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ABSTRACT 

Some applications are constrained only to implement low cost receivers. In this case, designers are required to use less 
complex and non-expensive modulation techniques. Differential Quadrature Phase Shift Keying (DQPSK) and Gaus-
sian Frequency Shift Keying (GFSK) can be non-coherently demodulated with simple algorithms. However, these types 
of demodulation are not robust and suffer from poor performance. This paper proposes a new method to enhance the 
performance of DQPSK and GFSK using Interactive Kalman Filtering (IKF) technique, in which a one Unscented 
Kalman Filter (UKF) and two Kalman Filters (KF) are coupled to optimize the demodulated signals. This method con-
sists of simple but very effective algorithms without adding complexity to the demodulators comparing to other very 
complex methods. UKF is used in this method due to its superiority in approximating and estimating nonlinear systems 
and its ability to handle non-Gaussian noise environments. The proposed method has been validated by creating a 
MATLAB/SIMULINK Bluetooth system model, in which the IKF is integrated into the receiver, which implement both 
DQPSK and GFSK, and run simulation in Gaussian and Non-Gaussian noise environments. Results have shown the 
effectiveness of this method in optimizing the received signals, and that the UKF outperforms the Extended Kalman 
Filter (EKF). 
 
Keywords: Interactive Kalman Filtering; Unscented Kalman Filter; Extended Kalman Filter; Differential Quadrature 
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1. Introduction 

Receivers with noncoherent demodulation have simple 
structures, but they don’t have robust performance [1-3]. 
Simple noncoherent demodulators are attractive in ap- 
plications where cost is a concern. For example, in Blue- 
tooth protocols [4], noncoherent detection of GFSK and 
variants of Differential Phase Shift Keying (DPSK) are 
specified due to their simplicity and low costs. Although 
these non-optimal techniques are sufficient in low noisy 
channels, they may suffer performance degradations in 
very noisy environments. 

In order to optimize the performance of the noncohe- 
rent demodulation, some complex Maximum Likelihood 
Sequences Estimator (MLSE) is utilized. An efficient 
method of implementing this estimation process is through 
the usage of the very complex Viterbi algorithm that sea- 
rches the paths through the state trellis for the minimum 
Euclidean distance path [1]. It was shown that using the 
Viterbi decoder in Bluetooth receiver achieved very su-  
perior performance, but added more complexity, com- 

paring to the noncoherent demodulation that consists of 
Limited Discriminator with integrating and dump filter 
[5]. 

DQPSK is one form of DPSK. It is a memoryless, and 
a discontinuous phase modulation, in which the current 
binary sequence is modulated independently of the pre- 
vious sequences. GFSK is a subclass of Continuous 
Phase Modulation (CPM), and an attractive modulation 
in many applications due to its enhanced spectral proper- 
ties. In modulations, where phase is not continuous, poor 
spectral efficiency is a real issue. Discontinuities and ab- 
rupt changes in phase cause this poor performance, mak- 
ing CPM a more favored scheme [2,6]. GFSK is a modu- 
lation with memory, in which the current transmitted 
signal depends on the current and previous binary se- 
quences. In DQPSK, the phase is constant over a one 
symbol interval, while in GFSK the phase varies con- 
tinuously over the symbol period [7]. Both DQPSK and 
GFSK can be detected non-coherently, which results in 
simplified transceivers [8]. 

In the latest Bluetooth specifications, two types of mo- 
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dulation schemes are specified. The first one is the GFSK, 
which is a form of Continuous Phase Frequency Shift 
Keying (CPFSK), and hence CPM [9]. It is used in the 
Basic Data Rate (BDR), with transmission rate at 1 Mbps. 
The other type is the Differential Phase Shift Keying 
(DPSK), which is used in the Enhanced Data Rate (EDR) 
with two variants, π/4-DQPSK and 8DPSK. The trans- 
mission rates are 2 Mbps for EDR using π/4-DQPSK and 
3 Mbps using 8DPSK [4]. Data are transmitted in frames 
of 625 µs time slots. Each frame is divided mainly into 
Access Codes (AC) and Payloads. In the EDR, the AC is 
modulated using one of the DPSK variants, while the 
payload is modulated using GFSK. No equalization re- 
quirements are specified in Bluetooth protocols in order 
to preserve the low complexity of the system, leaving 
this area open for researchers to propose efficient equali- 
zation and optimization methods that improve the per- 
formance of the system, but without inducing much 
costs. 

Significant amount of researches have been conducted 
to optimize the performance of the DQPSK and GFSK 
noncoherent demodulation. A. Soltanian and R. E. Van 
Dyck showed that in typical Bluetooth indoor applica- 
tions, the noncoherent limiter-discriminator with inte- 
grate and dump filter receiver, without equalization, achi- 
eves reasonable performance; but this is not the case for 
the outdoor and large indoor applications, where the sig- 
nal needs to be more robust. They suggested the usage of 
Viterbi receiver to get optimum results for such applica- 
tions [5]. In [9], N. Ibrahim, L. Lampe, and R. Schober 
presented a receiver design for a GFSK demodulator 
based on Laurent’s decomposition. They developed a 
Non-coherent Decision Feedback Equalizer (NDFE) and 
showed that it achieved a robust performance comparing 
to other equalization methods. In their method, they han- 
dled the nonlinearity in the modulation by transforming it 
into linear using Laurent’s decomposition. 

