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Abstract

This paper investigates the problem of robust optimal H_ control for uncertain two-dimensional
(2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded
uncertainties. A sufficient condition for the existence of y~suboptimal robust H_ state feedback
controllers is established, based on linear matrix inequality (LMI) approach. Moreover, a convex
optimization problem is developed to design a robust optimal H_ state feedback controller
which minimizes the H_ noise attenuation level of the resulting closed-loop system. Finally, two
illustrative examples are given to demonstrate the effectiveness of the proposed method.
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1. Introduction

Over the past decades, the problem of H_ control for 2-D discrete systems has drawn considerable attention.
The main advantage of H_ control is that its performance specification takes into account the worst-case per-
formance of the system in terms of the system energy gain [1]. Based on this idea, many important results have
been obtained in the literature [2]-[5]. Among these results, the problem of H_ control and robust stabilization
of 2-D discrete systems described by the Roesser model has been addressed in [2]. A solution to the problem of
robust H_ control for uncertain 2-D discrete systems represented by the general model (GM) via output feed-
back controllers has been presented in [3]. A 2-D filtering approach, based on the 2-D bounded real lemma, with
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an H_ performance measure for 2-D discrete systems described by the Fornasini-Marchesini (FM) second
model has been developed in [4]. The dynamic output feedback H_ stabilization problem for a class of 2-D
discrete switched systems represented by the FM second model has been addressed in [5].

It is well known that delay is encountered in many dynamic systems and is often a source of instability, thus,
much attention has been focused on the problem of stability analysis and controller design for 2-D discrete
state-delayed systems in the last few years [6]-[25]. In [6], the problem of stability analysis for 2-D discrete
state-delayed systems in the GM has been considered and sufficient conditions for stability have been derived
via Lyapunov approach. The problem of delay-dependent guaranteed cost control for uncertain 2-D discrete
state-delayed system described by the FM second model has been presented in [7]. In [8], the problem of robust
guaranteed cost control for uncertain 2-D discrete state-delayed systems described by the FM second model has
been considered. Several corrections in the main results of [8] have been made in [9]. In [10], the guaranteed
cost control problem via memory state feedback control laws for a class of uncertain 2-D discrete state-delayed
systems described by the FM second model has been discussed. Robust reliable control of uncertain 2-D discrete
switched state-delayed systems described by the Roesser model has been presented in [11]. The problem of pos-
itive real control for 2-D discrete state-delayed systems described by the FM second model via output feedback
controllers has been addressed in [12]. In [13], the problem of delay-dependent H_ control for 2-D discrete
state-delayed system described by the FM second model has been investigated. The problem of H_ control for
2-D discrete state-delayed systems described by the FM second model has been studied in [14] and a method to
design an optimal H_ state feedback controller has been presented. Here, it may be mentioned that [14] con-
siders the FM second model without uncertainties, but in the real world situation, the uncertainties in the system
parameters cannot be avoided.

With this motivation, we consider the problem of robust optimal H_ control for uncertain 2-D discrete
state-delayed systems described by the GM. The approach adopted in this paper is as follows: We first establish
a sufficient condition for the existence of y-suboptimal robust H_ state feedback controllers in terms of a cer-
tain linear matrix inequality (LMI). Further, a convex optimization problem is introduced to select a robust op-
timal H_ state feedback controller which minimizes the H_ noise attenuation level y of the closed-loop sys-
tem. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed technique.

2. Problem Formulation and Preliminaries

The following notations are used throughout the paper:
R" real vector space of dimension n.
R™ setof nxm real matrices.
0 null matrix or null vector of appropriate dimension.
I identity matrix of appropriate dimension.
G' transpose of matrix G .
diag {...} stands for a block diagonal matrix.
G >0 matrix G positive definite symmetric.
G <0 matrix G negative definite symmetric.
Consider the uncertain 2-D discrete state-delayed systems described by the GM [26].

x(i+L j+1)=Ax(i, j+1)+ Ax(i+1 j)+ Ax (i, j)+ Agx(i—d,, j+1)

