sudden extremum 
(variation) occurs, additionally extrema can be formed due to gradual increment and 
gradual decrement. The extrema generated in such situations do not behave as outliers 
and cannot be identified using the aforementioned outlier detection method based on 
maximum, minimum, and data series sum (MMS) [20]. Furthermore, MMS can only 
be used for identifying outliers in liner regression and is not suitable for finding outliers 
in non-linear series [20]. This work focuses on modifying the methods of MMS for lo-
cating extrema in non-linear data series. 

The proposed extrema identification method does not involve first or second deriva-
tive, but rather compares, within a considered window, two ratios in relation with 
maximum, minimum, middle point, and the sum of data points. Furthermore, three 
extrema filtration methods were introduced in this work, which are capable of filtering 
extrema independent of the prominences or width of an extremum. All the methods 
introduced in this work are developed for harsh conditions involved in dynamic proc-
esses, especially biogas process data, thus handling: non-linear datasets and based upon 
non-parametric methods. 

2. Materials and Methods 

As mentioned before, the outlier detection method, also by the same authors [20], will 
be modified to locate extrema in non-linear series. The method is based upon the the-
ory of the sum of terms of an arithmetic progression. Having two major relations by 
means of MMSmax and MMSmin and are expressed in Equation (1) and Equation (2). The 
ratio 2/n is used as the detection criteria, where n is the number of terms in the series. 

( ) ( )max max min min    nMMS a a S a n= − − ∗ , and               (1) 

( ) ( )min max min max  nMMS a a a n S= − ∗ − ,                 (2) 

where amin is the minimum element of the series, amax is the maximum element of the 
series, n is the number of terms in the series, and Sn is the sum of terms in the series. 

The complete expression for outlier detection is given by Equation (3). If any series 
expected to follow y = c form and contains data that do not agree with y = c form then: 

( )
( )
( )
( )

max min
max
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max min
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2 ; maximum is the outlier  
  2 ;

2 ;  
2 ; minimum is the outlier

n

n
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 ∗ − > +

,    (3) 

where w is the weight. 
The method MMS expressed in Equation (3) can be applied on a window with any 
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number of data points. However, when a window has only three data points it becomes 
a special situation, since the method generates an extremum when points are not in 
agreement with a linear fit, thus, if there is an extrema, always the middle point would 
be the extrema. When the numbers of data points are three (n = 3) and w = 0, Equation 
(3) a special treatment is suggested:  

max min
max

3 min

max min
min

max 3

2 3; Maximum is away from the other two points  
2 3;  3

2 3;  
2 3; Minimum is away from the other two points3

a aMMS
S a

MMS
a aMMS

a S

 >−
= =  ≤ −−


= = 



∗ = 
≤ −−

 >∗ −

(4) 

Equation (4) is a simplified version of Equation (3) for handling three data points, 
where max2 3 1MMS≤ ≤  and min2 3 1MMS≤ ≤ . According to Equation (4),  

max 2 3MMS >  implies that the maximum of the three points is always considerably 
apart from the other two points. In the same manner, min 2 3MMS >  implies that the 
minimum of the three points is always considerably apart from the other two points. 
Plots (a), (b), and (c) of Figure 1 show situations that of max 2 3MMS > , where maxi-
mum is the peak. Plots (e), (f), and (g) in Figure 1 show situations that of  

min 2 3MMS > , where the minimum is the valley. However, Equation (4) does not al-
ways successfully identify extrema, in other words if the identified point is the first or 
last point of a window, theoretically it cannot be considered as an extrema. Plots (d)  
 

 
Figure 1. Plots (a), (b), (c), and (d) show different types of peaks and plots (e), (f), (g), and (h) 
show different types of valleys. For n = 3, value 2/n is 0.67. In all peaks except plot (d) MMSmax > 
2/3 and in all valleys except plot (h) MMSmin < 2/3. “” corresponds to correct detections of ex-
trema when MMS and 2/n are used and “” corresponds to wrong detections of extrema when 
MMS and 2/n are used. Therefore, consideration of MMS and 2/n is not a good method for iden-
tifying extrema. However, in the concept of outlier detection all the detections are correct. 
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and (h) of Figure 1 show situations where neither a maximum nor a minimum repre-
sents an extremum. Figure 1(d) shows a peak that of min 2 3MMS >  (identification of 
a valley), this is a contradicting situation. Also, Figure 1(h) shows another failing situa-
tion, where the plot shows a valley that of max 2 3MMS >  (identification of a peak). 
This occurs because in both considered situations, the point has the highest deviation is 
the first point and not the middle point. Therefore, Equation (4) is not capable of iden-
tifying extrema in such cases, thus handling these situations is required. 