M. Nafie, A. Gatherer, and A. Dabak presented a non- 
adaptive a fractionally sampled Decision Feedback Equa- 
lizer (DFE) to be added after the discriminator to en- 
hance the performance of noncoherent GFSK receivers. 
The proposed DFE was non-adaptive, and they proposed 
this equalizer to be trained off line at a certain SNR and 
then this will be used in reception [10]. Harry Leib pre- 
sented his work that considered an optimal noncoherent 
demodulation of DPSK when the receiver has partial 
knowledge of the transmitted data. They proposed A 
Maximum Likelihood (ML) noncoherent receiver in [11]. 
The same technique was implemented for GFSK signals 
in [12]. 

Implementing Kalman Filtering to enhance the per- 
formance of noncoherent continuous and differential phase 

demodulation have been proposed in several articles. In 
[13,14], Gal, Campeanu, and Nafornita proposed a me- 
thod of applying Extended Kalman Filtering in the non- 
coherent demodulation of CPM and CPFSK respectively. 
In [15], O. Loffeld utilized the EKF in the demodulation 
of noisy phase or frequency of sinusoidal signals of un- 
known amplitude in the presence of an Additive Wide- 
band Gaussian Noise (AWGN). He assumed that the 
state space model of the unknown phase and amplitude 
were known. Those Proposed papers utilized lineariza- 
tion technique on the system before using the EKF. 

In 1960, Rudolf E. Kalman presented his Kalman Fil- 
ter method in [16]. KF is an estimator, in which it esti- 
mates the states in linear dynamic systems by minimizing 
the Minimum Mean Squared Error (MMSE). Kalman 
invented this based on modifying Wiener-Kolmogorov 
filter, which was derived in 1940 [17]. KF is originated 
from Baye’s probabilistic theory, in which if good num- 
ber of past samples are known, the future samples can be 
predicted and updated based on the continuously col- 
lected results [18]. Techniques have been proposed to 
modify KF to be applied to nonlinear systems. For ex- 
ample, EKF has been proposed in nonlinear systems es- 
timations by linearizing the estimated variables through 
deriving Jacobian matrices. However, EKF may not be a 
good choice in system with high nonlinearity, or systems 
that are very difficult to calculate their Jacobian matrices 
[19]. 

All the referenced techniques as mentioned thus far are 
either very complex, or suffer from inadequacy in han- 
dling nonlinearly and non-Gaussian noise environments. 
A better method to approximate nonlinear systems and 
apply Kalman filtering equations to them was proposed 
by S. Julier and J. Uhlmann [20]. UKF was derived based 
on the unscented transformation (UT) concept, which is 
used to approximate random variables distributions that 
are going through nonlinear transformations without a 
need to calculate the probability density functions (pdf) 
of the nonlinearly transformed variables. UKF has been 
demonstrated to be very effective in applications when 
dealing with nonlinear dynamic systems and non-Gaussian 
types of noises comparing to other filtering techniques 
[21]. Several types of UKF methods have been deve- 
loped based on different techniques of UT. These techni- 
ques include the General Unscented Transformation, the 
Scaled Unscented Transformation, the Reduced Sigma 
Point, and the Spherical Simplex Unscented Transforma-
tion [22-25]. In [26], M. Ali and M. Zohdy proposed 
using UKF in the equalization of CPFSK. They showed 
that UKF outperformed EKF when both implemented in 
the CPFSK. 

In this paper, we are proposing the implementation of 
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IKF to enhance the performance of the noncoherent de- 
modulation of DQPSK and GFSK. It will be shown that 
UKF has superior performance in approximating nonlin- 
ear systems, and in handling non-Gaussian noise than the 
already existed EKF methods. This proposed method is 
an attractive one in the sense that it has simple algo- 
rithms so that not that much complexity is added to the 
receivers comparing to the optimum demodulation. Si- 
mulation will be run on a developed MATLAB/SIMU- 
LINK model representing Bluetooth system. Results will 
be compared to those generated by the same model be- 
fore the implementation of this method, and when using 
EKF. 

This paper has been organized as follow. Introduction 
is presented in the Section 1. Section 2 will details the 
new method of the unscented transformation, and how to 
apply it in UKF. Section 3 will discuss the signal de- 
scriptions of DQPSK and GFSK, and Section 4 will de-
tail the system models of both. Section 5 will explain the 
IKF algorithms. In Section 6, the simulation and results 
will be listed. Section 7 lists the conclusion. 