+ A x(i+1, j—d,)+ A x(i—ky, j—k, )+ Bw(i, j+1) (1a)
+Bw(i+1 j)+Byw(i, j)+Cu(i, j+1)+C,u(i+1, j)+Cou(i, j),
z(i, j)=Hx(i, j)+Lw(i, j), (1b)

where 0<i, jeZ are horizontal and vertical coordinates, X (i, j)eR", u(i,j)eR" represent the state and
control input, respectively, z(i, j)e R” is the controlled output, w(i, j)eR" is the noise input which be-
longs to 7, {[0,0),[0,0)} and

A=(A+AA), A =(A+AA), A =(A+AA), Ay =(Ay+sA,),
Azu =(A2d+AA2d)' 'EOdz(AOd+AA0d)v §1=(Bl+ABl)' §2=(Bz+ABz)! (1c)
C,

B, =(B, +AB,), C,=(C,+AC,), C, =(C,+AC,), C,=(C,+AC,).
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The matrices A, A, AL Ay Ay Ay eR™, B,B,,B,eR™, C,C,C,eR™ , HeR"™ and
LeR™ are known constant matrices representing the nominal plant; d,, d,, k; and k, are constant posi-
tive integers representing delays. The matrices AA, AA,, AA,, AB,, AB,, AB,, AC,, AC, and AC,
represent parameter uncertainties in the system matrices, which are assumed to be of the form

[AAl AA, AA, ARy AAy, AAOd:':HOF(i’j)[El E, E; By Ey EOd]’ (1d)
[AB, AB, AB,|=H.F(i,j)[E, E; E] [AC, AC, AC,]=H,F(i,j)[E, E, E],

where H, eR™, E, E,,E;,Ey,Eyy, Epy €R™, E, E;,EqeR™, and E, E;,E,eR"™ are known
structural matrices of uncertainty and F (i, j) € R*! is an unknown matrix representing parameter uncertainty
which satisfies

FT(i,j)F (i, j)<1 (orequivalently, |F (i, j)[<1). (le)

It is assumed that the system (1) has a finite set of initial conditions [6], i.e., there exist two positive integers
r, and r,, such that

x(i,j)=h;, v0<j<n, i=-d;,~d;+1-,0

x(i,j)=v;, VO<i<r, i =—d;,~d, +1+-,0( -
x(i, j)=w;, Vi=[k,0], j =[*,,0]

Noo = Voo = Wpg

Definition 1 [14]. The system described by (1) is asymptotically stable if limX =0 with w(i, j)=0,
u(i, j)=0 and the initial condition (2), where X, =sup{||x(i, j:i+i=rijez}.

Definition 2 [14]. Consider the system (1) with u(i, j)=0 and the initial condition (2). Given a scalar
y >0, and symmetric positive definite matrices Q,,Q,,Q,,Z,,Z,,Z, € R™, the system (1) is said to have an
H_ noise attenuation » if it is robustly stable and satisfies

0

|L; .
J = sup — _ = <y 3)
oevers [W]f; + D, (d,, )+ D, (i, ) + D, (ki k, )
N ETEEN Cwa iy
—12 - . —[12 . .
where |z]; :Zz z(i+L )| . [w], :ZZ w(i+1, j)
i=0 j=0 Z(',]) i=0 j=0 W(l,])

D, (d,, j):i{xT (0,5 +1)Qux (0, j+1)+ 3 X" (1, j+1)Zx(1, | +1)},

=0 1=—d;

Dz(i,dz)=i{xT(i+1,0)Q2x(i+1,0)+ 5 xT(i+1,I)sz(i+1,I)} and

I=d,

D, (ky, k, )= _w |:XT(i,0)Q3X(i,O)+ i i (xT(i+m,n)ng(i+m,n))}

m=—k; n=—ky

-1

+i{XT(O, DX+ Y S (xT(m,j+n)Zax(m,j+n))}

m=—k; n=—k,

The following well established lemmas are essential for the proof of our main results.
Lemma 1 [27]-[29]. Let AeR™,DeR™ EeR"™ and Q=Q" e R™ be given matrices. Then, there
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exist a positive definite matrix P such that
[A+DFE]" P[A+DFE]-Q<0 @)

forall F satisfying F'(i, j)F (i, j)<1. ifand only if there exists a scalar £ >0 such that

~P™+¢DD’ A
{ AT g-lETE—Q}O' ©

Lemma 2 [30]. For real matrices M, L, Q of appropriate dimension, where M =MT and Q=Q" >0
then M +L'QL <0, ifand only if

ML

{ L —Ql} <0 (6)
or equivalently

-0t L

{ (L?T M } <0. (7)

3. Main Results
3.1. Stability and H,, Performance Analysis

The following theorem gives a sufficient condition for the system (1) to have a specified H_ noise attenuation.

