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ABSTRACT 
This paper investigates the generalized Parseval’s theorem of fractional Fourier transform (FRFT) for concentrated data. 
Also, in the framework of multiple FRFT domains, Parseval’s theorem reduces to an inequality with lower and upper 
bounds associated with FRFT parameters, named as generalized Parseval’s theorem by us. These results theoretically 
provide potential valuable applications in filtering, and examples of filtering for LFM signals in FRFT domains are 
demonstrated to support the derived conclusions. 
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1. Introduction 

In signal processing, data concentration is often consid- 
ered carefully via the uncertainty principle [1-8]. In con- 
tinuous signals, the supports are assumed to be ,  , 
based on which various uncertainty relations [1,2,9-27] 
have been presented. However, Parseval’s theorem has 
not been discussed for multiple FRFT domains anywhere 
else. As the rotation of the traditional FT [28], FRFT 
[5,6,22,23,29] has some special properties with its trans-
formed parameter and sometimes yields the better result 
such as LFM detection [30]. Readers can see more de-
tails on FRFT in [6] and [31] and so on. Another impor-
tant issue in signal processing is filtering. Filtering in 
frequency domain is widely employed for its easy im- 
plementation and high efficiency in many cases [5,32]. In 
this paper, after the introduction of generalized Parseval’s 
theorem, we will discuss the filtering in FRFT domains 
and its performance as the successive application. 

In this paper, we make a few contributions as follows. 
The first contribution is that we derive the generalized 
Parseval’s principle in form of inequalities, which illu-
minates the new energy property for multiple FRFT do-
mains. The second contribution is that we discuss the 
filtering in multiple FRFT domains as an application of 
the above derivative, which verifies the above conclu-
sions and shows the advantages over the traditional case. 
In a word, there have been no reported papers covering 
these results and conclusions, and most of them are new 
or novel. 

2. Preliminaries 

Before discussing the uncertainty principle, we will in- 
troduce some relevant preliminaries. Here we first briefly 
review the definition of FRFT. For given continuous sig- 
nal 1 2( ) ( ) ( )x t L R L R   and 

2
( ) 1x t  , its FRFT [6] 

is defined as 
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where  and  is the complex unit, Zn i   is the 
transform parameter defined as that in [6]. In addition,  

     F F x t F x t    . If    , 

    F F x t x t   , i.e., the inverse FRFT  

     , dx t X u K u t 



  u . 

However, unlike the discrete FT, there are a few defi- 
nitions for the DFRFT [31], but not only one. In this pa- 
per, we will employ the definition defined as follows 
[6,31]: 
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Clearly, if π 2  , Equation (2) reduces to the tradi- 
tional discrete FT [6,35]. Also, we can rewrite definition 
(2) as 

X̂ U X   , 

where  ,
N N

U u k n  
    , .  

1N
X x n


    

For DFRFT we have the following properties [5,6,31]: 

  2 πkU U X X U X      , 

22

ˆ 1X U X   . 

More details on DFRFT can be found in [6] and [31]. 

3. Generalized Parseval’s Theorem 

3.1. Denoising for a LFM Component 

We know that in frequency domain, often the main spec- 
trum energy only occupies small region, but the rest 
small spectrum energy occupies the most region. Instead, 
the noise (especially the Gaussian white noise) often oc- 
cupies the whole frequency domain equably. Hence, if 
we only preserve the main spectrum energy region with 
making the other region be zero, then the most of the 
signal will be preserved and the most noise will be re- 
moved. Using this manner, we can filter a LFM compo- 
nent efficiently. The filter can be defined as follows. For  
a given signal  x n  and its FRFT  x̂ k , we define 

the function  as )(kH

   0 01, 2, 2

0, else

n k N k N
H k     







    (5) 

We can obtain the filtered signal by 

      ˆx n F H k x k  
        (6) 

where W
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  and 
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 (which is empirical via lots of  

experiments) denotes the spectrum wave width at the half  

height of the max spectrum  x̂ k , 

   0
,

ˆ, arg max
k

k x
  k . 