2. Unscented Transformation and Unscented 
Kalman Filter 

The UT does not approximate the nonlinear process and 
observation functions. It approximates the statistics (mean 
and covariance) of the state variable x  which has di-
mension xn  by carefully choosing a deterministic set of 
sample points i  and their corresponding weights iW  
which have dimensions . These sigma points and 
their associated weights are chosen carefully to capture 
accurately the actual mean and covariance of the state 
variables, and when the sampled mean and covariance 
are propagated through a nonlinear system 

2 xn 1

 z h x , the 
a posteriori mean and covariance of the state variables 
can be estimated accurately up to the 3rd order of any 
nonlinearity [20]. The statistics of the random variables 
can also be approximated for higher nonlinearity (4th 
order and up) but with some errors. Figure 1 illustrates 
the principle behind the UT when some deterministic 
points are undergoing nonlinear transformation. 

2.1. Choosing Sigma Points 

There is no single method of choosing sigma points that 
guarantees global optimization of a system. Rather, many 
methods have been proposed in which each one has ad-
vantages and disadvantages over the others. Simon Julier 
proposed the Scaled Unscented Transformation (SUT) in 
[23] to be able to control the sigma points without the 
possibilities of the covariance to become non-positive 
semi-definite. In the SUT, the sigma points are calculated 
as follow: 

 

Figure 1. Nonlinear transformations using unscented trans- 
formation. 
 

 

 
  

2
0 0 0

:            

For   0 :

, , 1

For  1, , 2

1
       

              

2

   

m c

x x

x

m c
i i

x

i x x
i

i

x W W
n n

i n

W W
n

x n P

   
 







     
 



 


  







 (1) 

where,  2  x xn   n   , and  and  are the 
associated weights of these sigma points. The scaling 
factor 

m

iW c

iW

  is a tool to scale the sigma points towards or 
away from the mean. It should be noted that there is no 
general way to propose the values of the scaling factors 

, ,  and   

, ,  and 

. In each application, these values should be 
chosen to reduce the estimation errors for their specific 
problems. As an example, for Gaussian distributions, the 
scaling factors   

k

 can be set to 2, 0.001, and 0 
respectively for optimum estimation [21]. 

2.2. The Unscented Kalman Filtering 

The UKF is a novel method that was proposed in [20] to 
propagate the mean and covariance of a random variable 
through nonlinear systems using the unscented transfor- 
mation in order estimate the a posteriori mean and co- 
variance. The following lists the steps for the UKF algo- 
rithm based on the SUT. 

2.2.1. Nonlinear System Equations 
A nonlinear system can be represented as: 

1  , ,k k kx f x u w            (2) 

  ,k kz h x v k                (3) 

Equation (2) models the system process model, where 

kx  represents the states to be estimated, k  represents 
the input, and k  represents the process noise that has 
zero mean and covariance . Equation (3) models the 
observation model, where k  represents the measure- 
ment noise, which has zero mean and covariance . 

u
w

kQ
v

kR
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2.2.2. Initialization and Sigma Points Calculation 
The state vector and process covariance matrix need to 
be initialized as follow: 

0 0 0ˆ 0 0
Ta ax E xE x    

v

       (4) 

  0 0 0 0 0ˆ ˆ
Ta a a a aP E x x x x     

T

        (5) 

where 0 . Equation (1) can be used to 
derive  deterministic sigma points, which can be 
written as: 

 00 0
a wx x

2 1xn 

   1 1 1 1 1ˆ ˆ   ˆ a a a a a a
k k k x k k x kx x n P x n P     

     
 1 

  

(6) 

2.2.3. Time Update Equations 
The sigma points in Equation (6) are propagated through 
the nonlinear process function in Equation (2) to give: 

 | 1 1,a a
k k k kf u              (7) 

The sampled predicting mean and covariance of the 
state variable are calculated in the next two equations. 
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n
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 

                 (8) 

  | 1 , | 1 | 1 , | 1 |
0

2

1ˆ ˆ   
x Tc a a

k k i i k k k

n

k i k k k k
i

P W x x   


        (9) 

2.2.4. Measurement Update Equations 
In order to derive the measurement update equations, the 
sigma-point states as derived in Equation (7) need to be 
propagated in the nonlinear measurement model in Equa- 
tion (3). 

 | 1 | 1 1,a
k k k k kvh   






1



        (10) 

The output sampled mean and covariance are captured 
as follow: 

| 1 , | 1
0

2

ˆ   k k i i k

x
m

k
i

n

y W


         (11) 

  , | 1 | 1 ,
0

2
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i

n

P W y y   


       (12) 

The cross covariance of the state and measurement can 
be calculated as: 

   , | 1 | 1 , | 1
0

2

|ˆ ˆ   
x Tc a

x y i k k k k i k k k

n

k
i

P W x y   


       (13) 

Using the conventional KF equations, we can calculate 
Kalman gain as: 

1
,k x y yK P P             (14) 

where, yP  and ,x y  are derived in Equations (12) and 
(13) respectively. The Kalman gain as derived in Equation 
(14) can be used in the following equation to calculate the 
updated a posteriori mean of the states. 