To address the aforementioned drawback, the MMS method was modified by con-
sidering the middle point of the window. To have an exact middle point in a data win-
dow the number of considered data points (n) must be odd. When n = 3 and amid is the 
middle point of the window, substituting amax from Equation (1) by amid retrieves: 

( ) ( )max|mid mid min 3 min 3MMS a a S a= − − ∗ .                 (5) 

Also, by replacing amin of Equation (2) by amid gives,  

( ) ( )min|mid max mid max 33MMS a a a S= − ∗ − .                 (6) 

Consider the situation,  

max max|midMMS MMS= .                        (7) 

( ) ( ) ( ) ( )max min 3 min mid min 3 min3 3a a S a a a S a− − = − − ∗∗ , 

max mida a= .                             (8) 

Therefore, Equation (7) denotes the situation of a maximum at the middle point. 
Thus Equation (7) is a condition, independent of the value of MMS that can be used for 
identifying a peak. 

Consider the situation:  

min min|midMMS MMS= .                         (9) 

( ) ( ) ( ) ( )max min max 3 max mid max 3  3 3a a a S a a a S− ∗ − = − ∗ − , 

min mida a= .                            (10) 

Then Equation (9) denotes the situation of a minimum at the middle point. Thus, 
Equation (9) is a condition, independent of the value of MMS that can be used for iden-
tifying a valley. 

Therefore, when a window satisfies Equation (7) it implies that the middle point is a 
maximum and once a window satisfies Equation (9) it alternatively implies that the 
middle point is a minimum. Advancing the three point window by one data point 
makes it possible to locate all the extrema in a signal (Figure 2). Table 1 shows sample 
calculations of extrema detection procedure according to Equation (7) and Equation 
(9). The first eight value sets shown in Table 1 are the values in relation with the plots 
shown in Figure 1. Examples a, b, c, and d in Table 1 show calculation in relation with 
peak identification. In all these examples max max|midMMS MMS=  (Equation (7)) and 

min min|midMMS MMS≠  (Equation (9)). Examples e, f, g, and h in Table 1 show calcula-
tion in relation with valley identification. In all these examples min min|midMMS MMS=  
(Equation (7)) and max max|midMMS MMS≠  (Equation (9)). The last two examples (i and  
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Figure 2. Extrema detection process of proposed extrema identification method named as MMS max-min 
finder. 

 
Table 1. Sample calculations of peak and valley detection process based new method (MMS max- 
min finder) for window size of three data points. 

Plot Data set 
MMSmax 
(>0.67) 

MMSmax/mid 
MMSmin 
(>0.67) 

MMSmin/mid 
Peak or 
Valley 

MMSmax = 
MMSmax/mid 

MMSmin = 
MMSmin/mid 

(a) 0, 100, 0 1 (Y) 1 0.5 (N) 0 Peak Y N 

(b) 0, 1.001, 0 1 (Y) 1 0.5 (N) 0 Peak Y N 

(c) 0, 100, 40 0.714 (Y) 0.714 0.625 (N) 0 Peak Y N 

(d) 0, 100, 90 0.526 (N) 0.526 0.909 (Y) 0 Peak Y N 

(e) 100, −20, 100 0.5 (N) 0 1 (Y) 1 Valley N Y 

(f) −2, −2.2, −2 0.5 (N) 0 1 (Y) 1 Valley N Y 

(g) 100, 0, 70 0.588 (N) 0 0.769 (Y) 0.769 Valley N Y 

(h) 100, 0, 25 0.8 (Y) 0 0.571 (N) 0.571 Valley N Y 

(i) 0, 100, 50 0.667 (N) 0.667 0.667 (N) 0 Peak Y N 

(k) 0, −100, −50 0.667 (N) 0 0.667 (N) 0.667 Valley N Y 

 
k) show very special situations, where MMSmax, MMSmin, and 2/n are equal. In such 
situations Equation (4) is undefined. However, even then extrema identification is pos-
sible with Equation (7) and Equation (9). Since the proposed extrema detection method 
is based on the maximum, minimum, and sum of the series, the method was named as 
“MMS max-min finder”. 

2.1. Identifying Dominating Extrema (Primary Filtering of Peaks and  
Valleys) 

As above-mentioned, Equation (7) and Equation (9) are independent of the number of 
data points and thus valid for the situations where n is greater than three (n > 3). How-
ever to have an exact middle point, n must be an odd number. When the numbers of 
data points are higher than three, there can be several peaks and several valleys. How-
ever, there is a situation that the highest peak (dominating peak) or lowest valley 
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(dominating valley) coincides with the middle point of an advancing window. Figure 3 
shows an example of detecting dominating peaks in a window with odd number of data 
points (n = 7). When the number of data points per window increases, it allows for the 
possibility of more than one extremum in the considered window. 