Theorem 1.Consider the system (1) with u(i, j)=0 and initial condition (2), for a given positive scalar ,
if there exist symmetric positive definite matrices P,P,P,,R;,R,,R; e R™, satisfying P, >°Q,
P,>7’Q,, 0<P-P -P,>7’Q,, R <»°Z, R,<y?Z,, and R,<y*Z,, such that the following matrix
inequality

'AT] [A] [-R+R+HH 0 0

Al A 0 -P,+R,+H'H 0

A TA 0 0 ~P+P+P,+R,+H"H
Au | | A 0 0 0

Ay [Pl A | + 0 0 0

Avs | | Avs 0 0 0

Bl | | Bf L'H 0 0

B, | |B; 0 L'H 0

1By ] B | 0 0 L'H

o 0 0 HL 0 o ]

0 0 0 0 H'L 0

0 0 0 0 0 HTL
-R, 0 0 0 0 0

0 -R, 0 0 0 0 <0

0 0 -R 0 0 0

0 0 0 L'L-% 0 0

0 0 0 0 L'L—7%1 0

0 0 o0 0 0 LUL-y1 ®)
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holds, then the system (1) is asymptotically stable and has a specified H_ noise attenuation y.

Proof: To prove that the system (1) is asymptotically stable, we choose a Lyapunov-Krasovskii functional
[14]

V(x(i, ) =Va (x (i, §))+V, (% (i, 1)) +Vs (x(i, 1)), ©

where

V, (x(i,§)) =" (i, ) Pyx (i, J)+ 2 X7 (i, j+ 1) Ryx (i, j +1),

1=d,
-1 -1

Vo (x(i, ) =x" (i, ))(P =P =P x(i, j)+ 2. > X' (i+m, j+n)Ryx(i+m, j+n).

m=—ky n=—ky

Itis explicit that V (x(i, j))>0.
The forward difference along any trajectory of the system (1) with u(i, j) =0 and w(i, j)=0 is given by
AV (i+1, j+1) =V (X (i +1 j+1))+V, (x (i +1, j+1)) +V, (x (i +1, j+1))

-V, (x (i, j+1)) =V, (x(1+1 )= V5 (x(i, §))

Cox@i+) T([AFT (AT [-R+R O 0 0o 0 0]
x(i+1, ) A | A 0 -P+R, 0 0o 0 o0
_ x(i, ) A . A . 0 0 -P+P+P,+R, 0 0 0
x(i-d,j+1) | || AL | | A 0 0 0 R 0 0
x(i+1j-d,) | || AL | | AL 0 0 0 0 -R, 0
x(i-k.i-k)| |[AL | AL | o0 0 0 0 0 -R]
x(i, j+1)
x(i+1, )
| x
x(i—-d, j+1)
x(i+1j-d,) (10)
x(i—k, j—k;)
Applying Lemma 2 on matrix inequality (8), we obtain
‘A7 [AT]T [-P+R 0O 0 0 0 0]
Al || A 0 -P+R, 0 0 0 0
S P,S . 0 0 -P+P+P,+R, 0 0 O -0, 1)
Au Ay 0 0 0 -R 0 0
AL | | AL 0 0 0 0 -R, 0
ALl AL | o 0 0 0 0 -R|
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Thus, from (11), itimplies that AV (i +1, j+1) <0. Hence, system (1) is asymptotically stable.