P

| 1 | 1ˆ ˆ ˆ k k k k k k kx x K y y           (15) 

Finally, the update covariance can be expressed as: 

1     T
k k k k yP P K P K  k           (16) 

3. π/4 DQPSK and GFSK Signal Description 

3.1. π/4 DQPSK Signal Description 

The π/4-DQPSK is a version of DQPSK, but shifted by 
π/4. For simplicity we refer to π/4-DQPSK as DQPSK 
throughout this paper. Its transmitted signal can be rep- 
resented as [27]: 

    2 cos 2π ,  0i s s c i ss t E T f t t t T      (17) 

where  is t  represents the carrier-modulated signal,  i t  
is the information-carrying phase that mapped to a sym- 
bol , i sE  and sT

1,2,
 are the symbol energy and duration 

respectively. ,i M   and M  is the number of 
symbols, which is 4 in the case of DQPSK. At t k  the 
dynamic behavior of the phase can modeled as: 

 1 mod 2πk k k              (18) 

where the addition is modulo . k2π   is the value, 
which results from mapping the binary sequences to the 
phase representation. Thus, 11, 01, 00, 10 sequences are 
mapped to π 4, 3π 4, 3π 4, π 4   respectively. Equ- 
ation (18) shows the dynamic transition when phase is 
changing from current transmitted symbol to the next one. 
The Inphase kI  and Quadrature k  components (com- 
plex envelops) of the transmitted signal of the  sym- 
bol are determined as follow: 

Q
kth

    1 1cos cos sink k k k kI I Q k           (19) 

    1 1sin sin cosk k k k kQ I Q k           (20) 

The Inphase kI  and Quadrature kQ  are functions of 
the phase k  which is in turn functions of the previous 
state 1k   and the current input k . This is modulated 
this way so that the only information needed at the de- 
modulator side is the difference between the consecutive 
received phases, which enable simpler noncoherent de- 
modulation. The In-phase and Quadrature are passed 
through pulse shape filters to smooth the pulses and con- 
serve the bandwidth. When pass through these filters, the 
resulted pulses are represented as: 

   
0

1

0

1

2 2
   cos

N N
s s

k
k k

k s s

T T
I I P t kT Pt t

 

           
   

   kT  

(21) 
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There are several forms of the pulse shapes  P t , 
which can take the forms of Gaussian, Raised Cosine, 
and others. When these components are multiplied by the 
carrier, the resulted baseband modulated signal is: 

      ( ) cos 2π sin 2πc cS t I t f t Q t f t       (23) 

3.2. GFSK Signal Description 

The transmitted carrier-modulated GFSK signal can be 
represented in the following format [12,27]: 

   , cos 2π2 s s cs t a fE T t t a  ,    (24) 

The complex baseband waveform of this signal can be 
expressed as: 

  ( , ) 2 i
s s

t av t E T e            (25) 

where the phase can be represented as: 

      
1

π  2π,
n L n

s
k k n L

h a k h a k q t kTt a


   

     (26) 

where  1s snT t n T   ,  ,s t a


 represents the carrier- 
modulated signal,  is the time-varying phase of 
the carrier, 

 ,t a
sE  is the symbol energy, sT

a

 is the symbol 
duration, and c  is the carrier frequency. The digital 
sequence k  represents the M-ary information symbols 
that can take the following symbol format  

, and for binary sequences, k . h is 
the modulation index. The first term on the right side of 
Equation (26) models the phase history.  is the 
phase response, which is derived by integrating a pulse 

f
a

 , 1M 
1, 2, 3,  
  1,1 

 q t



 g t , and  is the length of this pulse (per unit L sT ). 
 g t  is defined as the instantaneous frequency of  q t . 

The shape of  g t  determines the smoothness of the 
transmitted carrying information phase [28]. For example, 
in the case of GFSK,  g t  is shaped using Gaussian 
pulses instead of rectangular as this the case in CPFSK. 
There are Different pulse shapes, such as Raised Cosine 
(RC), and Gaussian Minimum Shift Keying (GMSK), 
etc. 

4. π/4 DQPSK and GFSK System 
Description 

In Kalman Filtering, two steps are performed; prediction 
and update. It is important that the received signal to be 
predictable in order to use Kalman Filters. Thus, the 
system under study needs to be modeled to allow per- 
forming prediction. Both DQPSK and GFSK dynamic 

systems will be modeled nonlinearly, and transformed 
into state space format so that Kalman filtering can be 
applied. In the noncoherent DQPSK, the current phase is 
a function of the previous phase and the current input, 
making it possible to do the prediction task of the next 
phase. In the case of GFSK, or any other CPM, Kalman 
Filtering can be an attractive technique since the transi- 
tion in phase is continuous, and the changes do not occur 
abruptly, making the prediction step possible also. 