The plot in Figure 3 consists of seven data points and contains three peaks named A, 
B, and C. The peak A is the middle point of window Wn while peak B is the dominating 
peak. Because of that point A is not recognise as a peak in window Wn. After advancing 
Wn by two data points, Wn+2 appears. In the window Wn+2 the point B is the highest as 
well as the middle point and the point B is recognized as a peak. Advancing Wn+2 by 
two data points Wn+4 appears, where C becomes the middle point and due to the influ-
ence of point B it will not be recognized as a peak. This illustrates that the dominating 
extrema in a window remains undetected until the middle point of the window coin-
cide with it whilst preventing identification of other small peaks and valleys. 

The usage of windows with higher odd number of data points (e.g.: 5, 7, …) makes it 
possible to filter minor peaks and valleys. In contrast, if the methods in relation with 
height or width are used, the values are domain dependent and relative. Changing 
window size (W) is an absolute parameter and can be applied in any condition, espe-
cially the situations that the domain conditions are unknown. However, this technique 
is not capable of filtering absolute small extrema, because the comparison is based on 
the existing extrema in the considered window. Furthermore, this technique is useful as 
a filter for removing relative small variations. Since the technique is based on the size of 
the window, the technique was named as “MMS-Window based filter” or (MMS-WBF). 
 

 
Figure 3. Application of “MMS max-min finder” with window size of seven for locating maxi-
mum point. In the window Wn the middle point is “A” and due to existence of point “B” in the 
considered window, point “A” is not identified as the maximum point. Also, in the Wn+4 (the 
window found after advancing by four data points) the point “C” is not identified as an extrema, 
due to existence of point “B” in the considered the window. In the Wn+2 the point “B” is the 
maximum as well as middle point and there is no point larger than point “B” in the considered 
window. Thus, point “B” is identified as the dominating maximum. 
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2.2. Sharp and Gradual (Flat) Extrema Filtering 

Extrema with starting and end points which are agreeing with y = c and having the 
middle point as the extremum can be considered as a symmetric extrema case. Plots (a) 
and (b) of Figure 4 show such symmetric extrema, which can be considered as the sim-
plest symmetric form. Extrema shown in plots (c) and (d) of Figure 4 also fulfil the re-
quirements of a perfect symmetric extrema. All the following equations in this section 
are based on the perfect extrema. 

Consider a perfect maxima situation as shown in plot (c) of Figure 4. Here, all points 
are equal to amin (amin = c) except amax. Consider any perfect maximum situation with n 
points, then n − 1 points are equal to amin, and amax ≠ c. The sum of the terms of such a 
series can be expressed as:  

( )min max1nS a n a= ∗ − +                        (11) 

( ) ( )max min 1nS a a n− = −                       (12) 

Consider a perfect minimum situation as shown in plot (d) of Figure 4. Here, all 
points of the series are equal to amax and amax = c except amin. Consider any perfect 
maxima situation with n points. Then n − 1 points are equal to amax, and amin ≠ c. The 
sum of the terms of such a series can be expressed as: 

( )max min1nS a n a= ∗ − +                        (13) 

( ) ( )min max 1nS a a n− = −                       (14) 

If max min MmMMS MMS R= , then from (1) and (2), 

( ) ( )max minMm n nR a n S S a n= ∗ − − ∗ . 

When the maximum is detected as the peak, substituting in Equation (11) retrieves: 

( )( )( ) ( )( )( )max min max min max min1 1MmR a n a n a a n a a n∗= ∗ − ∗ − + + − ∗−  

( )( ) ( )( )max min min max min min max min   MmR a n a n a a a n a a a n= ∗ − ∗ − + ∗ − + − ∗  

( ) ( )( ) ( )max min max min max minMmR a a n a a a a= − ∗ − − −  

 

 
Figure 4. Perfect extrema. A perfect extrema is defined as an extrema that is symmetric extrema. 
Thus, in a perfect extrema both the starting and end points follow the y = c form. Plots (a) and 
(b) show the simplest perfect extrema and plots (c) and (d) show perfect extrema that have more 
points that agree with y = c form. 
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( ) ( )( ) ( )max min max min 1MmR a a n a a= − ∗ − −  

( )1MmR n= −  

( )max min 1MMS MMS n= −                      (15) 

In the same manner, if MMSmin/MMSmax = RmM, then from Equations (1), (2), and 
(12), the minimum is detected as the valley, 

( )1mMR n= −  

( )min max 1MMS MMS n= −                      (16) 

The relations of Equation (15) and Equation (16) are crucial findings, which can be 
used to identify perfect extrema. When the extrema is not perfect, value of Equation 
(15) and Equation (16) is less than n − 1. Therefore, Equation (15) and Equation (16) 
can be used to identify perfect and non-perfect extrema. Also, perfect extrema are sud-
den (sharp) extrema and non-perfect extrema can be considered as gradual extrema. 
Thereby, using Equation (15) and Equation (16) it is possible to filter sharp and gradual 
extrema. 