We know that through modulating the parameter  

     to preserve the quantity of the signal and re- 

move the quantity of the noise. However, the above case 
is only suited for the single component. In any single 
FRFT domain it is impossible to obtain the high concen-
tration of two components that have different frequencies. 
For any single component, there is only one transform 
parameter   such that the component has the highest 
concentration in the FRFT domain under  . Therefore, 
for two LFM components it is possible to obtain the high 
concentration in two FRFT domains through segmenting 
the two components to two FRFT domains. Similarly, for 
multiple components it is possible to obtain the high 
concentration in multiple FRFT domains through seg- 
menting the multi-components to multiple FRFT do- 
mains. In the next section we will discuss the case of 
multiple FRFT domains. 

Figure 1 shows the relations between   and N  

for different 
π

2

p  
 


  without and with noise  

 5  . The LFM component 

    2i 0.005 0.00003 2048 π 4
e

n n
x n

    
  has the most concen- 

trated energy distribution if 0.49π  . Figure 1(a)  
shows the relation between   and N  for different  

  without noise. In such case, with the increasing of  
N ,   will decrease. Since the component  x n  has  

the highest concentration when 0.49π  , the differ- 
ence between N s  ( 7,31,51,91N   respectively) is  

small. However, when the Gaussian white noise with  
5   is added (Figure 1(b)), small N  has the better  

preserving of the original component. That is to say, in 
the presence of noise, the high concentration will lead to  
the better performance of filtering via small N . Here 

we set 
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  is 

the character function defined on N , and  

     ˆ ˆx k x k G k    with  is the DFRFT of 

the Gaussian white noise, in Figure 1(a), 

 G k

  0G k   and 

in Figure 1(b),   0G k  .   is the variance of the noise,  
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3.2. Generalized Parseval’s Theorem 

In this section, we assume that we have represented a 
signal in two DFRFT domains, i.e., if the signal X  is 
represented by the concatenation of two DFRFT bases  

U  and , i.e., U
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~

 is represented by DFRFT base matrix  (or ),  U U

from the Parseval’s theorem, we have 

1
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N
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2
 

N
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Now see the following theorem. 
Theorem 1: If the signal X  is represented by the  

concatenation of two DFRFT base matrixes U  and 

U , i.e., 
1 1

N N

n n n n
n n

X u u   
 

    , then we have 
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Proof: Now consider the following equation (below). 
Since U  and U  are two orthonormal bases [6, 

31], we can obtain 
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Figure 1. Relations between  and : (a) without noise, (b) with noise. αε αN
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This theorem implies if the signal X  is represented  
by the concatenation of two DFRFT base matrixes U  

and U , then the Parseval’s theorem doesn’t necessarily  

hold. Or maybe we can say that the Parseval’s theorem is 
only one special case of the energy inequality defined in  

Theorem 1: 
2
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and 0n
  . In order to unify this property, we call  

Theorem 1 as generalized Parseval’s theorem. 
This theorem clearly implies it is possible that the sig- 

nal energy might be less than 1 in multiple DFRFT do- 
mains. In other words, it is possible that a signal is rep- 
resented by much less “energy” in multiple FRFT do- 
mains. This means that if we have the sparsest represen- 
tation, it is just (and only just) possible that we can have 
the least “energy” as well. In other words, if we have the 
sparsest representation, it is possible that we can have the 
“energy” that is more than 1. Therefore, even if we have 
the sparsest representation in terms of 0-norm and 
1-norm, we cannot always obtain the least “energy” in 
terms of 2-norm, which is one main reason why we rep- 
resent signal via 0-norm or 1-norm instead of 2-norm. 

In the same manner, we can obtain the corollary on 
multiple DFRFT domains as follows. 