4.1. π/4 DQPSK Dynamic System Description 

Before the signal goes through decoding and decision 
state, it goes through the proposed Interactive Kalman 
Filtering for optimization. In order to apply Kalman Fil-
tering, we need first to derive the state space equations 
that describe the system. The RC shaping pulse  g t  
causes the phase response  to be nonlinear. There- 
fore, at 

 q t
t k , the phase can be represented nonlinearly 

using Euler’s formula as:  

  1, k k kt a h f       1



k

      (27) 

where the delta change  representing the 
change from one phase to the next one can be approxi- 
mated as:  

 1kh f  

 2

1 1k k k w               (28) 

Equation (28) is the first order difference equation of 
the phase.   is a discrete value and constant 
over one symbol duration.  represents the symbol se- 
quences, and k  is the process noise, which is assumed 
to have zero mean and variance 

2

1k 

w
a

2
w .  is the step size, 

which is treated as a fixed number in this paper, that de- 
termines the change value from  to . The 
smaller this value is, the smaller the nonlinear appro- 
ximation error is. 

h

k 1 k

 1k  is the rate of the change 
(slope) at 

f
1t k

 

  . If a rectangular pulse shape  g t  
was considered as it is the case in CPFSK, than equation 
(27) can be modeled linearly as 
 , |t kt a 1 1kk k       [13]. However, for GFSK, 

this behavior is nonlinear, and Equation (27) can be rep- 
resented as:  

   

   2

1, |t k k k kt a        1       (29) 

4.1.1. State Transition Model 
There are two states in the system, the phase k  and the 
difference equation k  that need to estimated. The 
following equations represent the dynamic system of the 
DQPSK in state space format.  

 2

1k k k      1

k

           (30) 

1k k w                (31) 
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These can be written in the following matrix format: 

 2

1 1

1

0

1
k k k

k
k k

w
  
 

 



                 




     (32) 

In order to calculate , some a priori knowle- 
dge of k

 2

1k 
  at  is needed. Thus, Equation (28) can 

be re-written as: 
t k

 2

1 | 1 1k k k k w        k        (33) 

where | 1k k   is the prediction of the phase at t k  
having knowledge of the phase up to . | 1k k1t k     can be estimated using two coupled Kalman Filters, as it 
will be explained in Section 5. 

4.1.2. Measurement Models 
When transmitted through an ideal channel, which is 
corrupted by AWGN, the Inphase and Quadrature com- 
ponents of the received signal at  can be repre- 
sented as: 

t k

   
  

cos
2

sin
k

k k k s s
k

Ik

Qk

y h v E T
v

v





 

     


 
 
 




  (34) 

where Ik
 and Qk

 are the measurement noise of the 
Inphase and Quadrature components respectively. 

v v

4.2. GFSK Dynamic System Description 

GFSK is different from the DQPSK in a sense that it is a 
frequency shift keying modulation, and its phase is 
changing continuously during a symbol transmission [7]. 
There are two states to estimate in this system, the con- 
tinuously changing phase  , nt a

a
 and the difference 

equation , where n  is the input sequences. 
The dynamic equations can be represented as: 

 , nt a 

     
 

1
, = , ( ,

1

n n nk k
t a t a h f t a

kT t k T

  
1k 

 

  
   (35) 

      
 

2

1
, , ,

1

n n nk k k
t a t a t a w

kT t k T

  


  

  
1 k


 (36) 

Equation (35) states that when the state changes from 
 to over a symbol with duration 

, 
k

 can be determined using 
Euler’s formula by adding the change in the phase 

1n k
 to the previous phase 

1k

1k 
kT

h f

k
k

 ,t

na

n 1t T  

 a

 ,t a

  , nt a


.  
is the step size, and k  is the process noise. This dy- 
namic system can be modeled nonlinearly as: 

h
w

      2

1 1
, , ,n n nk k

t t t  
 

  a a a

At the receiver, the signal can be modeled as: 

 
    

 
2

1 1, ,

e
2 n nk kt a t a

s

s

iE

T
r t v t

    
 
     (38) 

where  1s skT t k m T    . 

4.2.1. State Transition Model 
The dynamic system of the phase and difference equation 
of the GFSK can be written as: 

      2

1 1
, , ,n n nk k k

t a t a t a  
 

      (39) 

    1
, ,n nk k

t a t a w 
 k         (40) 

In a matrix format, (39) and (40) can be represented as 

 
 

    
 

2

1 1

1

, , ,

, ,

0

1

n n nk k k

n k n k

k

t a t a t a

t a t a

w

  
 

 



      
      
 

  
 

  (41) 

4.2.2. Measurement Model 
When transmitted through an ideal channel with AWGN, 
the Inphase and Quadrature components of the received 
signal at t k  can be represented as: 

 
  
   

cos ,
2

sin ,

Ik

Qk

k

k k k s s

k

t a
y h v E T

vt a

v




 
  


  
 


  
   

 (42) 

4.3. π/4 DQPSK and GFSK Dynamic System 
Description 

There are communication systems that implement multi- 
ple modulation schemes, such as WIFI, Bluetooth, etc. 
Figure 2 represents a receiver that implements both DQ- 
PSK and GFSK, similar to the modulation schemes as 
specified in Bluetooth communications [4]. This figure 
depicts a functional blocks of the demodulator along with 
the proposed IKF interface. The DQPSK part of the de- 
modulator processes the AC and Headers portion of the 
frames, while the GFSK part of the demodulator pro- 
cesses the Payloads portion of the frames. As it will be 
explained in the next section, the two KFs calculate the a 
priori phase 1|k k   and feed it into the UKF. In its turn, 
UKF uses this a priori and knowledge of the noise cha- 
racteristics, and apply its simple algorithms to estimate 
the received signal components, before it feeds it into the 
decoding and decision devices for further processing. 