After identifying a peak, by examining the ratio MMSmax/MMSmin it is possible to de-
termine degree of confidence of other points, the same applies for identifying a valley. 
Assume tMm_mM is the threshold value for determining sharp and gradual maxima, then 
tMm_mM can be expressed as a ( )1k n∗ − , where 0 1k< ≤ . If k is expressed as a function 
of n (e.g.: ( )1 1k n= − ), then tMm_mM is a function of n. By setting the same threshold 
value (tMm_mM) for MMSmax/MMSmin and MMSmin/MMSmax, sudden and gradual maxima 
can be determined. The determination criteria (tMm_mM) of ratios MMSmax/MMSmin and 
MMSmin/MMSmax are non-parametric and depend only on the number of data points in 
the considered window. Since the method is also based on the maximum, the mini-
mum, and the sum, the method was named as MMS-SG filter. 

Figure 5 and Figure 6 show examples in relation with Equation (15) and Equation 
(16), respectively. In plots (a) and (b) of Figure 5, the ratio MMSmax/MMSmin = 6, which 
is exactly equal to n − 1. This proves the correctness of Equation (15). In the same time, 
in plots (a) and (b) of Figure 6, the ratio MMSmin/MMSmax = 6 and proves the correct-
ness of Equation (16). All these plots exhibit either sudden peak or sudden valley. The 
corresponding ratios in relation with the plot (c) of Figure 5 and Figure 6 are not equal 
to n − 1. However, the corresponding ratios are not very small. Therefore, these ex-
trema can be considered as nearly sharp extrema. Nevertheless, corresponding ratios in 
relation with, plots (d) of Figure 5 and Figure 6 are very small and these extrema can 
be considered as gradual extrema. 

2.3. High and Low Extrema Filtering 

MMS-WBF and MMS-SG introduced in this work are capable identifying dominating, 
sharp and gradual extrema. However, these techniques are incapable of distinguishing 
the extrema with very small amplitude as shown in Figure 1(b) and Figure 1(f). 

The valley shown in Figure 7 is a general situation of a perfect valley. When a valley 
has a very small crater, amin ≈ amax. 
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Figure 5. Plots (a), (b), (c), and (d) show four different types of peaks with window size seven (n = 
7) where 2/n = 0.286. Ratios MMSmax/MMSmin and MMSmin/MMSmax are stated along with each 
plot. Peaks in plots (a) and (b) are perfect peaks and the ratio MMSmax/MMSmin = 6 (i.e. n − 1). 
Though, the dominating peak in plot (c) is not a perfect peak, ratio MMSmax/MMSmin is con-
sideribly high. The peak in plot (d) is a gradually developed peak and also not a perfect peak and 
the ratio MMSmax/MMSmin is very small. Therefore, consideration of ratio MMSmax/MMSmin is a 
good criterion to distinguish sudden and gradual peaks. 
 

 
Figure 6. Plots (a), (b), (c), and (d) show four different types of valleys with window size seven (n = 
7) where 2/n = 0.286. Ratios MMSmax/MMSmin and MMSmin/MMSmax are stated along with each 
plot. Valleys in plots (a) and (b) are perfect valleys and the ratio MMSmin/MMSmax = 6 (i.e. n − 1). 
Though, the valley in plot (c) is not a perfect valley, ratio MMSmin/MMSmax is considerably high. 
The valley in plot (d) is a gradually developed valley and also not a perfect valley and the ratio 
MMSmin/MMSmax is very small. Therefore, consideration of ratio MMSmin/MMSmax is a good crite-
rion for distinguishing between sudden and gradual (flat) valleys. 

 
Then, Equation (13) can be expressed as: 

( )min min1nS a n a≈ ∗ − +  

( )min max;nS a n a n≈ ∗ < ∗  

( )_ min min _ min;0 1LH n LHR a n S R= ∗ < ≤                  (17) 
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Figure 7. Two possible ways of existence of extremum for a data point; as a peak or as valley. 
Assume, except the extremum, all the other points are satisfying the y = c relation (perfect ex-
trema). Then, extremum is the peak and all other points are equal to the minimum. In the same 
manner, when the extremum is a valley, valley is the minimum and all other points are equal to 
the maximum. If a peak is small it reaches to the minimum and when the valley is small it reaches 
to the maximum. This is the hypothesis for distinguishing small and high extrema. 
 