In order to establish the H_ performance of the system (1) with the control input u(i,j):o for

w(i, j)e(,{[0,20),[0,0)}, we consider

w(i, j+1)] [w(i, j+1)

2(i, j+1)] [ 2(i, j+1)
AV (i+1 j+1)+| z(i+1§) | | z(i+L ) |-7* | w(i+1 ])
z(i,§) || z(ii) w(i, j)
x(i, j+1) (ATl [AT] [-P+R,+HH
X(i+l,j) KZT E\ZT 0
x (i, §) ALl TA 0
x(i-dy, j+1) | [ Ay | | Ag 0
= X(i+1’j_d2) Ksz '&;d + 0
X(i_kl!j_kz) 'E‘on '&on 0
w(i, j+1) B/ B, L"H
w(i+1, j) B | | & 0
w(i, j) 1By | | By | | 0
0 0 0 HTL 0 0 |
0 0 0 0 H'L 0
0 0 0 0 0 HTL
R, 0 0 0 0 0
0 -R, © 0 0 0
0 0 -R 0 0 0
0 0 0 L'L-I 0 0
0 0 0 0 L'L—521 0
0o 0 o0 0 0 L'L—»%1

It follows from matrix inequality (8) that

M
M

I
o
I

o

which implies

2(i, j+1)] [2(i, j+1)
AV (i+1 j+1)+| z(i+1 j)
2(i,J)

Summing the inequality (13) over i, j=0— oo, we get

2(i, j+1)] [2(i, j+1)
AV (i+1, j+1)+| z(i+1, ])

z(i, j)

M

Il
o

2(i, j)

j=0

2(i, j)

w(i+1 j)
w(i, J)

0

~P,+R,+H™H

x(i-d,, j+1

)
x(i+1 j—d,) |

X(i_kllj—kz)
w(i, j+1)
w(i+1 j)

w(i, J)

w(i, j+1)]
z(i+L ) [-7* w(i+1j)

w(i, j)

z(i+1 ) |- w(i+1 j)
w(i, )

iAv (i+1 j+1)+ |z - 72 W[ <0

0
0

—P+P+P,+R,+H™H

0

o O O o

L'H

w(i, j+1)

w(i+1j)|<0.

w(i, j)

w(i j+1) i w(ij+1)

w(i+1 j)
w(i. j)

(12)

(13)

(14)

(15)
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Inequality (15) can be re-written as

oc

71 -7 9l <= AV (i+1, j+1)

i=0 ]:0
-1

HXT (0, j+1)Px(0, j+1)+ > x" (1, j+1) R1X(I,j+1)ﬂ

I=—d,

M

0

]

-1

X" (i+L0)Px(i+10)+ > xT(i+1,I)R2x(i+l,I)ﬂ (16)

1="d,

+
‘MS

Il
o

XT(1,0)(P—P—P,)x(i.0)+ 3 3 X (i +mn)Ryx(i +m,n)H

m=—k n=—k;

+
'MS

Il
o

M

ST P-P-P)x(0j)+ 3 3 xT(m,j+n)R3x(m,j+n)j:|.

m=—k; n=—k;

o

Since P, <y’Q,, P,<yQ,, P-P-P,<»*Q,, R,<7?Z, R,<y?Z,,and R,<y’Z,, the inequa-
lity (16) leads to

-1

2 < {||w||z+z[( ©51Qx(0 1)+ 3 X (119103

I=—dy

-1

|:£XT(i+1,0)Q2X(i+1,O)+ > xT(i+1,I)R2x(i+1,I)]:|

e

i-0 _ _|=7d2 a7
+§HXT(i,O)Q3x( 0)+ mzk nz}( T(i+mn)Ryx(i+m, n)ﬂ
+§|:[XT (0, j)Q;x(0, j)+m_zl:k n_zl%( xT(m, j +n)R3x(m,j+n)H}.

Therefore, it follows from Definition 2 that the result of Theorem 1 is true. This completes the proof of Theo-
rem 1.
When we consider the case of zero initial condition, then H_ performance measure (3) reduces to

J — Sup "Z”Z (18)
0= vel, ||w||2

Using the 2-D Parseval’s theorem [31], equation (18) is equivalent to
|G(z2,), = sup O [G(ej“’l,e"‘"2 )] <7, (19)

@, [0,21]
where o, (.) represents the maximum singular value of the corresponding matrix and the transfer function
from the noise input w (i, j) to the controlled output z(i, j) for the system (1) is

G(Zl,zz): H (lez n" ZAi_ZlAZ Ao _Zl_dlzzAm _lez_d A2d _Zl_klz szOd)
x(2,B,+2,B,+B;)+L.