Corollary 1: If the signal X  is represented by the 
concatenation of multiple DFRFT base matrixes 
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4. Filtering for LFM Components 

The LFM component is one special type of signal but 
widely used in all kinds of fields [5,6]. Since its fre- 
quency function is linear, the spectrum of the LFM com- 
ponent is often a piece of (sometimes wide) line ap- 
proximatively in the time-frequency plane [6] (see Fig- 
ure 2). Its projection on frequency axis often occupies a 
very narrow piece (see Figure 2). Hence, if the FRFT 
parameter is adopted suitably, any LFM component can 
obtain its highest concentration. Rather than the com- 
parison with other filtering approaches (such as [32]), we 
would like to give some illuminations of filtering in 
FRFT domains in this paper. 

Here we give an experiment to show the idea. There 
are three LFM components  

       1 2 3x n x n x n x n      , where 
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 1, ,n N ,  and  

1024N  . Figure 3 shows the different FRFT under  
different transform parameter: 0.51π, 0.55π, 0.53π and 
0.50π (corresponds to FT). We find that in any FRFT 
domain, the concentration is not the highest. In the for- 
mer three figures, every figure has a very sharp peak, 
which corresponds to a highest concentration of one 
component. That is to say, if we extract the according 
highest concentrated component in the former three fig- 
ures respectively, then add them together, we can obtain  
the approximate  x n . In this manner, we can remove  

the most Gaussian white noise to obtain the better filtered 
result than any single FRFT domain. 

Hence, we can obtain the filter of LFM multi-compo- 
nents by 

 

 ˆax u  

LFM signal

u 

0 

u
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Figure 2. The projection of a LFM signal in time-frequency 
plane. 
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Figure 3. The absolute values of DFRFT of the three com-
ponents for different α. 
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Our filter has an alterable N  such that for different  

variance the filter has an adaptive capacity. Generally, the 
variance is given in advance approximately. If the vari-
ance is hard to estimate in advance, we will use fixed  
N  to take the place of the alterable N . If so, we take 

the fixed value 100 ~ 10N N N  . Table 1 lists the  

filtering comparison between different frequency do- 
mains for the signal  x n  defined in above. In our pro- 

posed method in Equation (7), we adopt two approaches:  
one is the fixed N  and the other one is the alterable 

N . The other four methods are respectively the filtering  

in different FRFT domains, whose FRFT parameter is 
0.50π, 0.51π, 0.55π and 0.53π, respectively. The other 
four methods are performed in single FRFT domain as  
defined in Equations (5), (6), whose N  is 400, 270, 250  

and 250, respectively. Instead, in our proposed method,  
 
Table 1. Filtering comparison between different DFRFT 
domain. 

MSE 

The proposed α σ 

fixed Nα alterable Nα π/2 0.5/π 0.55π 0.53π

0.1 0.535 0.0502 0.0063 0.0066 0.0425 0.0149

0.2 0.058 0.0535 0.0171 0.0128 0.048 0.0229

0.3 0.0623 0.0582 0.0364 0.0249 0.0586 0.0304

0.4 0.0665 0.0611 0.0637 0.0468 0.0759 0.049

0.5 0.0726 0.07 0.0887 0.0596 0.0997 0.0744

0.6 0.076 0.0717 0.1294 0.0868 0.1112 0.089

0.7 0.0826 0.0742 0.1793 0.1169 0.137 0.1071

0.8 0.0912 0.0852 0.2611 0.1498 0.1879 0.1558

0.9 0.0942 0.0912 0.2914 0.1817 0.2334 0.2054

1 0.096 0.0923 0.3668 0.1995 0.2154 0.1997

1.2 0.1361 0.1225 0.5583 0.3183 0.3289 0.302

1.5 0.2051 0.1832 0.8442 0.5568 0.5927 0.5591
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the fixed N  is 20 and the alterable N  is determined  

by  1,2,3
l

lW
N l 

  . 

Here      2 2

1 1

N N

n n

MSE x n x n x n
 

     . 