If _ min 1LHR → , it implies that the amin is very close to the other points (low crater), 
consequently _ min 0LHR →  implies that the amin is apart from the other points (high 
crater). 

In Equation (17), when the term amin is zero, the ratio RLH_min also becomes zero de-
spite of the influence of magnitude valley. Also, due to the influence of negative values 
Sn can be zero and RLH_min becomes invalid. Both these situations inhibit the determina-
tion of the real condition of the valley. To overcome the effect of negative values, the 
minimum value was deducted from all the terms of the data points in the window as 
expressed in Equation (18). 

_ min .i New ia a a= −                           (18) 

Even now it is possible to have a situation of amin = 0. To overcome this situation a 
constant k, which is greater than zero, was added to each value. This transformation is 
applied in “Min-Max normalization” process [22] [23]. When k = 1 thus Equation (18) 
becomes: 

_ min 1i New ia a a= − +                          (19) 

From Equation (17) and Equation (19), 

( )( ) ( )_ min min min min
1

1 1
n

LH i
i

R a a n a a
=

= − + ∗ − +∑  

_ min min
1 1 1

1
n n n

LH i
i i i

R n a a
= = =

 
= − + 

 
∑ ∑ ∑

 

( )_ min mi _ min n;0 1LHLH nR n S a n Rn= − ∗ < ≤+  
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( )( )min_ min _ min 11 ;0LH LHnR S a Rn n= + − ∗ < ≤              (20) 

Then RLH_min expressed in Equation (20) can be considered as a robust method for 
filtering valleys with low crater. 

The peak shown in Figure 7 is a general situation of perfect peak. When a peak has a 
very small prominence, amax ≈ amin. Then Equation (11) can be expressed as: 

( )max max1nS a n a≈ ∗ − +  

( )max min;nS a n a n>∗≈ ∗  

( )_ max max ; 0LH nR a n S∗= >                      (21) 

According to Equation (17), the ratio RLH_min has a well-defined upper limit (ceiling) 
and lower limit (floor) because _ min0 1LHR< ≤ . Nevertheless, in Equation (21), RLH_max 
has no upper limit, and subjects only to a lower limit. Therefore, it is difficult to use 
RLH_max as a global criteria as RLH_min. The peak shown in Figure 7 can be considered as 
the mirror image of a valley in Figure 7. Thus, it is possible to transform a peak to a 
valley, for that Equation (17) can be used for determining the peaks with high and low 
prominence using the same criteria Under the assumption that: 

( )_ max min –i New ia a a a= +                      (22) 

According to Equation (22), ( )max min max min–a a a a+ =  and  
( )max min min max–a a a a+ = . The expression in Equation (22) transforms the maximum 
value into the minimum, the minimum value into the maximum and intermediate val-
ues into their complements. If the RLH_max is the corresponding ratio in relation with 
high and low peaks identification, then, from Equation (21) and Equation (22), one can 
reach: 

( )( )( ) ( )( )_ max max min max max min
1

n

LH i
i

R a a a n a a a
=

= + − ∗ + −∑  

( ) ( )( )_ max min max min1

n
LH ii

R a n a a a
=

= ∗ + −∑                (23) 

Even after the aforementioned transformation, it is still possible to have the influence 
of negative values. However, it can be resolved by using Equation (19). Then, from 
Equation (19),  

( )( ) ( ) ( )( )_ max min min max min min min min
1

1 1 1 1
n

LH i
i

R a a n a a a a a a
=

= − + ∗ − + + − + − − +∑  

( )( )_ max max
1

1
n

LH i
i

R n a a
=

= + −∑  

( )( )_ max max _ max1 ;0 1LH LHnR n a n RS <+ ∗ − ≤=              (24) 

_ max 1LHR →  implies that the amax is very close to other points (low prominence). 
Consequently _ max 0LHR →  implies that the amax is apart from the other points (high 
prominence). 

Finally, using Equation (17) and Equation (24) it is possible to determine the high 
and low extrema by defining a threshold value tLH ( 0 1LHt< ≤ ) for RLH_min and RLH_max. 
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Because the method is based on the maximum, minimum and the sum, the method was 
named as MMS-LH. Figure 8 elaborates the functionality of MMS-LH as a filtering 
method. 

The filtration of sudden, gradual, low, and high extrema are derived based on a data 
set which satisfies the y = c relation (perfect extrema). However, in reality it is impossi-
ble to always have perfect extrema. Therefore, by setting the threshold values in appro-
priate situations, it is possible to filter the extrema in non-perfect conditions. 