(20)

3.2. Robust Optimal H,, Controller Design

Consider the system (1) and the following state feedback controller

u(i, j) = Kx(i, j). (21)
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Applying the controller (21) to system (1) results in the following closed-loop system:
x(i+1 j+1) = (A +CK)x (i, j+1)+ (A, +CK ) x(i+1, j)+( A +CoK ) x(i, j)
+ALX(i—dy, J+1)+ A x(i+1, j—d, )+ Agyx (i—k;, j—k,) (22a)
+Bw(i, j+1)+B,w(i+1 j)+B,w(i, j),

z(i, j)=Hx(i, j)+ Lw(i, j).

The following theorem presents a sufficient condition for the existence of a controller of the form (21) such
that the closed-loop system (22) is asymptotically stable and the H_ norm of transfer function (20) from the
noise input w(i, j) to the controlled output z(i, j) for the closed-loop system (22) is smaller than y. Such
controller is said to be a j~suboptimal robust H_ state feedback controller for system (1).

Theorem 2. Consider the system (1) and initial condition (2). Given scalars » >0 and & >0, if there exist

(22b)

amatrix N € R™" and symmetric positive definite matrices P,P,P,, R,,R,,R, € R™" such that

[-F,+R, 0
* -P,+R,
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
0 0 PE/
PHT 0 PE,
0 PHT PE]
0 0 PE]
0 0 PEj,
0 0 PEg,
0 0 E;
L 0 =
0 ' E
0 0
0 0 0
-1 0 0
* - 0
* * gl
* * *
* * *
* * *
* * *
* * *

-P+

m
~o
zZ

O O O O O O O O o o o o o

P

P,

* + O O

*

pd

O O O OO O O O O O O o o®+4o

+

0
0
0
-R
*
*
*
*
*
*
*
*
*
0 0
0 0
E;N 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
—¢l 0
* —¢l
* *

0

o o o

*

M

O O O O O O O O O O O O o o o o o o

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
ﬁ3 0 0 0
* 0 0
*x 0
* * * 772 |
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
<0,

PAT+NTC] PHT
PAJ+N'C; 0
PAl +NTC/
PA],
PA,
PA;,
B/ L'
B,
By
—P+eHH, O

o O o o

o o

* *
* *
* *
* *
* *
* *
* *
* *

(23)
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then the closed-loop system (22) has a specified H_ noise attenuation y and controller (21) with
K=NP"* (24)

is a y~suboptimal robust H_ state feedback controller for the system (1).
Proof: Extending the matrix inequality (8) for the closed-loop system (22), we obtain

T — = \TT [/= = 771
(A +CK) (A +CK)
- = T - = T
(A, +C,K) | |(A,+C,K)
— — T — — T
(A +CoK) | | (A +CoK)
Ay |pl A
AT AT
d d
AT AT
d d
B/ B/
B, B,
. B L B
P, +R+H'H 0 0
0 ~P,+R,+H™H 0
0 0 ~P+P+P,+R,+H™H
0 0 0
+ 0 0 0
0 0 0
L"H 0 0
0 L'H 0
I 0 0 L"H
0 0 0 HTL 0 0 |
0o 0 0 0 HTL 0
0 0 0 0 0 HTL
-R, 0 0 0 0 0
0 -R, O 0 0 0 <0. (25)
0 0 -R, 0 0 0
0 0 0 LL-y 0 0
0 0 0 0 L'L—%1 0
0 0 0 0 0 L'L—y*1 |