Next, the state space equations for both DQPSK and 
GFSK systems are presented, which include 4 states, and 
4 outputs. k

   (37) 
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Figure 2. The baseband DQPSK and GFSK receiver with the integrated Kalman filtering. 
 
4.3.1. State Transition Model 
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(43) 

4.3.2. Measurement Model

 The measurement equations can be written as follow: 

 
 
 
  
  
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v







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 
   
 


 
 

 
 


  


     (44) 

5. Interactive Kalman Filtering 

Dual estimations concept has been explored in several 
researches in different applications. In [29], D. Labarre et 
al. proposed to take advantage of the so-called instru- 
mental variable (IV) techniques to estimate both the re- 
ceived signal and the associated parameters. They pro- 
posed using two conditionally linked Kalman Filters in 
order to avoid using an EKF to estimate both states and 
parameters. The first KF uses a new observation to esti- 
mate the incoming signal, while the second KF uses this 
estimated signal to estimate the coefficient parameters. In 
[30], A. Jamoos, A. Abdo, and H. Nour used similar 
technique to jointly estimate channel coefficients and 
parameters using two coupled Kalman Filters in the es- 
timation of rapidly time-varying Rayleigh fading chan- 

nels in Orthogonal Frequency Division Multiplexing 
(OFDM) mobile wireless system. Thus, each time a new 
observation is available, the first filter uses the latest esti- 
mated parameters to estimate the signal, while the second 
filter uses the estimated signal to update the parameters. 

5.1. Phase Prediction 

This joint estimation method will be utilized to predict 
the a priori phase | 1k k   based on the past measured 
received signals 1 2,k k ,    , and feed this predicted 
value into in UKF to use it in its algorithm. From Equa- 
tion (29), the phase k  is predicted based on the previ- 
ous value 1k   and the change as triggered by the cur- 
rent input, which is equivalent to   k

2

1 1k k     
2

. 
Thus, in order to calculate 1k , we need to have 
knowledge of k

  
 . At the mean time, we need to know 

 in order to calculate k 2

1k    . The dual estimation 
is proposed to handle this case to predict the phase k . 
The phase k  is replaced by |k k 1   

 
in Equation (29), 

which can be written as: 

 2

| 1 1k k k k               (45) 

This a priori can be predicted recursively using the 
following formula: 

1
1

k k k i

p

i
i

a 


   kw         (46) 

where i  is the prediction coefficients, k  is the so 
called driving process and it is assumed to be zero-mean 
noise with variance 

a w

2
w , and  is the order. This is 

called joint estimation [18], since both the phase k

p
 and 

their coefficients i  need to be estimated, and they de- 
pend on each others. Two KFs are proposed in order to 
perform the estimation, which allow the analysis to be 
run linearly and avoid using any of the nonlinear appro- 

a



Interactive Kalman Filtering for Differential and Gaussian Frequency Shift Keying Modulation with 
Application in Bluetooth 

70 

ximation methods. 
KF1 estimates the phases, while KF2 estimates their 

coefficients. Figure 3 shows a layout of this proposed 
IKF method. 

5.2. Estimation of the Phase Values 

Let 1 1  . Equation (46) can be 
put in the following state space format: 

      
T

k k k k p        

k1  k k k gw               (47) 

k ky H vk              (48) 

When , these matrices are defined as: 4p 

 

1 2 3 4 1

1 0 0 0 0
,    ,   

0 1 0 0 0

0 0 1 0 0

  1 0 0 0

k

a a a a

g

and H

    
 
   
 
 
 


 
 
 
 
 
 

 

The goal is to estimate the phase |k̂ l  at t ,
 
given 

 observations of 1 2  as well as estimating the 
output 

k
l , , , ly y y

k̂H  also. The a posteriori |k̂ k  is defined as: 

| 1| 1k k k k k k k
ˆ K r              (49) 

where,  is called innovation process and is defined as kr

1| 1k k k k kr y H     . Its covariance can be defined as: 
2

| 1
T

k k kC H P H w          (50) 

The so called a priori error covariance matrix | 1k kP  
can be calculated recursively as: 

2
| 1 1| 1

T
k k k k k k wP g      g       (51) 

kK  is called the Kalman gain, and is calculated as: 

1
| 1

T
k k k kK P H C

            (52) 

The so called a posteriori covariance is updated as 
follow: 

 |k k k k k kP I K H P   | 1

k k

          (53) 

Finally, the output of KF1 is the predicted phase and 
can be expressed as: 

|
ˆ ˆ
k H                (54) 

The estimated phase |k̂ k  will be fed into KF2 as the 
observed values and used in the coefficients estimation, 
and k̂  will be used as the a priori 1k̂ k   and fed into 
the UKF. The state vector and its covariance can be ini- 
tialized as  and . 0̂ 0  0P I