Extrema identification is performed after comparing two ratios in relation with 
maximum, minimum, middle point and sum. The threshold criteria for MMS-WBF 
and MMS-SG are values that are based on the number of data points (n). The threshold 
criterion for MMS-LH is a value between 0 and 1. Thus, all the determination criteria 
are totally non-parametric. However, combination of these methods leads to harvest 
more robust and reliable output. Figure 9 elaborates one possibility of combining all 
these methods for achieving reliable output. 

All the algorithms were implemented using C++ in Net 2008 platform and tested 
with biogas data which were collected online form a biogas plant using NIR spectros-
copy for a period of seven months with a frequency of twelve data points per day (i.e. 
every second hour). Among the different parameters, the H2 content measured in ppm 
was selected, which has considerable amount of variations during the process. Data of 
each month was considered as a segment, where each segment consists of 350 - 400 
data points. The proposed detection methods were applied on each segment with dif-
ferent criteria. Furthermore, another data set of around 4800 data points, concentra-
tions of volatile fatty acid (VFA), was selected for checking segmenting capabilities of 
the method. 
 

 
Figure 8. High and low extrema detection algorithm for “MMS-LH filter”. Compression of pre- 
defined threshold t for RLH_max and RLH_min allows distinguishing low and high extrema. 
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Figure 9. One possible way of combining all the developed methods for har-
vesting quality output. 

3. Results and Discussion 

3.1. Identifying Extrema 

Each plot (a) and (b) of Figure 10 contains between 350 and 400 data points and shows 
the identified extrema using the proposed “MMS max-min finder”, which is based on 
Equation (7) and Equation (9). In both situations all the extrema were detected with a 
window size of three (W = 3), which is the smallest valid size of the window. Results 
show detection of all the extrema with 0% error. However, there is an interesting fea-
ture about detections, which can be sometimes defined as an incorrect detection as seen 
in Figures 10(c)-(f). Plot (c) and (d) of Figure 10 show the case where two consecutive 
maxima with the same value and two consecutive minima with the same value, respec-
tively. When W = 3, usually both the adjacent extrema of a certain extremum have op-
posite extremum type (e.g.: for a maximum, adjacent members are two minima). If one 
adjacent extremum is with the same type extremum (e.g.: for a maximum, one adjacent 
member is a maximum) implies that the intermediate points of relevant points have the 
same value ((d) of Figure 10). Using the same criteria these detections can be excluded, 
if necessary. 
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Figure 10. Two plots of H2 content of biogas data in two different months are presented meas-
ured in ppm. All the maxima in both the data sets ((a) and (b)) were identified by the new 
method with the window side is three (W = 3). Plots (c), (d), (e), and (f) show identification of 
special situations as extrema, even though they are existing derivative methods not consider as 
extrema situations. 
 

Plot (e) and (f) of Figure 10 show other different situations, where it has consecutive 
minima and maxima of the same value. This also implies that the intermediate points 
have the same value ((f) of Figure 10). If consecutive maxima have same values and the 
order of occurrence is maximum then minimum, it can be considered as a discrete sad-
dle region in an increasing data segment ((e) of Figure 10). In the same manner, if the 
two consecutive extrema have same value and the order of occurrence is minimum then 
maximum, it can be considered as a discrete saddle region in a decreasing data segment 
((f) of Figure 10). Using the same criteria these detections can be excluded, if neces-
sary. 
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3.2. Identifying Dominating Extrema (Primary Filtering of Peaks and  
Valleys) 

The same two data sets shown in Figure 10 were filtered using MMS-WBF (MMS 
Window based filtering) method for identifying the dominant extrema using a window 
size of 9 (W = 9). Results of the detection process are shown in Figure 11 plots (a) and 
(b) demonstrate that the MMS-WBF was capable to identify 50% and 59% of all extrema 
as dominating extrema, respectively. However, out of the identified extrema in plots (a) 
and (b), there are 0.12% and 0.09% of small peaks which are identified as dominating 
extrema. These extrema cannot be visually justified as dominating extrema. Neverthe-
less, numerically they are the dominating extrema in the considered window size. One 
possible option is to increase the window size, thus covering more data which enhances 
the capability of removing more non-dominating extrema. However, when W > 3, all  
 

 
Figure 11. Plots (a) and (b) show the same data as plots (a) and (b) in Figure 10, filtered with 
MMS-WBF with a window size of nine data points (W = 9). MMS-WBF was capable of identify-
ing 53% and 58% of all extrema as dominating extrema. However, MMS-WBF identified 0.12% 
and 0.09% of extrema in plots (a) and (b) as dominating extrema, which cannot be visually justi-
fied as dominating extrema. Though those are cannot be justifies as dominating extrema, 
mathematically they are the dominating extrema in the considered window size. One possible 
option is to increase the window size, thus the window would cover more data points. This will 
remove more non-dominating extrema once a significant dominating extremum exists. 
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the candidate points have not been checked. This is a disadvantage of increasing the 
window size for filtering non-dominating extrema. In plot (d) of Figure 11, at the end 
of the data set shows such an unidentified dominating peak due to W > 3 situation. 