Applying Lemma 1 on (25), we get
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Pl4gHH, 0 0 0 A +CK Aa + CK
* -1 0 0 H 0
* * ] 0 0 H
* * x| 0 0
e e e peREE e KTEIEK e,
* * Kk * * —PZ+R2+871E;—E2+871KTE;E8K
) L . «
* * k% * *
) o . «
* * k% * *
* * * * * *
) L . «
* * k% * *
A, +C,K Ayg Ao
0 0 0
0 0 0
H 0 0
SEE, CEE CEE
e, SEE, SEE
~P+P +P,+R;+&'E; E; +& 'K Eq EK = =5 ¢ B Ey
* -R +&ELE, e EyE,
* * —R, +67E;Eyy
. . “
X . «
) . “
X . «
A, B, B, B, _
0 L 0 0
0 0 L 0
0 0 0 L
£ EJE, ¢EJE, ¢ EEs e EE
& 'EJE, o ElE, & 'EJE, e'E By |<0.
¢ ELE, ¢ ELE, ¢ ELE, ¢ EyEs
e 'E ) Eq £ EyE, ¢ EpEs & By
Ry +e EpEyy e ELE, & 'EgEq & 'EgEq (26)
* 21 +g'1E4T E, 5_1E4T Es 8_1E4T =
* * -1 +&'E] E, ¢ Eq Eq
* * * 721+ Eq Eq

Applying Lemma 2 in (26), we obtain
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(-P+ R+ & 'EJE, + & 'KTEJEK)

& 'E/E,

* (=P, + R, + £ 'EJ E, + & 'KTE] E,K )
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
g’lElT E, 8’1E1T E, g’lElT E,
¢ 'E,E, ¢ 'E,E, ¢ 'E, E,
(-P+P+P,+Ry+& 'EJE, + £ 'K'EJE,K) ¢ 'EJE, e 'EJE,
* (-R + & EgEy) s'ENE,
* * (-R, + & EgyEyy )
* * *
* * *
* * *
* * *
* * *
* * *
* * *
* * *
s'E]E, s'E[E, e 'E[E, (AT+K'C) HT 0 0
e 'EJE, £ 'EJE, £ 'EJE, (A+KTC]) 0 HT 0
£'EJE, s'EJE, s 'EJE, (A+K™C;) 0 0 HT
e 'ELE, e 'ELE, e'ELE, y 0 0 0
e 'EE, & 'E ) Es & 'E ) Eq A, 0 0 0
eEgE, £ EgyEsg e 'EqgyEs o 0 0 0
7?1 +&7'EJ E, & 'EJE, ¢ 'E]E, B/ L' 0 o0
* 7’1 +&7'E, E4 & 'Eq Eg B, 0 L 0
o * 7?1+ EJ E, B; 0 0 LU
* * * -P'+eHH, 0 0 0
* * * * -1 0 0
* * * * * _I 0
* * * * %

Pre-multiplying and post-multiplying both sides of the inequality (27) by
diag{P~*,P, P, P, PP 1,1, 1,1, 1,1,1}, we obtain

(~Rs+ & EgyEq )

<0.

e'E'E,
& 'E, Eq
e 'E; E,q
e 'ELE,

1T
e EuE,

*
*
*

*

(27)
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P (-P+R,+&'EJE +¢ 'KTEJE,K)P

*

*

*

*

*

Pe'ESE,P
P'¢'E,E,P"

P'(-P+P+P,+Ry+c ' EJE,+2 'KTEJE,K)P™

PreElE,P!
P'e'E,E,P
PleE, E,P!
Pre'ELEP
P e E,E P!

P (-Ry+5 ' EgyEqy ) P

*

*

*

*

*

*

*

1(A1T+KTC1T) PiHT

b
P (AT +KTCT)
P (A +KTCT)
P A
P A
PA
B/
B,
By
~P 4 eH H]
*
*

*

0
0
0
0
0

LT

o

*

*

P'¢'EE,
P'¢'E,E,
P EJE,
Pl 'ELE,
P'¢'ENE,
P'e'EgE,
- 1 +¢EJE,

*

*

*

*

P'e'E E,P

P (-P,+R, +&'EJ E, +& 'KTEJ E,K )P

*

*

*

*

*

P¢'EE,P?
P'¢'E E,P

P (-R +&EEy )P

P EE,
P'¢E, E,
P E] E;
PleELE,
P'e'E),E;
Pl Eq, Es
& 'E, E,
1+ EJE,

*

*

*

*

<0.

Pl tE]E, P

*

*

*

*
*
P e 'E] Eq
P'eE, E,
P E] E,
PleELE,
P'¢'E, Eq
P e 'Eg, Eq
&s'E] E,
sEJE,
-1 +¢EJE,
*
*
*

*

PleE]E,P
PleE;E,P
PleE]E,P!
Ple'ELEP!
P (-R, +& Ej4Eyy )P
*

*

*

(28)
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Denoting P=P*, P =PPP, P,=PP,P, R =PRP, R,=PR,P, R,=PR,P, and N=KP in
(28), the equivalence of (28) and (23) follows trivially from Lemma 2. This completes the proof of Theorem 2.