5.3. Estimation of the Coefficients 

The state vector k̂  that was estimated in KF1 is used  

2 1...... ,k k  

1 2ˆ ˆ ˆ, ,...., pa a a

1
ˆ ˆ,...,k k p  

| 1
ˆ
k k 

ˆ
k

 

Figure 3. Interactive Kalman filtering. 
 
as the observed value to KF2. In order to estimate the 
coefficients from the estimated phase, Equations (49) and 
(54) are combined as: 

1 1
ˆ T
k k k k k k nH HK r a k            (55) 

For the 4th order system, the phase and coefficients 
vectors are defined as   1 1 2 3 4

ˆ       
T

k k k k k        

Ta aand  respectively. Assum-  1 2 3 4na a a   

ing that the phase signal is stationary or changing very 
slowly from the current value to the next one, it is possi-
ble to assume that the coefficients to be approximately 
time invariant over a short period of time. In this case 
they can be written as: 

1n na a                 (56) 

Now we are ready to define the state space equations 
for KF2 to estimates the coefficients as: 

1n na a                 (57) 

1
ˆ ˆT
k k na k               (58) 

where 1
T
k   become the observed values, and n  are 

the states to be estimated. The covariance of the process 
a

k  can be calculated as: 
2 T T

k k kk
HK C K H          (59) 

The coefficients can be recursively computed as: 

 1 11 1 1 1
ˆ ˆˆ ˆ ˆa T

k kk k k k k k k ka a K a             (60) 

where the Kalman gain a
kK  and the update state co-

variance matrix  can be calculated as:  a
kP

  1
2

1 1 1 1 1 1 1
ˆ ˆ ˆa a T a T

k k k k k k k k kK P P   


            (61) 

 1
ˆa a

k k k k k k kP I K P   1
a

        (62) 

In the same manner, the initial state and its covariance 
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can be initialized as:  and . 0̂ 0  0P I shows a high level schematic of this model.  
At the receiver, the corrupted signal goes through the 

IKF with UKF or EKF to perform the estimation steps on 
it before feeding it into the demodulator. Figure 5 shows 
schematic of the integrated IKF, which include the 2 KFs 
and a UKF as implemented in the receiver. It also in- 
cludes the blocks to calculate the un-filtered phase and 
the UKF estimated phase, and their associated MSE. 

6. Simulation and Results 

6.1. MATLAB/SIMULINK Bluetooth Model 

A Bluetooth model has been created to implement and 
validate the proposed method. This model was created in 
the MATLAB/SIMULINK environments [4]. The trans- 
mitted signal power is set to 100 mw representing Blue- 
tooth class 1 devices, which can communicate up to 100 
meters. The model consists of three parts; the transmitter, 
the channel, and the receiver. In the transmitter, the data 
go through the source and channel coding. The data are 
structured in frames. In the simulation runs, data repre- 
senting actual speech signals have been processed. Data 
are organized in frames. Each frame contains 72 bits for 
Access Codes (AC), 56 bits for Headers, and 240 bits for 
the payloads, which makes up a total of 366 bits per 
frame. The 126 bits representing the AC and Headers are 
modulated using π 4  DQPSK in this model, and the 
240 bits are modulated with GFSK, and transmitted over 
an AWGN channel in 625 µs time slots. In some of the 
simulation runs, non-Gaussian channel was used. 

6.2. Results 

Simulation was run to compare the performance of the 
system with the integrated IKF versus the same system 
model without Kalman Filtering. Also, the performances 
of both the UKF and EKF were compared. Figure 6 
shows the results when 200 samples of the received sig- 
nal were plotted for non-filtered versus the IKF estimated 
signals, which consists of two KFs and one UKF. The 
non-noisy transmitted signal was used as a reference. 
Plots show clearly that IKF improves the signals signifi- 
cantly over the non-enhanced receiver. In the simulation, 
the SNR was set at value 10. This result shows the ad- 
vantages of using simple algorithm like IKF to improve 
the results. The receiver was simulated so that the frame was di- 

vided into two sections. The first section is processed by 
the π 4  DQPSK portion of the demodulator (bits 1 - 
126), while the other sections was build with the GFSK 
demodulator to process bits 127 - 366. The rest of the 
blocks in the receiver were simulated to perform all re- 
quired decoding, and reconstructing of the source signal. 
The proposed IKF was integrated into the receiver to 
estimate and optimize the received signals. Figure 4 

Figure 7 shows the corresponding Square Error (SE), 
of the un-processed (non-filtered) received signal versus 
the SE of the IKF estimated signal. These SE values were 
calculated in reference to the transmitted (non-noisy) sig- 
nals for the same 200 samples as in Figure 6. Results 
have been consistent in showing that the implementation 
of IKF has improved the received signal significantly and 
consistently in enhancing the noncoherent modulation per- 
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Figure 4. Bluetooth system model with the integrated interactive Kalman filtering in the demodulator. 
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Figure 5. The integrated Kalman filtering as implemented in the bluetooth receiver model. 
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Figure 6. Non-filtered signal versus IKF estimated signals. 
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Figure 7. Square error of the non-filtered and IKF estimated signals. 
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formance. Filters, which results in better estimation. This is an ex- 

pected behavior, since with smaller step size the change 
from the current sample to the next one will be smaller, 
enabling KF to do more accurate prediction and update. 
Controlling this processing step size at the demodulator 
can be done by taking more or less samples per symbol. 
When taking more samples over the duration of the sym- 
bol, this results in smaller step size. Figure 10 shows 
clearly the comparison of the BER when the UKF was 
used in the IKF with 0.01 versus when this step size was 
doubled to be 0.02. Results show that choosing smaller 
step size results in much better performance. However, 
the disadvantage of smaller step size is that more com- 
putations are needed. 