The combination of MMS max-min finder and MMS-WBF can be used in online 
data checking. For that, first the window size (W) has to be defined, and then the win-
dow accumulates the data, after which the desired detection technique is applied and 
eventually the extrema are located. Subsequently, window is advanced by one data 
point and awaits the next data point. After the next point is captured, the extrema- 
check is performed again. This process is propagated throughout the process for locat-
ing extrema in an online environment. 

3.3. Sharp and Gradual (Flat) Extrema Filtering 

Figure 12 shows the results in relation with sharp and gradual extrema detection per-
formed based upon RMm and RmM as defined in Equation (15) and Equation (16), re-
spectively. Value of tMm_mM for RMm and RmM was set as 1 ( ( )1 1k n= − ). Plot (a) and (b) 
of Figure 12 show the filtering of extrema, first with MMS-WBF for W = 3 and then 
with MMS-SG filter. Plot (c) and (d) of Figure 12 shows the filtering of extrema with 
MMS-WBF in the case of a window size of 9 (W = 9) and then with MMS-SG filter. 
When compared, plots (a) and (b) of Figure 12 show 78% and 77% less number of all 
extrema than number of extrema shown in plots (a) and (b) of Figure 10. When the W 
is small (W = 3) filter excludes some extrema seems to be very high (V1, P1, P2, and P3 
shown in plots (a) and (b) of Figure 12), which can be considered as wrong detection. 
However, according to Equation (11) and Equation (13), rejections of those points are 
mathematically correct. This happens due to usage of small window size for extrema 
detection. Thus, one solution for overcoming this situation is to use lager window size. 

Plots (c) and (d) in Figure 12 show identification of V1, P1, P2, and P3 after increasing 
the window size to nine (W = 9). After applying large W (W = 9) almost all the flat ex-
trema have been rejected. Even after increasing the W still extrema such as P4 are re-
maining, because W is not big enough to reject such points (i.e. in the selected window 
size, the extremum point is located significantly away from other points). In general, 
plots (c) and (d) of Figure 12 show 0.46% and 0.75% fewer extrema in comparison with 
plots (a) and (b) of Figure 12 and all the detections and rejections are agreed with the 
developed method. Therefore, the ratios MMSmax/MMSmin and MMSmin/MMSmax can be 
considered as filtering criteria and a reliable technique for filtering sharp and gradual 
(flat) extrema. 

3.4. High and Low Extrema Filtering 

As per the results shown in Figure 10 and Figure 12 it is very clear that the “primary 
filtering” and consideration of MMSmax/MMSmin and MMSmin/MMSmax are not capable 
of filtering extrema based on magnitude of their prominence or crater. The results 
shown in Figure 13 are the results in relation with the method MMS-LH, which is in-
tensively developed focusing on filtering extrema with low prominence or crater. 



K. K. L. B. Adikaram et al. 
 

209 

 
Figure 12. Filtering of sudden and gradually developed (flat) extrema using MMS-SG technique. Data in plots (a) and (b) 
were first checked for extrema with a window of size three with MMS-WBF. Data in plots (c) and (d) were first checked for 
extrema with a window of size nine with MMS-WBF. Then ratios MMSmax/MMSmin and MMSmin/MMSmax considered and all 
the plots were checked for sudden and gradually developed extrema with threshold value tMm_mM = 1. When the window size 
is small, extrema such as V1, P1, P2, and P3 remain undetected. However, increasing the window size let those points to be 
detected (plots (c) and (d)). Even after increasing the window size, points that have very small extrema such as P4 will de de-
tect as an extrema. 

 
Before applying MMS-LH, data points (plots (a) and (b) of Figure 13) were first 

checked for extrema with a window size three with MMS-WBF and data in plots (c) 
and (d) of Figure 13 were first checked for extrema with a window size nine with 
MMS-WBF. Point V1 in Figure 13(a), which seems to be a valley with high crater, yet 
remains as unidentified. To be qualified as an extrema with higher prominence or cra-
ter, first, the extremum must be a perfect extremum. However, with W = 3, V1 is not a 
perfect extremum. Therefore, the rejection is logical as well as mathematically correct. 
Nevertheless, in Figure 13(c), point V1 is identified as a valley, because the large win-
dow size (W = 9) makes V1 a nearly perfect extremum. Therefore, using W > 3 with 
appropriate filter criteria the method can be used for filtering extrema with low and  
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Figure 13. Filtering of low and high extrema using MMS-LH filtering technique. Data in plots (a) and (b) were first 
checked for extrema with a window of size three with MMS-WBF. Data in plots (c) and (d) were first checked for 
extrema with a window of size nine with MMS-WBF. Then RLH_max and RLH_min were considered and all the plots 
were checked for low and high extrema with threshold value tLH = 0.05. When the window size is small, extrema 
such as V1 remain undetected. The reason is for such detection is that the one point (point C) is located very close to 
the extremum (extremum is not a perfect extremum). However, increasing the window size (W = 9) makes V1 a 
nearly perfect extremum and detected in plot (c). 

 
high prominence or crater. 