Remark 1. Note that, if there is no uncertainty in system (1) and we set A, = A,, =B, =C, =0, then LMI
(23) coincides with the criteria for the existence of H_ state feedback controllers for 2-D discrete state-delayed
system given in [14].

Theorem 2 presents a method of designing a set of ysuboptimal robust H_ state feedback controllers (if
they exist) in terms of feasible solutions to the LMI (23). In particular, the robust optimal H_ controller which
minimizes the H_ noise attenuation y of the closed-loop system (22) can be determined by solving a certain
optimization problem. Based on Theorem 2, the design problem of a robust optimal H_ controller can be for-
mulated as

minimize y° (29)
s.t. (23).

4. Illustrative Examples

In this section, two examples illustrating the effectiveness of our proposed method are presented.
Example 4.1: Consider an uncertain 2-D discrete state-delayed system given by (1) and initial condition (2)

with
[o6 1 o o oo [o] [0
A= 002 of A= 01 0.6/ A= 0 021 * 0002 "? |0.04]|

c [0 [o o o o foo o] g [0
°"_o.01}’ A“’{o 0.03}’ A“{o 0.09}’ A“"{o 0.02}’ 1"[0.04}’

[0 0 0.001 0.002
B, = , By = , H=[0.01 001], H, = , L=05,

0.03 0.02 0 0
- (30)
003 O 005 O 0001 O 009 O
El = y EZ = ’ E3 = ' Eld = !
0 0.03 0 0.05 0 0.001 0 0.09

m

_[006 0 . _f008 0 E_O.l E_—o.oo7 E_-o.7
200 o006 ™ | 0o o008 “ ol | o | " |o/

-0.001 0.2 0.3
E7:[ 0 ] E8:|:O:|’ '59:{0}l d =3,d,=4,k =3k =2

We wish to design a robust optimal H_ controller for the above system. Using the Matlab LMI toolbox [30]
[32], it is found that the optimization problem (29) is feasible for the present example and the optimal solution is
given by

(e

5_ 31.3617 -14.0417] _ [11.7299 -2.2597] _ [9.4330 -56712
-14.0417 11.9625 |’ 22597 31922 |" ? |-5.6712 4.2997 |

_ 3.6479 -2.5450| -~ 59778 —-45516| - 2.7307 -1.8462
Rl = y R2 = y R3 = y (31)
—-2.5450 1.9116 —4.5516 3.6430 -1.8462 1.3727
N =[115.1984 -143.0584], &= 4.2278x10", y =0.5036.
Thus, the robust optimal H_ state feedback controller is obtained as
K =[-3.5435 -16.1184]. (32)

Figure 1 shows the frequency response from noise input w(i, j) to the controlled output z(i, j) for the
closed-loop system (22) over all frequencies i.e. |G(el™,e!* l 0<w <£2n, 0<w, <2xn. The peak value of
the frequency response is 0.5029, which is lower than the specified level of attenuation y = 0.5036.

Example 4.2: Consider the thermal processes in chemical reactors, heat exchangers and pipe furnaces [33]
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0.504 ~
0.503 4
G(0,0,)|
0.502 4

0.501

80

40
®,(0.1rad / sec) ®,(0.1rad / sec)

Figure 1. The frequency response G (ej“’l,ei“’) .