Clearly, when 0.1  , in the domain of  0.50πx̂ k

0.6

 

the filtered result is the best. When 0.1   , in the 

domain of  0.51πx̂ k  the filtered result is the best. When 

0.6  , our method based on alterable N  has the  

best filtered result. The reason lies in twofold. On one 
hand, the Gaussian white noise distributes equably in  
FRFT domain, the larger N  is, the more Gaussian  

white noise will be included. At the same time, with the  
increasing of N , more and more signal energy will be  

included. At the beginning, when   is small, the in-
creased noise is less than the increased part of the signal  
while increasing N , thus large N  will yield the bet- 

ter filtered result (see Table 1) in this case; and vice 
versa. This physical sense is just according to the uncer-
tainty relation shown in above (the relation between    
and N , see Figure 1). The second reason is the over- 

lapping of the signal energy in our proposed method.  
From the relation between   and N , when N N  , 

0  , otherwise 0 . In our method, despite what 

 is,  N N N  1   1 1
ˆ 1F H k k x

 
 will contain 

small parts of 2x n  and  3x n  besides the most of 

 1x n . Similarly,   2
 ˆ 2 2F H k x k

 
 will contain 

small parts of 1x n  and  3x n  besides the most of 

 2x n , and     3 3 3
ˆF H k x k

 1

 will contain small 

parts of x n  and 2 x n  besides the most of  3x n .  

When   is small, the influence of overlapping is 
dominant over that of noise, and vice versa. Therefore, 
our proposed method is the best only when   is big 
(see Table 1, 0.6  ). 

From the above analysis we have 

       1 2 3x n x n x n x n     
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where 0.51π  , 0.55π  , 0.53π  .  de-    G k

notes the DFRFT of Gaussian white noise for parameter 
,   and   respectively. N ,  N  and N  re- 

spectively denote the character functions on N , N  

and N . 

Now we consider  1x n


. In  1x n


,  

      2 3ˆ ˆN NF x k x k G k  
         N  can be  

taken as the additional noise. Also, the leaked part of  

 1x n


 is  1̂
c
Nx k
 , where c

N  is the supplemen- 

tary of N  on  That is to say, the difference be-
tween 

N .
 1x n


 and  1x n


 is 

        1 2 3ˆ ˆ ˆc
N N NF x k x k x k G k  

N             

(11) 

Obviously, MSE is mainly affected by four parts. With 

the increasing of N ,  1̂
c
Nx k
  decrease (accord-  

ingly  1̂ Nx k
  increase), but  

 2ˆ Nx k
 ,  3ˆ Nx k

  and   NG k
  will increa-  

se. If the increase of  1̂ Nx k
  is larger than the in- 

crease of  2ˆ Nx k
 ,  3ˆ Nx k

  and   NG k
 ,  

then MSE decrease, and vice versa. In the same manner, 
we can discuss Equations (9) and (10). In other words, 
that the signal has very high concentration and that the 
cross part is very small is the guarantee that filtering in 
multiple DFRFT domains has better performance. 

This experiment is simple, but very effective and use- 
ful in practice because the most filtering in frequency 
domain is in such form. This experiment tells us the limit 
of filtering in frequency domain because of the existence 
of uncertainty principles derived in this paper. 

5. Conclusion 

In practice, we often process the data with limited 
lengths for both the continuous (ε-concentrated) and dis- 
crete signals. Especially for the discrete data, not only the 
supports are limited, but also they are sequences of data 
points whose number of non-zero elements is countable 
accurately. This paper discussed the generalized Parseval 
principle on FRFT in term of data concentration. These 
relations illuminates that it is impossible to obtain high 
concentration for multiple LFM components with differ- 
ent frequencies in single FRFT domain. Therefore, it is 
hard to obtain the better filtering in single FRFT domain. 
Furthermore, we presented an alternative denosing 
method in multiple FRFT domains to filter the multiple 
LFM components. However, the extended Parseval’s 
theorem derived in this paper tells us that in most cases 
the energy in multiple domains will not be 1 and shows 
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the limit of filtering. The experiments disclosed the rela- 
tion between the high concentration and the filtering effi- 
ciency and the conclusions. 
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