3.5. Drawbacks of Using Large Window Size for Extrema Filtering 

In Figure 10, Figure 12, and Figure 13 plots with lager window size, (W − 1)/2 points 
from the beginning as well as from the end will not be checked, where W is the window 
size. If there are matching extrema existing in these regions, they also remain as uni-
dentified (Figure 12 and Figure 13). This is disadvantageous when using large window 
size, on the other hand if there are enough data points available, the issue is resolved. 
However, this is a problem for small data sets. Checking unchecked areas with a smaller 
window is one possibility for resolving this issue. However, results from two different 
window sizes will lead to violate the homogeneity of the results. The second method is 
to start the window before a certain number of data points (w/2). Then part of the 
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window is laid on a non-data region. Using a suitable padding, this part can be filled. 
For example, the entire data in non-data region in the start can be padded with starting 
value. Also, at the end suitable padding technique can be used to fill the part of the 
window in the non-data region. 

3.6. Possibility of Use as a Data Segmentation Technique 

Usually, dominating peaks and the valleys can be considered as turning points of a cer-
tain property of a signal, if those dominating extrema are not outliers. Thus, dominat-
ing peaks and valleys are good points for segmenting a signal as well as identifying gen-
eral trends. Figure 14 shows an attempt to accomplish such a segmenting approach 
using the developed method. Figure 14 contains a data set with around 4600 data 
points and only the MMS-WBF (dominating extrema identification technique) tech-
nique was applied as the filtering technique. For testing segmenting capabilities of the 
method, considerably large W was used (W = 155 in plot (a) and W = 255 in plot (b) of 
Figure 14). In both situations segmentation and general trend identification shows 
highly promising capabilities. Existences of more than one adjacent similar types of ex-
trema violate the trend identification and segmentation (i.e. existence of maximum af-
ter a maximum instead of minimum). Circled areas in plot (a) of Figure 14 show two 
such occurrences. However, removing unnecessary adjacent peaks or valleys while 
keeping singular important peaks or valleys, is one solution for overcoming this prob-
lem. Thereby it is necessary to develop a methodology for removing less important ex-
trema. Increasing the W is another way of overcoming the said drawback. Plot (b) of 
Figure 14 shows situation of increased W and detection with less adjacent same type of  
 

 
Figure 14. Usage of “MMSmax-min finder” as a segmentation technique and trend identification technique. Plot (a) 
and (b) use window size 155 and 255, respectively. When the window side is low (W = 155) segmentation and trend 
identification is distracted due to occurrence of adjacent same type extrema. In plot (a) such two occurrences were 
circled. Increasing the window size produces better segmentation as shown in plot (b). However, this leads to ignore 
some trends as circled in plot (b). 
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extrema than plot (a) of Figure 14. However, this technique lead to ignorance of some 
features in the signal as circled in plot (b) of Figure 14. Therefore, determining of 
proper W is an essential factor for better identification of segments as well as trends. 
Nevertheless, the method can be used for at least fast segmentation and trend identifi-
cation method. 

4. Conclusion 

The introduced extrema finding method named as “MMS Max-Min finder” and three 
different extrema filtering methods named as MMS-Window Based Filter (MMS- 
WBF), MMS sharp and gradual extrema filter (MMS-SG), and MMS low high extrema 
filter (MMS-LH) are non-parametric. Therefore, filtering can be done without consid-
ering domain dependent parameters such as height and width of an extremum. Results 
prove that the detection is capable of identifying all the extrema with 0% error. When 
the window size is nine (W = 9) MMS-WBF reported 0.12% and 0.09% wrong detec-
tions. However, a combination of MMS-WBF and MMS-LH filter with window size 
nine (W = 9) was capable of eliminating the error. Despite of the dynamic nature of the 
data, the results were consistent and robust for the same detection criteria. Thus, using 
proper window size, it is possible to achieve robust and consistent outcome with dy-
namic data such as biogas data. Furthermore, MMS-WBF shows promising outcome in 
the direction of segmenting and trend identification of signals. Hence, MMS-WBF can 
be enhanced as a segmenting and trend identification technique. 
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