Figure 8 shows the normalized MSEs of the non-es- 
timated, estimated EKF, and UKF signals, when both fil- 
ters implemented using the proposed IKF method in 
Bluetooth systems with DQPSK & GFSK modulation in 
the presence of Gaussian noise. The results show that the 
both EKF and UKF improve the signals significantly 
when comparing the results to the receivers with no fil- 
tering. It also shows that UKF outperforms the EKF for 
all SNR values from 0 to 12. 

Non-Gaussian noise distributions can be modeled as a 
mixture of additive zero-mean Gaussians distributions 
[31]. In [32], L. Binh used SIMULINK to simulate non- 
Gaussian noise as a mix of Gaussian distributions. Figure 9 
shows that UKF continues to outperform the EKF in the 
presence of non-Gaussian noise, which was created by 
adding three zero mean Gaussian noise distributions us- 
ing SIMULINK built-in blocks. 

Figures 7-10 simulated the performance when using 
both DQPSK and GFSK modulation in the simulated 
Bluetooth system model. The following figure repre- 
sents performance when only DQPSK is used. Figure 11 
shows the simulation when the signals were UKF esti- 
mated signals for three values of the step size. In the first 
case, step size was chosen to be 1. The second and third 
step sizes were chosen to be 0.125 and 0.0625 to represent 

When the step size  in Equations (29) and (35) be- 
came smaller, modeling errors would be smaller, enab- 
ling modeling the system more accurately for Kalman  

h

 

 

 

 
Figure 8. Normalized MSEs of the non-estimated, esti- 
mated EKF, and estimated UKF in the presence of Gaus- 
sian noise. 

Figure 10. BER of the DQPSK and GFSK demodulated 
signal when step size was chosen to be 0.01 and 0.02. 
  

  

Figure 11. BER of the DQPSK demodulated signal when 
step sizes were chosen to be 1, 0.125, and 0.0625. 

Figure 9. Normalized MSEs of the non-estimated, and esti- 
mated EKF and UKF in the non-Gaussian noise. 
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Figure 12. The estimated signals and associated square errors of the UKF and EKF for GFSK modulated signals. 
 
when 8 and 16 samples per symbol respectively. 

When GFSK were the only modulation impeleneted in 
the Bluetooth system model as in the BDR, and simu- 
lation trials were run to compare the UKF and EKF per- 
formance, results were consistent in showing the supe- 
riroity of the UKF. Figure 12 shows the comparison 
between the EKF and UKF estimated signals for both the 
phase signlas, and the associated SE. Results show clearly 
that UKF continues to produce bettr results than EKF. 

For the GFSK only modulation system model, and in 
order to show that our proposed method is consistent 
over different types of randomly generated noises, we 
have run 10 simulation experiments for each SNR. Thus, 
for each SNR value, simulation has been run 10 times, 
using different values of noise seeds to generate different 
results in each trial. A total of 100 runs were executed, 
and when calculating the average of their MSEs, results 
showed clearly that UKF outperforms the EKF. The re- 
sults, as they are shown in Table 1 below, reveal the 
outcomes of these experiments. 

7. Conclusion and Future Work 

In this paper, a novel IKF method has been proposed to 
optimize the performance of the non-coherent demodula- 
tion of DQPSK and GFSK. The results have demon- 
strated that this method is an effective when imple- 
mented in both modulation schemes, while preserving 
their simple structures. UKF has been proposed to be 
used in these digital modulation schemes, and has proven 
to be robust in handling the nonlinearity of both schemes 
and when operating in non-Gaussian noise environments. 
Utilizing UKF in DQPSK and GFSK has been validated  

Table 1. Average MSEs of the unfiltered, EKF, and UKF 
estimated signals. 

SNR Unfiltered MSE EKF MSE UKF MSE

1 1 0.411 0.079 

5 0.750 0.285 0.062 

10 0.376 0.092 0.029 

15 0.101 0.032 0.011 

20 0.025 0.010 0.006 

 
using a Bluetooth communication system model, which 
has been created in MATLAB/SIMULINK. Results have 
shown the effectiveness and superiority of UKF over 
EKF. 

This method can be expanded to be implemented in 
other modulation schemes. There is more work that can 
be done to enhance the idea of this research by adding 
the fading processes to the channels. Also, the analysis of 
the Bluetooth system model can be expanded to include 
the effect of frequency hopping and interferences, and 
IKF can be modified to handle these disturbances. Also, 
more researches using different types of sigma-points 
methods can be conducted for more optimum results. 
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