[34], which can be expressed by the following partial differential equation.
aT(xt)  aT(xt)
= —a,T (X 1) =aT (X=X, ,t)=a,T (xt=7,)-a,T (x=x, ,t-7,)+bu(xt),  (33)
where T (x,t) is the temperature at space XE[O,Xf] and time te[0,:0], u(x,t) is the input function, z,
and 7, are the time delays, x, and x, are the space delays, and a,, &, a,, @, b are the real coeffi-
cients. Taking

T(i,j)=T(iAx, jat), u(i, j)=u(iAx, jat) (34)
aT(x,t)zT(i,j)—T(i—l,j) aT(x,t)zT(i,j+1)—T(i,j) (35)
X AX oot At

(33) can be written in the following form:
T(i,j+1)=£1—%—aoAth(i, j)+%T(i—1, §)— 8T (i —d,, )~ a,AtT (i, j—d,)
X X

—a AT (i—k;, j—k,)+bAtu(i, j),
where d, =int(x, /AX), d,=int(z,/At+1), k =int(x, /Ax) and, k, =int(r,/At+1), int(.) is the in-
teger function.
It is assumed that the surface of the heat exchanger is insulated and the heat flow through it is in steady state

. - aT (xt) aT (x,t)
condition, then we could take the boundary conditions as B =0 and 5
X

(36)

=0, respectively.

Denoting x' (i, j) :L\;T (i-1j) T'(i, J)] it is easy to verify that (36) can be converted into the follow-
ing 2-D state-delayed G

01 0 0 0 O
x(i+1,j+1)={0 0}x(i,j+1)+ At 1—£—a0At x(i+1,j)+ 0 At x(i, j)
AX AX AX
0 0 . . 0 0 . .
J{O _alAJx(l—dl,ﬁl)J{0 _azAt}x(Hl,j—dz) (37)

J{g 0 }x(i_kl,j—kz)J{biJu(Hl, j)-

—a At
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Let At=0.1,Ax=04,8,=1 @a=-03, a=-03 a=-02, b=04, d,=3 d,=2, k=2 Kk,=1
and the initial state satisfies the condition (2) with r, =3, r, =2. To consider the problem of H_ distur-
bance attenuation, the thermal process is modeled in the form (1) with

0 0 0
B, = /B, = By = ,H=[0.01 001],L=05. (38)
0.004 0.004 0.004

It is also assumed that the above system is subjected to the parameter uncertainties of the form (1c) and (1d)

with
0.001 0.002 0.005 0 0.005 0
HO = y El = y EZ = ’
0 0 0 0.005 0 0.005

0001 O 0.009 0 0.006 0
E, = , B = v By = )
0 0.001 0 0.009 0 0.006
0.008 0 0.001 —-0.007 —-0.007
EOd = ’ E4 = ) E5 = ) Es = y
0 0.008 0 0 0

~0.001 0.002 0.003
SRS

Now, using the Matlab LMI toolbox [30] [32], it is found that the optimization problem (29) is feasible for the
considered system and the optimal solution is obtained as

(39)

L=

) =

5_ 2.8488 -0.7935 5 1.0044 -0.4373 5 0.8480 -0.2275
-0.7935 0.8105 |’ -0.4373 0.5537 | -0.2275 0.1723 |’

_ 0.2319 -0.1091| _ 0.3077 -0.1819| _ 0.2023 -0.0915
R, = , R, = , Ry= , (40)
—-0.1091 0.0720 -0.1819 0.1424 —-0.0915 0.0594
N =[-9.0892 -8.2432], £=7.7138x10%, » =0.5003.
Thus, the robust optimal H_ state feedback controller is given as
K =[-8.2820 -18.2795]. (41)

0.5003 §

0y
e 62.2
- TR v -
DY

0.5002
G(o,,0,)|

0.5001

0.5 4

RN
N,
s

0.4999 |

0.4998
80

60 o 80

®,(0.1rad / sec) 40031 (0.1rad / sec)

Figure 2. The frequency response G (ej“’l,ej“’) .
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Figure 2 shows the frequency response from noise input w(i, j) to the controlled output z(i, j) for the
closed-loop system (22) over all frequencies i.e. |G(e'®,e'* ), 0<w <2n, 0<w, <2xn. The peak value of
the frequency response is 0.5002, which is lower than the above obtained specified level of attenuation
y =0.5003.

5. Conclusion

In this paper, the problem of robust optimal H_ control for a class of uncertain 2-D discrete state-delayed sys-
tems described by the GM has been studied. A sufficient condition for the existence of y-suboptimal robust H_
state feedback controller has been derived in terms of the feasible solutions to a certain LMI. The desired robust
optimal H_ controller has been obtained by solving a convex optimization problem. Finally, two illustrative
examples have been provided to demonstrate the applicability of the proposed approach.
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